List of Figures

1.1	The main stages involved in a nuclear fusion reaction2
1.2 \$	Schematic diagram showing compound nucleus Reaction4
1.3	Distant, grazing and close collisions in the classical picture of heavy ion collisions5
1.4	y-Decay from initial to final level6
1.5	The schematic diagram of production of high angular momentum states in nuclei10
1.6 5	Schematic diagram showing the decay of a compound nucleus following a fusion evaporation reaction
1.7	A diagrammatic representation of three types of nuclear (a) shape Spherical, (b) oblate and (c) prolate. The x-axis denotes the symmetry axis of the oblate and prolate shapes
1.8 5	Schematic illustration of the (a) collective motion around the axis perpendicular to the symmetry axis and (b) single-particle motion, generating angular momentum, I by summing the orbital angular momentum projections onto the symmetry axis
1.9	The illustration of the forces that form a Coulomb barrier between the participating nuclei in a nuclear reaction
2.1	Diagrammatic illustration of the multipole deformation for $\lambda = 1, 2, 3, and 4$
2.2	Diagrammatic illustration of the Lund convention for various shapes ($\lambda = 2$) of the rotating nucleus in the (β_{2},γ) plane
2.3	Rotation of a rigid body29
2.4	Diagrammatic representation of the ground state rotational band in even - even nuclei
2.5	Strongly coupled bands
2.6	Decoupled band
2.7	Figure illustrating backbending phenomenon
2.8	Figure illustrating backbending phenomenon
2.9	Schematic description of backbending phenomenon
2.10	The evolution of the states from a simple harmonic oscillator model into a more realistic representation of the nucleus. The 'magic numbers' are marked in circles
	-

2.117	comparison of the unreferit potentials showing a simple square wen, the nationic-
C	scillator and the Woods-Saxon potentials
2.12 /	A comparison between the energy levels of the harmonic oscillator and Woods-Saxon
F	ootentials
2.13 I	Diagram showing the definitions of K and $\boldsymbol{\theta}$ for a valance nucleon orbiting in a
Ċ	leformed potential
2.14 1	Nilsson diagram for neutron orbitals for $N = 50 - 82$
3.1 I	Photoelectric absorption
3.2	The photoelectric absorption in differential pulse height γ-ray spectrum50
3.3 (Compton Scattering51
3.4 (Compton scattering process in pulse height γ-ray spectrum
3.5 I	Pair Production
3.6 I	Pair production process in pulse height γ-ray spectrum
3.7 \$	Shows the suppressed and unsuppressed spectra from the ⁶⁰ Co source60
3.8	Working principle of Compton suppression60
3.9	The segmented Clover germanium detector crystal and how are they packed inside the
Ċ	letector. A Clover detector consists of four n - type coaxial HPGe crystals62
3.10 1	Dimensions of a typical Clover detector62
3.11	A Clover detector63
3.12 I	Ratio of the photo peak efficiency of the Clover detector in addback mode to the
8	verage efficiency of a single crystal
3.13	A Ge detector with tapered rectangular cryostat, cylindrical liquid nitrogen dewar
(LN ₂) and covered with a BGO shield68
3.14	A photograph of Indian National Gamma Array (INGA) with 8 Compton suppressed
(Clover detectors at Variable Energy Cyclotron Centre (VECC)70
3.15 \$	Schematic of the INGA (with 6 Clover detectors) electronics at VECC, Kolkata73
3.16 I	Figure shows the single- and double-fold output from a discriminator
3.17	A photograph of the AFRODITE array consisting of 8 Compton suppressed Clover
C	letectors and 4 LEPS detectors at iThemba LABS76
3.18 \$	Schematic representation of the three detector rings of the AFRODITE array
3.19 /	AFRODITE array and the target chamber with its kapton windows. A camera is
r	nounted on the top right – hand triangular facet

20 The AFRODITE array electronics setup for the experiment	
.1 Gain matching process	
.2 A simple level scheme of 5 γ -ray transitions	
.3 Schematic γ -ray spectra with different gating conditions corresponding to the level	
scheme of figure above	
.4 Gamma-ray asymmetry R_{DCO} plotted as a function of the γ -ray energy. The lines have	
been drawn to guide the eye correspond to the average values of ~ 0.88 for a dipole	
transition and ~ 1.6 for quadruple transition when gated on a pure dipole transition.	
The quoted errors include the errors due to background subtraction, fitting and	
efficiency correction	
1.5 Compton scattering in a Clover detector for stretched electric (top panel) and magnetic	
(bottom panel) dipole transition	
.6 The figure shows the correction parameter a , as a function of the γ -ray energy for the	
INGA experiment	
5.1 Level Structure of ³⁶ Cl with the newly found γ -transitions marked by an asterisk101	
5.1 Level Structure of ³⁶ Cl with the newly found γ -transitions marked by an asterisk101 5.2 Background subtracted gated spectra of 788+1730+176-keV transitions belonging to	
 5.1 Level Structure of ³⁶Cl with the newly found γ-transitions marked by an asterisk101 5.2 Background subtracted gated spectra of 788+1730+176-keV transitions belonging to ³⁶Cl. The newly found transitions are marked with an asterisk102 	
 5.1 Level Structure of ³⁶Cl with the newly found γ-transitions marked by an asterisk101 5.2 Background subtracted gated spectra of 788+1730+176-keV transitions belonging to ³⁶Cl. The newly found transitions are marked with an asterisk102 5.3 Background subtracted gated spectra of 2795 and 2800-keV transitions. The figure 	
 5.1 Level Structure of ³⁶Cl with the newly found γ-transitions marked by an asterisk101 5.2 Background subtracted gated spectra of 788+1730+176-keV transitions belonging to ³⁶Cl. The newly found transitions are marked with an asterisk102 5.3 Background subtracted gated spectra of 2795 and 2800-keV transitions. The figure presents the validity of the 2800-keV transition, which is placed above the 4294-keV 	
 5.1 Level Structure of ³⁶Cl with the newly found γ-transitions marked by an asterisk101 5.2 Background subtracted gated spectra of 788+1730+176-keV transitions belonging to ³⁶Cl. The newly found transitions are marked with an asterisk102 5.3 Background subtracted gated spectra of 2795 and 2800-keV transitions. The figure presents the validity of the 2800-keV transition, which is placed above the 4294-keV level	
 5.1 Level Structure of ³⁶Cl with the newly found γ-transitions marked by an asterisk101 5.2 Background subtracted gated spectra of 788+1730+176-keV transitions belonging to ³⁶Cl. The newly found transitions are marked with an asterisk102 5.3 Background subtracted gated spectra of 2795 and 2800-keV transitions. The figure presents the validity of the 2800-keV transition, which is placed above the 4294-keV level	
 5.1 Level Structure of ³⁶Cl with the newly found γ-transitions marked by an asterisk101 5.2 Background subtracted gated spectra of 788+1730+176-keV transitions belonging to ³⁶Cl. The newly found transitions are marked with an asterisk102 5.3 Background subtracted gated spectra of 2795 and 2800-keV transitions. The figure presents the validity of the 2800-keV transition, which is placed above the 4294-keV level	
 5.1 Level Structure of ³⁶Cl with the newly found γ-transitions marked by an asterisk101 5.2 Background subtracted gated spectra of 788+1730+176-keV transitions belonging to ³⁶Cl. The newly found transitions are marked with an asterisk102 5.3 Background subtracted gated spectra of 2795 and 2800-keV transitions. The figure presents the validity of the 2800-keV transition, which is placed above the 4294-keV level	
 5.1 Level Structure of ³⁶Cl with the newly found γ-transitions marked by an asterisk101 5.2 Background subtracted gated spectra of 788+1730+176-keV transitions belonging to ³⁶Cl. The newly found transitions are marked with an asterisk102 5.3 Background subtracted gated spectra of 2795 and 2800-keV transitions. The figure presents the validity of the 2800-keV transition, which is placed above the 4294-keV level	
 5.1 Level Structure of ³⁶Cl with the newly found γ-transitions marked by an asterisk101 5.2 Background subtracted gated spectra of 788+1730+176-keV transitions belonging to ³⁶Cl. The newly found transitions are marked with an asterisk102 5.3 Background subtracted gated spectra of 2795 and 2800-keV transitions. The figure presents the validity of the 2800-keV transition, which is placed above the 4294-keV level	
 5.1 Level Structure of ³⁶Cl with the newly found γ-transitions marked by an asterisk101 5.2 Background subtracted gated spectra of 788+1730+176-keV transitions belonging to ³⁶Cl. The newly found transitions are marked with an asterisk102 5.3 Background subtracted gated spectra of 2795 and 2800-keV transitions. The figure presents the validity of the 2800-keV transition, which is placed above the 4294-keV level	
 5.1 Level Structure of ³⁶Cl with the newly found γ-transitions marked by an asterisk101 5.2 Background subtracted gated spectra of 788+1730+176-keV transitions belonging to ³⁶Cl. The newly found transitions are marked with an asterisk102 5.3 Background subtracted gated spectra of 2795 and 2800-keV transitions. The figure presents the validity of the 2800-keV transition, which is placed above the 4294-keV level	
 5.1 Level Structure of ³⁶Cl with the newly found γ-transitions marked by an asterisk101 5.2 Background subtracted gated spectra of 788+1730+176-keV transitions belonging to ³⁶Cl. The newly found transitions are marked with an asterisk102 5.3 Background subtracted gated spectra of 2795 and 2800-keV transitions. The figure presents the validity of the 2800-keV transition, which is placed above the 4294-keV level	
 5.1 Level Structure of ³⁶Cl with the newly found γ-transitions marked by an asterisk101 5.2 Background subtracted gated spectra of 788+1730+176-keV transitions belonging to ³⁶Cl. The newly found transitions are marked with an asterisk102 5.3 Background subtracted gated spectra of 2795 and 2800-keV transitions. The figure presents the validity of the 2800-keV transition, which is placed above the 4294-keV level	

•

5.9 The background subtracted gated spectra of 2492-keV ($2^+ \rightarrow 2^+$) transition. The newly
found ones are marked by an asterisk '*'106
5.10 Level Scheme of 54 Mn for the levels populated in 20 Ne + 51 V reaction at 145 MeV.
Newly observed transitions are marked with an asterisk. The width of the arrows is
approximately proportional to the observed intensities
5.11 γ - γ Coincidence spectrum for ⁵⁴ Mn with simultaneous gates on the 156 ($4^+ \rightarrow 3^+$), the
212 (5 ⁺ \rightarrow 4 ⁺) and the 705 (6 ⁺ \rightarrow 5 ⁺) keV transitions. The energies are marked within ± 1
keV. The contaminant gamma ray transitions are indicated with their respective origin
of nuclei110
5.12 γ - γ Coincidence spectrum for ⁵⁴ Mn with gate on the 847-keV (9 ⁺ \rightarrow 7 ⁺) newly found
transition. The contaminant gamma ray transitions are indicated with their respective
origin of nuclei111
5.13 Gamma-ray asymmetry R_{DCO} plotted as a function of the γ -ray energy. The lines have
been drawn to guide the eye correspond to the average values of ~ 0.88 for a dipole
transition and ~ 1.6 for quadruple transition when gated on a pure dipole transition.
The quoted errors include the errors due to background subtraction, fitting and
efficiency correction
5.14 Graph showing the asymmetry parameter 'a', obtained from the radioactive decay data
of ¹⁵² Eu113
5.15 Representative experimental γ -ray asymmetry parameter, from polarization
measurements plotted for γ -transitions in the populated nearby nuclei
5.16 Representative experimental γ -ray asymmetry parameter, from polarization
measurements plotted for γ -transitions in ⁵⁴ Mn. A positive value corresponds to an
electric transition and a magnetic transition results in a negative value. The quoted
errors consists error due to background subtraction and fitting114
5.17 Difference of parallel and perpendicular polarization spectra of simultaneous gates on
156/212/705-keV belonging to ⁵⁴ Mn115
5.18 Difference of parallel and perpendicular polarization spectra of 156-keV gate
belonging to ⁵⁴ Mn116
5.19 Representative γ - γ coincidence background-subtracted gated spectrum of 156-keV (4 ⁺
\rightarrow 3 ⁺) transition116
5.20 Representative γ - γ coincidence background-subtracted gated spectrum of 212-keV (5 ⁺
$a \rightarrow 4^{+}$) transition

5.21	Representative γ - γ coincidence background-subtracted gated spectrum of 388-keV (9 ⁺	
	\rightarrow 8 ⁺) transition	
5.22	2 Comparison of the experimental levels of ³⁶ Cl with the present predictions of the shell	
	model calculations123	
5.23	3 Comparison of the experimental levels of ⁵⁴ Mn with the present predictions of the shell	
	model calculations and Johnstone et al., [43]; refer text for details125	
6.1	Level Scheme of ¹⁹⁵ Tl for the levels populated in ¹⁸¹ Ta(¹⁸ O, 6n) ¹⁹⁵ Tl reaction. Newly	
	observed transitions are marked with an asterisk	
6.2	Coincidence spectrum for ¹⁹⁵ Tl with gate on the 394.2-keV ($11/2^- \rightarrow 9/2^-$) transition.	
	The energies are marked within ± 1 keV133	
6.3	γ - γ Coincidence spectrum for ¹⁹⁵ Tl with gate on the 312.0-keV (25/2 ⁺ \rightarrow 23/2 ⁺)	
	transition. The energies are marked within ± 1 keV	
6.4	γ - γ Coincidence spectrum for ¹⁹⁵ Tl with gate on the 707.2-keV (13/2 ⁻ \rightarrow 9/2 ⁻)	
	transition. The energies are marked within ± 1 keV	
6.5	γ - γ Coincidence spectrum for ¹⁹⁵ Tl with gate on the 458.5-keV (19/2 ⁻ \rightarrow 17/2 ⁻)	
	transition. The energies are marked within ± 1 keV	
6.6	$\gamma \gamma$ Coincidence spectrum for ¹⁹⁵ Tl with gate on the 607.2-keV (13/2 ⁻ \rightarrow 11/2 ⁻).	
	transition. The energies are marked within ± 1 keV	
6.7	$\gamma \gamma \gamma$ Coincidence spectrum for ¹⁹⁵ Tl with gate on the 175.7-keV (17/2 ⁺ \rightarrow 15/2 ⁺)	
	transition. The energies are marked within ± 1 keV	
6.8	Gamma-ray asymmetry R_{DCO} plotted as a function of the γ -ray energy. The lines have	
	been drawn to guide the eye correspond to the average values of ~ 0.69 for a dipole	
•	transition and ~ 1.24 for quadruple transition when gated on a pure dipole transition.	
	The quoted errors include the errors due to background subtraction, fitting and	
	efficiency correction	
6.9	Representative experimental γ -ray asymmetry parameter, from polarization	
	measurements plotted for γ -transitions in ¹⁹⁵ Tl. A positive value corresponds to an	
	electric transition and a magnetic transition results in a negative value. (Errors as in	
	Fig. 6.6)139	