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CHAPTER IIT

HARTREE-FOCK FORMALISM AND CENTRE-QF-MASS MOTION

I111.0 Introduction

The basig idea of the Hartree-Fock (HF) formalisﬁ is to
obtain an average potential in which every nucleon moves inde-
pendently of each othér. This average field is genefated by the
interaction of a nucleon with all other nucleons. This average
potential provides connection with the one-body potential used
in the shell-model., HF formalism is appl;eé to nuclear‘problems
to obtain approximate ground state and excited state wave

functions of nuclei, which are single Slater determinants.,

It is well-known that 23716 and 1p shell nuclei show rotati-
onal spectra, though not so pronounced as'in heavy deformed ones.,
These states can be interpreted in terms of rotating deformed
intrinsic states of the nuclei. The HF formalism provides a
meansuto study deformations in nucleig).tHF calculations assuming
spheriéay symmetry obviously can not éive any information about
tﬁe deférmation in nuclei. Deformed HF calculations on the other
' hand involving axial symmetry or ellipsoidal symmetry give rise
to deformed intrinsic HF solutions. Solutions with axial syummetry
describe the shapes of the nuclei as spheroidal ones and the

projection of good angular momentum states from intrinsic
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states gives rise to collective rotational specﬁra in nuclei,
The single particle orbitals obtained with HF calculations invol-
ving axial symmetry in fact correspond to the orbitals obtained

5)

in the deformed shell model of Nilsson’.

The first deformed HF calculations were reported by Kelson3)

to explain the collective rotational spectra of some 2s-1d shell
nuclei, HF formalism has been successfully applied{Refs: 1-h4 and
10-12) to study the probléms involfing nuclear structure when

the pairiﬁg forces between thé nucléons are not important. If

the energy gap between the lowest unoccupied and thevhighest
occupied single particle states is large (as is the case for

A=tn nuclei), the pairing is not important. For the nuclei we have
undertaken to study, i.e., the nuclei in the 1p shell and the
25-1d shell; pgiring is not important and\so the HF formalism

can be successfully employed. '

We shall briefly review the HF formalism in this chapter.
We shall then study the implicatiéns of the centre-of—maés motion
in the HF theory. In this chapter, we shall restrict ourselves
only to density independent effective interactions. We shall
enploy Sussex6> and the density iﬁdepehdent Skyrme variant SV7).
We shall study the nuclei 511, e, OB, '2c, "% ana 2Ne. We

shall be concerned only with the intrinsic properties of the

nuclei in this chapter. We shall study the intrinsic properties
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and the spectroscopic properties employing density dependent

forces in later chapters.

I1r 1 Hartree-Fock Formalism

The Hamiltonian can be written as

M T <XItRY Cs,{*'&yg
« P »
+ L 37 <AYIV|BOY ﬁf“—ﬁ“S A

2
Ap7 S III(1)

where t 1s the kinetic energy operator and ¥V denotes the two-

body interaction.

Here I<><>} \(3>) |V> ___etc. denote the basis states
{xai 3b( j&( ngk;2*>etc; D is the radial quantum number,ilc&\
and j°<are orbital and total angular momenta respectively,'mcK
is the projection on symmetry axis of jc(anﬁ.ﬁkais the isospin
projection quantum number distinguishing between a proton and a
neutron for a single nucleon wave-function. a:<(ao() is the
creation (annihilation) operator of the single nucleon state

fe{ ). These operators obey the following anticommutation relations

since we are dealing with Fermionsg

~ g + 1—
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Now consider a unitary transformation C on the basigs

operators as shown beloy:

: .
a; >, C:C( ok
o

I

I11(3)
_ LK
& = > Co( A
=4
We now construct an A particle state
A+
| > = 7T &y o) IIT(H)

t =

so that

B ={}la| P 111(5)

is a minimum for any variation of the unitary transformation C.
It follows that the creation (annihilation) operators a;(ai)
of the "deformed" basis obey the same anticomamutation relations

as in III(2), i.e.

[ as, agj+= aiag + a; a; = Sij
L=l 1+=[ai’ 23] e =0

This implies that

<ol d)> =
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The Hamiltonian H can be written ig*}he new basis as,
Nz = <iltlg> & {og
L4 o

. : o,

+LL<L‘<!V}Z}1}QLQRC&{G\&

QA
13«\«5. III(6)

The kinetic energy and the poteantial energy matrix elements can

be expressed as,

. P L% 3
<Ll‘t32>-O«2—(g<°“tlﬁ> Co& C\'S III(7a)
e koko4 8

: S < )
CikVigy _%2‘;‘/;47 V|6 >Co\ C7 Crﬁ CgIII(‘?b)

The total energy for a nucleus with A particles is given by

A
<dimidy = 2L <ty
L= |

A ' N
’ ) 4 e #
T2 <’~31Vf13) 111(8)
L]
where tilde denotes the antisymmetrized matrix element of the

two-body interaction N
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The HF approximation consists in putting the variation of IIIL(8)

with the consgtraints:

¥

T 1 S (_‘,L*c'L |  for all
a;, a, = L.e, - L,
[' i 25 :l# ie. > o « or a %
a(
equal to zero, which means that,

A 1

¥L<¢\H[<{>>-~ .'LZ_.C ]
L= =4

= O 111(9)

where é}i_are the Lagrangian psrameters. This procedure leads
us to the following matrix diagonalization problem;

— L ,
% <°‘<H\’ﬁ>cfg z €, C; ITII(10a)

where h is the HF Hamjltonian defined as,

A o~
<KxIhif) = <xXITIPE) + 2 <41V [[Fg>

decc

TKKILIBY 4 <XV [VIBS) S Sy
78 III(10b)

a2
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where

' 4

A ¥
S ﬁ 3

0C<

III(11)

The unitary transformation C diagonalizes the HF Hamiltonian
h which itself depends on this transformation., Therefore the HF
equations III(10a) and III(10b) must be solved self-consistently
i.e. by the method of diterations . Initially a guess for the
transformation C is made, i;e, for the wave function and HF
Hamiltonian{o(Hw)ﬁ}is set up and diagonalized. The new eigen-
functions define a new transformation C and this is used to
obtain a new HF Hamiltonian which is diagonaligzed. This procedure
continues till the eigenfunctions between two consecutive iter-
ations are the same, i.e. when the self-consistency between the
single particle orbits and the single particle potential defined

by ITII(10a) and III(10b) is achieved.

The second term of the equation III(10b), vizs

Sy IV|BE> S5y
v &

gives the average or the self-consistent field produced which

7

corresponds to the shell theory potential. The eigenvalues ¢ i

are the single particle energies of the HF orbitalsi:i} , 1.€.

hilvy = €L 14y III(12)
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In terms of HF single particle energies, the total energy

E can be expressed as,

A
-—:<'1 f N " — ‘,M‘.
= & Crithiy g 2<igiviie)
- 1
| /\
2 > L<l tH7 +C~ 7 IIT(13)
1=

In our calculations, we shall assume axial symmetry through-

out, The deformed orbital] i)can therefore be expressed as,

4

— L

t

ey = O C
’y\L—l '3 ”’70({.0(30&
Lo Gk

When it does not cause confusion, we shall drop the quantum :

(fno((o(ao{\ yMiT LY

numb m, and [ ..
umbers w; 4

I11.1.1 Alternative expression for HF eguations.

The Hartree-Fock equations III(10a) and III(10b) can be

expressed in terms of h and the one-—bofdy density operator %7

The density matrix 9 is defined as

a5 =lay 2]y TIT(14)

where | > denotes the physic il vacuum. For an orthonormal set

of wave functions | 1% we have
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From this definition, the necessary conditions followed by S’

t
<

for &€ > €y III(15)

are

3 = %'+ i.e. @ is Hermitian I1I(162a)

N

§, - g TII(16b)
) "1" ‘

m§)y= 2 < 1GL &} p
v

= N = number of particles. III(16¢C)

The fact that ? and h can be diagonalimed simultaneously as
seen from the -equations ITII(10a) and III(15) can be expressed

as

[ h,8 J = o III(17)
with of course §1§ g .

Irr.1,2 Single particle separation energies.

The energy required to remove a particle from the
1-th orbital from a nucleus with A particles is defined as the
separation energy for that orbital. In the absence of the

corrections arising due to the centre-of-mass motion, this is
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the HF single particle energy & g of the 1-th orbital.

CLU EA E/\'\

£ P - ITI(18)
Ss\jo (?_ )

where E%ig denotes the binding energy of the residual nucleus

after the removal of a nucleon from the 1-th orbital in the

parent nucleus with A nucleons.
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|te‘ 654}33 - é& .

QAN

which is the HF single particle energy for the 1-th orbital.
Thus, the separation energy for a particular orbital is given
by the HF single particle energy for that orbital., This is known

as the Koopman's theorem8).

I111.2 Centre-of-mass motion and single parbticle separation

energiles.

A nucleus is invariant with respect to the translation of
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its ceatre-of-mass and hence a plane wave exp | i (P.R) /1g :]

should describe the correct dependence of the nuclear wave function

2 A = - A =
on the centre-of-mass. Here, P =2a P and R = (1/4) 2. & (.
i=1 L=

The independent particle model of a finite nucleus, however, leads
to a wave function which generally does not have the translational
invariance and may not separate into a product of wave functions
describing the centre-of-mass motion (c.m.m.) and the internal
motion. Unless the wave function obtained in the independent
particle model separates into centre—bf—@ass wave function and
internal wave function, there is no unique way to obtaig a transla-
. tionally invariant wave function., Moreover, the Hamiltonian depends
on the centre-of-mass through the kinetic energy. Both the simpli-
city and the success of the independent particle model compel one
to account for the spurious effects due to c.m.m, in an indirect
mammer, One method is the use of operators which do not depend on

the centre-of-mass while evaluating expectation values with the

t

;i

model wave functions. Better still, one may obtain the independent

particle wave function through a variational principle using internal

9)

-operators only”’. For example, one may perform a Hartree-Fock
variational calculation using a Hamiltonian from which c.m.m. is
deleted, Such calculations have been carried out and reported in

literature1q_12)

. However, the Hamiltonian in this case can be
written in two forms and an interpretation of the HF solutions and

HF gingle particle energies has been guite ambiguous in the past.
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We show that in calculating the single particle separation
energies, one should ise the c.m,m, corrected Hamiltonian for both
the initial and the final states and that, this energy is invariant
to the form of the Hamiltonian, unlike that obtainéd by the
straightforward application of Koopman's theorem. Also it is

shown that the same variational HF state results,6irrespective of

the form of the Hamiltonian, as should be the case S’

I17.2.,17 e,m.m, and two forms of the Hamiltonian.

The Hamiltonian for A nucleons with the c.m.m. subtracted

is given byA }9‘7’ A _Q N 2
H = 'EZ v El,qj'ié - ( 2? P )
LTy 2w ’l<a L=
2. A

ITI(19)

?

neglecting the neutron-proton mass difference, This Hamiltonian

can be put in two alternative forms:

A 2
H(A) :Z <)-_L.) P
L2y 2. TN
A — = ,
+ X '\B'gé — Py Pg ) TTI(20)
1< 1\ ™ A ,/

or
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A
H(AY= 2 V1 (F )
1< g 2 W1 /X

~ h I1I(21)

/

where the last form III(21) contains only a two-body interaction.

The HF Hamiltoniens h''” and h‘?) for the forms ITI(20) and
I111(21) are given by

Ry
h''= 5 Desil-4) B2 gy
0&13 2™
w
LY <y, - P ‘°2~ PrPe |66 €7gja G,
i 7 5
"3““‘:5/
(2 —~ =7 I11(22)
h o= > [<x7 v, + Q}:Pz a§/§75ja Tan
X 3 2 T A
I1I(23)
where tilde denotes antisymmetrizstion. It is obvious that h“)

and h(z) are quite different, but, we shall see that the H.F

equation [h(2>, f:} = 0 implies [hm ), f] = 0 and vice versa.

h(2) can be easily expressed in terms of h(” as
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IIT(2%)

where t = p2/2m is an operator and T is a c-number equal to the
expectation of t., Now consider the commutator with the density

operator §

- (

L l)g]:[‘f\‘\’g‘]_{_;\ -.t g]..

L 7te+st ¢
A L S

g1+ [+, -9

! 4
™
I~ A~
- <
LYV
(W

since SJl = III(25).

~

This shows that we should obtain the same determimant with either
of the Hamiltonian forms III(22) or III(23). If 3 commutes
with h(2), it also commutes with h(1) aﬁd vice versa and thus

the HF solution obtained is invariant to the form of the Hamil-
tonian used, although the HF single particle energy eigenvalues :

may be different in both cases.
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I11.2,2 Single particle energies and separation energies.

The HF single particle energy eigenvalues obtained with the

HF Hamiltonian forms h(1) and h(z) can be expressed in terms of each

other in a diagonal representation.for either Hamiltonian, It can

be shown easgily that

& :%2) =€ :41” + %[— 6] +-¥ for i occupied III(26a)
and

¢ 1(2) = g) +-j§ [’ tiij +-§i— for i not occupied

. III(26b)
The total HF energy is same in both cases:.
\ (1_)
E = — 5 €,
E S 2 1
20(.c
o 0 )
— ! t "L'ut
= = e+t (0-1))
L oce A I1I(27)

The transformation from one Hamiltonian form to.another
without affecting the physical state seems to change the single
particle separation energies as given by Koopman's theorem
rather drastically ((” §2) to @ :gL” as can be seen from eqn.
III(18a)), This 'paradox13) is easily removed if one notices that
the c.m.m, correction is A dependent and that one should use the

c.m.,m., corrected Hamiltonian for the residual (A-1) particle



Then one obtains identical single particle separation energies

(& s.p.) with either form. of the Hamiltonians

(1‘) _ é(.'J ) y ‘Q'Z_
éS‘P‘ - L "{'K':‘i \ >A

277 A -1
(2) e BT
- _____L..\(kg)”.*lo,_) 3>
= € /—\——%LA ' 2. v A /
(k<7
OcCcl

ITI(28b)

2

where-g is the total momentum and the eipectation values are
evaluated with respect to the residual nucleus after the sudden
removal of a nucleon from orbital | i) -. It should be noted that
the expression obtained above f9r the single partiéle separation
energles éi—j)),,‘ differs from that given by Kerman et ale) who
arvitrarily subtract the averége kinetic energy contribution for

the whole nucleus from HF single particle energles & (2) to

obtain single particle separation energies.

117.2.3 Calculation for 16O using the two forms of the
Hamiltonian,

1 -
We performed HF calculations for the nucleus 60 with
both the forﬁs of Hamiltonian III(22) and III(23) to check

that the separation energy and the variational determinantal
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state of a nucleus are independent of the form of the
Hamiltonian used, In Table III.1 we present the results with

both forms of the Hamiltonian, giving identical results,

The calculations are performed in the space of first
four major shells. We used the Sussex matrix elements with
the harmonic oscillator parameter b = 1,5 fm, The Coulomb
repulsion between the protons is explicitly taken into account.

160 for the single particle separation

The results for
energies with the c.,m.,m, correction tend to be mare repulsive
for deep lying orbitals and give slightly better agreement
4)

with the trend of the experimental data1 compared to those

without the c.m.m., correction., In Table III.2 we give the HF
energy and the r.,m,s. radius for the 160 nucleus without and
with the centre~of-mass correction. It can be seen that the
c.m.m., contributes as much as 14 MeV to the binding energy

giving slightly smaller r.m.s. radius.,

/ We have thus shown that the two Hamiltonian forms III(20)
and III(21) are equivalent in obtaining HF states and c.m.m,
corrécted single particle separation energies provided that
the c.m.m, correction is applicd to both the target and the
residual nucledi treating A as the number operator and that the
variational determinantal state of a nucleus is independent

of the form of the Hamiltonian used,
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I11.3 HF calculations with density independent Skyrme
" Interaction

We,shall restrict ourselves to the density independent set
1.7

SV of Skyrme interaction obtained by Beiner et a and compare

HEF results with Sussex interaction for some 1p shell nucleil.

We report the results for the nuclei 8Li, 8389 SB} 12C and

16
20

0. We also have chosen one member of the 1d-2s shell viz.

Ne, a well-beaten nucleus. The calculations are performed

in the configuration space of first four major shells including
Coulomb and c,m.m, corrections. The c.m.m, is treated as given

in the eq.III(21)5 i.e, the Hamiltonian does not contain one-body
part, The contribution of these corrections to the nuclear
spectra was found to be negligible, although they may contribute
several MeV to the intrinsic ground state energies. Since our

aim is to study the spectroscopic properties of the nuclei, these
effects have not been included in some cases in order to make

projection calculations less complicated.

ITI.3.1 8ensitivity of the calculation on the oscillator
parameter b.

Our calculations do not include configurations beyond the
fourth major shell. This truncation of the configurat?on space
makes the HF calculations severely dependent on the oscillator
parameter b, If the configuration space is quite large the

calculations would be insensitive to the size parameter b,
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This is particularly true in the case of Skyrme interaction., The
saturation would be achieved through the optimization of b, This
optimized value of b is then the proper b .to be used in the
calculgtion of spectroscopic properties. For every nucleus we
calculated the optimized b value. For the nuclei studied, the
b value ranges from 1.6 fm to 1.9 fm. Sussex interaction does
not show such a severc b-dependence for the 1p shell nuclei in

15)

the configuration space of four major shells . The éalculations

for 1p shell nuclei with Sussex interaction were performed with

20

b=1,5 fm while for " ~Ne, b=1.7 fm was used.

“111.3.2 Results and Discussion,

8 8

The optimized b value for the nucledl 8Li, Be and "B

was found to be 1,7 fm for the Skyrme interaction variant SV,

For 12¢ and 1@

0 it was found to be 1.6 fm, The truncation effects
are strikingly seen in the case of 20Ne for which the optimum
b was found to be 1.9 fm. This value of b is rather large tha?
the value generally used (1.7 fm) . but, this is how this nucleus

20

saturates. For HF calculations with Sussex interaction for "~ Ne,

b=1,.7 fm was used while for other nuclei, b=1.5 fm was used.

We display the results of HF calculations with the
density independent Skyrme &ariant SV and the Sussex interaction
in Tables III.3A and III.3B respectively. It can be seen that

SV gives much better binding energies than does Sussex which



highly underbinds these nuclei. It also can be seen that the
r.m,s. radii obtained with SV are slightly larger compared to
the ones obtained with Sussex interaction providing better

agreement with experimental values.

The energies obgained with SV, though better than the ones
obtained with Sussex interaction, are less than the experimental
ones, This could be due to the fact that the parameters in the

Skyrme variants SIT to 8IV of Beiner et al?) are fitted for nuclei

160 and above, Another reason could be that the oscillator basis

used in our calculations may not be the brbper basis to be used.

In our calculations it was assumed that the Skyrme variants which

reproduce the bulk properties of nucleil 16O and above should not

prove to be too unphysical for the nuclei lighter than 160

8 8

For Y1i and B, we obtain two HF solutions with K=1 and

K=2 which lie close in energy. Here, K denotes the projection
of total angular momentum J on the symmetry axis taken to be
_the Z-axis. Because of the axial symmetry, J, | (b\;): K| ¢K> ,

where }Q)k:> is the HF determinant. We display the two solutions

8

with the interaction SV in Tables IIT.4A and TII.4B for °B only.

In Tables III.5A and II1.5B we display the corresponding solutions

8 12, 16

with Sussex interaction for comparison. For "Be, ~C, ~0 and

2ONe, only one solution with K=0 is obtained. We give HF orbitals

for these nuclei in Tables II1.6 through III.9 only- for SV,
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It can be seen that the gap i,e, the difference between single
particle energies between the lowest unoccupied and the highest
occupied orbitals is quite large and so the HF formalism is gquite

valid for these nuclei,

Since we would like to perform HF and spectroscopic calcula-
tions employing density dependent Skyrme interactions, we do
not elaborate here more on the HF intrinsic properties using
density independent effective forces. We take up the topic of
performing HF calculations employing density dependent Skyrme

interactions in the next chapter,
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Explanation for the Tables -

HF orbitals have been tabulated in the following way.
The first column denoting 'range' giveés the components of
a particular orbital. For example (1-h) would denote the

following components in the order

Y50 12 s 1370 10 5 1892 172 @04 284 o 42

These components are tabulated in Appendix A. Second
coulumn denoteg projection of J on 2 -~ axis m speéifying
the orbital and pasrity. Third and fourth columgs give the
HF single particle eneréy and the separation energy for
the orbitsl respectively. Remaining éolumns give the compo-
nents of the HF orbital. TL denotes time-like and TR denotes
time-reversed orbitals.

X For even-even time-reversal invariant
nuclei both Proton and Neutron time-like orbitals are given
when c.m.m. and Coulomb corrections are applied; otherwise

only proton~time—like orﬁitals are given. In the absence
of the c.m.m. and Coulomb corrections, separation energy
e’S.P.

* denotes the lowest unoccupied orbital.

and the HF single particle energy € are the same.
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