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CHAPTER IV

DENSITY DEPENDENT SK1RME INTERACTION IN THE 

HARTREE-FOCK FORMALISM

IY.O Introduction

The usual phenomenological interactions used often in the

Hartree-Fock calculations require a strong exchange component

to ensure saturation. The effective interactions derived from
1-cr)Brueckner’s calculations J in nuclear matter acquire in addition

to a strong exchange component a strong density dependence. In

addition to the strong density dependence, the interactions of 
1 ) 2)Negele ' and Banerjee and Sprung also give a starting energy 

dependence. Their saturation properties would he lost without 

the density dependence. In such calculations, the effective 

interaction is first derived in lowest order from a relative 

two-body force and the higher order corrections to it are 

parametrized, since the Brueckner's theory of nuclear matter 

leads to> a defect of the order of 4 MeV for the binding energy 

per particle. Rather than calculating higher order terms in 

Brueckner’s theory, a phenomenological correction is added to 

compensate for this defect in binding energy. In any case, all 

these interactions lead to a significant density dependence of 

the interaction. Most of these interactions give a satisfactory 

description of the radii, binding energies and single particle 

energies of doubly-closed shell nuclei. From these calculations
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it is seen that to describe saturating properties of nuclear 
forces (especially arising from tensor force and the repulsive

core) the effective potential must be made to depend on density ? .
)

In fact, this is the way in which the saturation is achieved.

The attraction between two nucleons decreases as the density 

increases.

Another class of calculations leaves out any consideration 
of the realistic force and the effective interaction is parame­

trized as a whole. In any case a parametrization is required 
to improve upon the realistic interaction. Such phenomenological 
interactions can give a good insight into the study of various

^3 "1 ^)properties of nuclei. Density independent effective interactions 

usually do not explain either the nuclear radii or the binding 
energies or the spectroscopic properties. Density dependent 
forces on the other hand, generally provide a good description 

of nuclear radii and binding energies.

As was shown in the Chapter II, the density dependence of 

the G-matrix arises naturally due to the exclusion principle.
The effective interaction depends very much on the presence of 
the other nucleons because the other nucleons prevent them from 

scattering into the states which they occupy. This makes G a 
complicated function. Therefore a simplifying assumption made for 
G is that the effect of other nucleons is accounted for by

■f

representing G as a density dependent function of the two nucleon
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co-ordinates. In a finite nucleus where the density is not
#

constant, the local density approximation is used. In this 

approximation the interaction between two nucleonsthe positions 

r^ and rg is assumed to take place in a medium the density of 

which is equal to the density of matter at the centre-of-mass 

position R = (r-j + of the two interacting nucleons.

Among the various density dependent effective interactions
C 12)are Moszkowski’s modified q -interaction and the interaction

1 3)which has become quite popular of late the Skyrme interaction
14)advocated by Vautherin and Brink . There have ben numerous 

calculations using Skyrme interaction now available in litera­
ture^-1^ for the bulk properties of the nuclei. The Hamiltonian 

density for nuclear system described by a Slater determinant 

can be expressed as an algebraic function of the nuclear and 

kinetic energy densities. This is possible because of the simple 

structure of the Skyrme interaction. In this energy density 

formalism, the Hartree-Fock equations reduce to ordinary differen­

tial equations which can be solved numerically by usual iter­

ation ‘ proc edure.

The Skyrme interaction'is described in detail in Chapter II. 

The three-body contact force in it is equivalent to a two-body 

density dependent interaction for HF calculations of even-even 

nuclei and is partly responsible for the saturation property

of the force.
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The Skyrme interaction is characterized by only a few 
parameters, still many different sets of these parameters1 ^ 

have been obtained which more or less fit the binding energies 
and r.m.s. radii for nuclei all over periodic table. In spite 
of this phenomenal success achieved with Skyrme interactions in 
reproducing the bulk properties of the nuclei, there has been 
little effort in calculating spectroscopic properties such as 
energy spectra , transition rates, etc.using such interact­
ions. This could be due to the difficulties posed by the three- 
body contact interaction simulating a density dependent two-body 
interaction. The three-body interaction in Skyrme force as stated 
in Chapter II, overbinds odd-mass and odd-odd nuclei and produces 
unstable spin-aligned HF ground states in nuclear matter and 
even-dven nuclei. Hence the two-body density dependent inter­
action is preferred to three-body contact interaction.

Since the ’equivalent' two-body density dependent force 
is rotationally non-invariant for deformed nuclei, for density 
is no more a scalar function of position in space, it is 
unsuitable for a rigorous spectroscopic calculation requiring 
good angular momentum eigenstates which is the object of the 
present study. We shall propose in this chapter a modification, 
of the Skyrme interaction that enables us to perform spectroscopic 

calculations 7 by employing a scalar density dependence averaged} 
over the whole band of states contained in the variational
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intrinsic state. Such an interaction will be equivalent to the 

usual Skyrme force in spherically symmetric nuclei, thus mainta­

ining the agreement for bulk properties obtained all over the 

periodic table.

In the following sections we shall define the scalar band 

averaged density to be used in the calculations and outline the 

procedure to perform density dependent HF calculations. We shall 

restrict ourselves to the intrinsic properties of some even-even,

M=Z time-reversal invariant nuclear systems only. The problem 

of projecting out good angular momentum states from the HF solu­

tions will be taken up in the next chapter. We shall also compare 

our results with other available calculations.

IV.1 Definition of Band Averaged Density.

In the Skyrme interaction, the density appearing in the

two-body density dependent part needs to be evaluated at the centre-

of-mass of two interacting nucleons. The interaction between two
—. -■fo"

nucleons at the positions r^ and r^ is assumed to take place in a 

medium the density of which is equal to the density of matter at 

the centre-of-mass position R = (r^ + ^V2. However, for a contact 

force such as Skyrme interaction this coincides with density at 

the position of either of the two interacting nucleons.
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For time-reversal invariant HF calculations of even-even 

nuclei, the two-body density dependent force in Skyrme inter­

action is given by,
—^

s' —* fx f r,| +rP \
v12 = (V6) (1+P^“} " (ri-r2}y( -12~^ ^ IV(1)

The density J7 (r) is defined as,

§ ^ l I IV(2)

l - \

The density ^ for an axially deformed, time reversal 

invariant even-even nucleus can be expanded in terms of its 

multipole components as follows?

% (?r- I_
L L = 0,2,4,,.......... IV(3)

It is easily seen that the scalar part of density ( ^o) 

can be expressed as the average of scalar densities of the 

.states projected onto the space of good angular momentum*.

= I 1 ? 0
7 IV(4a)
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where ^ J(r) 
o

1 H <™l ?0P I ■”>2J+1 4—> > ' ■ 1 •> op
Pi

f\ —^ —->>
fof ^ 'X. s

L - I

iv(4t>)

iv(4c)

In IV(4a), I aj j is the probability of the state with 

angular momentum J contained in the deformed intrinsic state.

We suggest a modification in the interaction^(eq.,IV(1 ))

such that the deformed density ^ (r) is replaced by the ’’band

averaged" scalar density ^ (r) (eq.IV(4a)) . We replace V12 

*by V^ and write

VU =(tyt) ,0+p^-) ?o (
__^ ,_5$,

*1 \

iv(5)
The interaction V^2 would retain the rotational invariance 

and at the same time would not disturb the agreement for the
i

bulk properties for spherical nuclei. It is straightforward 
to obtain the expression for % (r) to be used in the HF

calculations.
_^ A" —=>

t - i

A

-L 11 cr,
r-rM*

IV(6)
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where o< -- ^

Sqn„IV(6) could be written as;

? ( A) - ^
A i# i

Z-J 1- o/ p
i --1 °< p '■

0( .m

. £c(3*3j*y )<^|^-% p/t; )>
J \~w l °/ y

IV(7>

where

f3*3i? T )<*]»”&>' ) / z. 0 (-i-o, ta„ H/ - i . \<^>|'SKTC< w * c (-Tfrtnrn
-Try -m ft ^ p <°S »

Zeroth multipole of density can be obtained by setting J=0.

It is then trivial to show that IV(7) reduces to
...^ A \Jr

21 c ■ c
l- ) ©<^

^ I

IV(8)

IV(8) is then the expression to be used in the HF calculations 

for the "band averaged scalar density". Introduction of this 

band averaged scalar density now maxes the Hamiltonian rotati- 

onally invariant and spectroscopic calculations are made 

completely feasible. Bnploying the scalar density defined in I?(8)
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we shall briefly review the density dependent Hartree-Fock forma­

lism in the following section.

IV.2 Density dependent Hartree-Fock theory

We shall closely follow the treatment given in section III.1 

to discuss the HF formalism with density dependent Skyrme forces. 

We shall denote by'13'^2 all the terms of Skyrme interaction which 

are independent of density. as defined in the eqn.IV(5),

denotes the two-body density dependent term in which the deformed
...

density J (r) has been replaced by the. band averaged scalar 
density f (r). In the 'deformed’ basis defined by eqn.III(3), . 

the Hamiltonian can be written as,

h = z. <ttv»a>

l 3 k t IV (9)

Because of axial symmetry, the deformed orbital 1 i> can 

be expressed in terms of the basis states as,
r

> O - Z2 c~T\^ l ^ 8 c9s I

= Z. >
where C is the unitary transformation on the basis states
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defined in the eqn.III(3). When it does not cause confusion 

we shall drop the quantum numbers nr and/£t. Denoting by !<(>>

we have, the total energy for the nucleus with A nucleons

t ~

where tilde denotes the antisymmetrized matrix element defined 

in eqn.III(8a).

< 4> I H J <p >
A P\ 1 v
51 < 1 -+--V 51<ii |i5'li+-v,x ! 7
1- i 2- ~*

u
IV(10)

the A particle state }
A

77

i - \
4> > -

As given in eqn.III(9), the HF approximation requires

for all o( S

A
\ ^ L5 ^ H1 ^ c 1 21 vCo< ^

i-i v ^c> C
t

•. e .

iTe

ui * * * J o

o

A A 'V— / I
7 < 1 +7<ii IV^ + V.-J- I ■ 2 7
i -1 i a

A

IV(11 )
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Pi?Jcp
This leads to the following equation,

£, f 1 I P ? -!- £. <c(i | v,L 
P k ,

£,< ia t 5 , 3!l A - P^Pg Pi ) | i'3>
a So

l
L £ 0< IV (12)

A
■ *1v-----

v ij

where (1-PMP—. B-r ) is-the antisymmetrization operator. The 

diffrentiation with respect to of the density dependent

term gives rise to the two terms shown in IV(12). This is

Idue to the density dependence of the interaction V-jg* It is 

shown in appendix B, that after some algebra, one has

A /
j

f ‘
2 ial

13 ^ ? o

2>?p
r-,6 " iV} Per P^t) I

Lj^.

t
Cp <<* I |f*>

iv(13)

for an even-even time-reversal invariant nucleus.

^ p(n) is the density of the protons (neutrons) and ( 

is the zeroth multipole of the product (ftf-n). It is to be 

noted that the term in IV(12) which arises purely out of density 

dependence reduces to a one-body terms as given in IV(13). If 
we start with a spherical density ?D , only the zeroth multipole



of the product ( n) contributes. This is shown in the 

appendix C. The expression for the m.e. <°{ \ O

is given in appendix D.

Following the treatment given in chapter III, one can easily 

see that the Hartree-Fock equations now can be written from eqn. 

IV(12) as,
i •t t1 - r i . IV(l4a)£ <=< C ;% p

<X lMp> <« I E? P>
a ^ f * L ^ 1-V- 7 c£
— - —«iocc *Yo y

IV (14-b)

The solution of eqns.IV(l4-a) and IV(l4b) involves the problem 

of double self-consistency between the interaction matrix elements 

and the HF wpve function. One starts with a trial wave function
tand calculates two-body scalar density matrix elements 

<V/( V,1. ||3<s > and the one-body density matrix elements
and sets up the Hamiltonian matrix 

eqn^IVO^b). Its diagonalization gives a new set of eigenvalues 

and eigenfunctions. With this new wave function, again new 

two-body scalar density matrix elements are evaluated and the 

Hamiltonian matrix set up and diagonalized. This procedure 

is continued until two successive wave functions and the sets of
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two-body matrix elements calculated are the same, i.e. when 

both interaction matrix elements and the HF solution are mutually 

self-consistent, it is clear from this procedure that the 

density dependent HF calculations are an order of magnitude 

more difficult than the density independent ones.

IV.2.1 Rearrangement energy

For density independent forces, the total energy 1 of a 

nucleus can be expressed as

n> 111(13)

For Skyrme interaction, there is an additional term 

arising out of the density dependence of the interaction. The' 
expression 111(13) is replaced by

A
t ^ Z- IVC15)

L
where is called the "rearrangement energy" and is given by

+ A
2. <i I I 1>

9 Ui

IV(16a)

In our modified version of Skyrme interaction, only the 
zeroth multipole of the product ^ contributes and the
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expression becomes ,

A ,Er- <> 1 )’/• IV(16b)

4 1-)
From the expression IV(16b) for the rearrangement energy 

ER, it can be seen that this quantity is always negative. In 
fact, this would be the case for any form of density dependence 
of interaction. Thus the total energy in density dependent HF 
theory is always lower than the ordinary EF theory would lead 
us to expect from the given single particle energy eigenvalues.

Due to the relation 111(13) for total binding energy
for density independent forces in HF approximation, it is well-
known that it is not possible to fit the radius, single particle
energies and total binding energies using a single density

14- 23)independent force ’ . For Skyrme force, however, the relation
111(13) is replaced by IV(15)- .The rearrangement energy term 
E^ which arises purely due to the density dependence of the 
interaction is then responsible in obtaining good agreement for 
binding energies of nuclei with experiment.

IV.2.2 HF single particle energies and separation energies.

We shall show in this section that when we consider the
two-body density dependent version of the force in Skyrme 
interaction rather than the three-body contact force, the
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21 )
Koopman's theorem no longer holds assuming that the single

particle wave functions of the A and A-1 systems are identical.

Koopman's theorem strictly holds when the three-body contact
1interaction is used as shown by Vautherin and Brink

Koopman's theorem is known to hold for density independent 

two-body interaction only in the absence of centre-of-mass motion 

(c.m.m.) as shown in chapter III. I;i this sections we shall not 

consider c.m.m.to make the discussion simple and concentrate 

only on the density dependent part of the interaction.

We recall-that we are working in the band averaged density 
formalism described in sections IV.1 and IV.2. Hence f D(r) j

etc, denote the zeroth multipoles.
C 3)

The contribution ^to the HF-single particle energy 

for the orbital K from eqns. IV(l4-a) and IV(l4-b) due to the 

density dependent part is given by ,

(.20
e CK>

A
L-

%

A
0

<K3 0+p»-)?o(
&

-3>
A . A- >,

+ ti <kk lb 7
IV(17)

Since we consider only even-even time-reversal invariant 

nuclei, it can be shown that IV(17) reduces to,
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C3)
6
CK) t.\

A O. ^ t'<*!(?£)-($ o . 2- x ) |K>

IV(18)

where- denotes the band averaged density for the nucleus
with A particles. ^ ^denotes whether the orbital K is a 

proton or a neutron orbital. Consider it to be a neutron 
orbital. Then,

C3)
6
CK)

' iv (19)
^ ^ is the zeroth multipole of density of neutrons. This

expression for HF single particle energies is identical with
14-)the one given by Vautherin and Brink

We shall now calculate the contribution to separation energy 
due to the density dependent part of Skyrme interaction,
C: (K) required to remove the nucleon from K^*1 orbital.

s • p#
We have by definition,

_ A _ A - I
t — b
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x
A" I , A -! —v —^ ^ > , •< i 31 ( 1 -i- f^r) ^ ^ j ^C^-t“ ^2.} ^ ^
i ^ ^ 3-

IV(20)

denote the band averaged densities for nucleiA_, n A-1f o md So
with (A) and (A-1 ) nucleons respectively. We assume here that 

the orbitals of the residual nucleus with (A-1) nucleons do not 

change after sudden removal of the particle from the orbital K. 
With this assumption IV(20) can be written as

e *. (K ) - ^ ^ ^ 13 I 0~*" %r0 ^-2')^ 6 L s 1?/ r „
• '2>

■•Ml 1*^

A
~h < K 3 ) "tj, (\

i <>

X

A ^ ^ ✓*■ *—■ifa-;§
o 2—

IV(21 )

Considering K to be neutron orbital, it is easy to show that 
IV(21) reduces to,

IV(22)
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i.e.

.(3 )

e o-os>\>, - e
c*>)

K

IV(23)

We thus see that the separation energies differ from HF 

single particle energies by an amount given by the second term 

in 17(23) and so the Koopman's theorem no longer holds when a 

two-body density dependent interaction is used.

It should be noted that our expression for HF single 

particle energies is identical with that of Vautherin and Brink 

and so with their separation energies since they use three-body 

contact force. Our expression for separation energies, however, 

is different. Three-body contact force and two-body density 

dependent force are equivalent only for the even-even time- 

reversal invariant systems.

As we saw in chapter III,-the Koopman's theorem is not valid 

when e.m.m. is incorporated in HF calculations and the particle 

number A is to be treated as a number operator. We see that 

when the interaction itself depends on the particle number, the 

Koopman's theorem will not be valid. The total density of a system 

depends on the total number of particles A in the system and so 

the Koopman's theorem will not be valid for density dependent 

interactions. The effect of 2nd term in 17(23), however, is
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expected to be small, approximately by a factor (1/A) and so 
r (3) s (2)C s.p.^K^ 821(1 ^ 5 would be quite close especially when

the number of nucleons is quite large. Hence single particle' 

energies would be quite close to the actual separation energies 

when density dependent forces are used.

IV.3 HF calculations with the band averaged Sk.yrme 
interaction.

As remarked in the section IV.2, the solution of HF equa­

tions in the density dependent HF theory involves the problem 

of double self-consistency between the interaction matrix 

elements and the HF wave functions. Following the procedure 

outlined there, the calculations were carried out for the nuclei 

°Be, C, u and uNe using the scalar band averaged density 

dependent Skyrme interaction.

The interaction set chosen was the variant SIV of Beiner
16)et al . This set will be denoted as BASIV in our band averaged 

formalism. The set SIV has a rather weak-density dependence com­

pared to other sets. This set was chosen since because of its 

weak density dependence, the convergence is very rapid. Other 

sets because of their large density dependence, pose the problem 

of numerical instability of the HF solution and hence that of 

its convergence. The corrections arising due to the centre-of- 

mass motion and Coulomb repulsion have not been included in 

order to make the projection calculations simpler and also
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because it was found that the contribution of these corrections
20)to the energy spectrum is quite insignificant

We display the results of the HF calculations with the
Qinteraction BASIV in tables IV.1 through IV.5 for the nuclei °Be3 

12 16 20C, 0 and Be. Only the proton time-like orbitals are given. 
It is seen that the interaction BASIV provides a much better 
agreement for the binding energies of these nuclei compared to 
the variant SV and the Sussex interaction (Tables III.3A and 
III.3B). It should be noted that the interaction BASIV lifts up 
the deep lying orbitals as compared to SV which is in accordance 
with the calculations reported by Beiner et al . The r.m.s. 
radii given by BASIV compare well with those given by SV. It 
can be seen that the HF gaps obtained with BASIV are consistently 
larger than the ones obtained with SV. One can conclude that, 
in general, the interaction BASIV provides a better description 
of the intrinsic properties of nuclei.

IV> Summary
In this chapter, we have proposed a modification of the 

Skyrme interaction by replacing the intrinsic density by the 
"band averaged" scalar density. This makes the Hamiltonian 
rotationally invariant and projection of good angular momentum 
states from the intrinsic HF solution is made possible. We 
derived HF equations using density dependent Skyrme interaction
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and saw that when density dependent interaction is used, 

Shopman's theorem does not hold because the interaction depends 

upon the total number of particles in the system. We saw that 

the interaction BASIV provides a good description of the nuclei 

studied compared to the interactions SV and Sussex. We shall 

take up the topic of projecting good angular momentum states 

from the HF intrinsic state in order to study the collective 

properties of nuclei in the next chapter.
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