Appendix C

Here we shall show that if we start with a scalar band averaged density S_o , only the zeroth multipole $(SpSn)_o$ of the product SpSn contributes in the derivative term of the HF equations. We saw in appendix 2 that the definition of spherical density S_o given in IV(8) lead us to the evaluation of the quantity

C(1)

Consider L^{th} multipole of the product gpgmThen,

Multiplying by C $\left(\begin{array}{cccc} \mbox{Jol} & \mbox{O} & \mbox{Jol} & \mbox{o} & \mbox{mod} \end{array}\right) = 1$ and using the proper symmetry relations for the Clebsch-Gordon coefficients, one gets

Thus only the zeroth multipole $(\beta_{p}\beta_{n})_{o}$ of the product $\beta_{p}\beta_{n}$ contributes if we start with a spherical density β_{o} .