. • •	• •	CHAPT ER	II		••••
· ·	-				
MECHANI	SM DF F	EARRANG EME	NT OF	LONGIFO	LENE
· · · · · · · · · · · · · · · · · · ·	та	tsolongIF	OLENE	······································	-

MECHANISM OF REARRANGEMENT OF . LONGIFOLENE TO ISOLONGIFOLENE

Abstract

The mechanism of rearrangement of longifolene to isolongifolene has been established by using sitespecifically labelled longifolene-4,4,5,5-d₄ and shown to follow the Berson's proposed route which involves $3,2-\underline{exo}$ -methyl shift in preference to $3,2-\underline{endo}$ methyl migration proposed earlier. A novel synthetic route to longifolene-4,4,5,5-d₄ from isolongifolol is described. The results of rearrangement of longifolene with BF_3Et_2O -AcOD show that longicyclene is not an intermediate in the formation of isolongifolene as proposed by McMurry.

MECHANISM OF REARRANGEMENT OF LONGIFOLENE TO ISOLONGIFOLENE

1. INTRODUCTION

LONGIFOLENE (1), a sesquiterpene hydrocarbon of compact tricyclic skeleton, on treatment with strong acids undergoes a deep seated molecular rearrangement to isolongifolene¹. Isolongifolene has been shown to possess the structure 2 by its degradation and synthesis by Sukh Dev and his coworkers²⁻⁶. Three mechanisms have so far been proposed for this complex . rearrangement. Such Dev^2 and Ourisson^7 have postulated a mechanism via classical carbonium ion as formulated in Chart I, which involves protonation of longifolene to produce tertiary ion 3 followed by endo-endo-3,2-methyl migration resulting in a carbonium ion at the bridge-head as in 4. This bridge-head carbonium ion undergoes a number of Wagner-Meerwein rearrangements to produce isolongifolene. The carbonium ion $\underline{3}$ is quite amenable for racemization by 1,2-shift of large bridge, a process similar to one of the mechanisms of racemization of camphene⁸. In fact, the degree of racemization of isolongifolene depends upon the reaction conditions used. During the course of his study of the chemistry of methyl norbornyl cations, Berson et al.9 established that endo-3, 2-methyl shifts occur with great difficulty and while examining a number of vicinal shifts reported in literature, he proposed an alternate mechanism for the rearrangement of longifolene as shown in Chart II which envisages an exo-3,2-methyl

,

(+) LONGIFOLENE (I)

.

(±) AND(-) ISOLONGIFOLENE (2)

CHART I: RACEMIZATION AND ISOMERIZATION OF LONGIFOLENE (DURISSON AND SUKH DEV)

÷

.....

Ð

6

,

2 CHART II ISOMERIZATION OF LONGIFOLENE (BERSON etal) ·

shift in the genesis of isolongifolene. The mechanism proposed by Berson <u>et al.</u>⁹ involves circuitous but more precedented sequences to implicate an <u>exo-3</u>,2-methyl shift, similar to those of norbornyl cations <u>via</u> a number of Wagner-Meerwein and 6,2-hydride shifts. The rearrangement of longifolene has been proposed to proceed through ion <u>5</u> which undergoes an <u>exo-3</u>,2-methyl shift to give a bridge-head ion <u>6</u> and then isolongifolene. McMurry¹⁰ later postulated another less complex route for ion <u>5</u>, arising simply from protonation of longicyclene <u>7</u> (Chart III). This ion <u>5</u> is an important intermediate for <u>exo-methyl shift in Berson's</u> formulated mechanism.

These mechanisms are not easily distinguishable by ordinary methods of configurational correlation because all three mechanisms produce same enantiomer of isolongifolene for a given enantiomer of longifolene. In order to unequivocally resolve the above controversy, we have investigated this rearrangement using deuterium labels. Two different approaches have been followed (a) effecting the rearrangement of longifolene with deuterated acetic acid <u>viz</u> BF_3Et_2O -AcOD followed by location of the deuteriums incorporated in isolongifolene and (b) using site-specifically labelled longifolene.

2. ISOMERISATION OF LONGIFOLENE WITH BF3Et20-Acod

McMurry's proposed mechanism for this transformation

Chronologically, the work with deuterated acetic acid was initiated to check the intermediacy of hydrocarbons <u>7,18</u> and <u>19</u>10 in this rearrangement. During the course of our study, McMurry proposed longicyclene <u>7</u> as an intermediate. The results of our study were equally valid to scrutinize McMurry's proposal.

involves longicyclene (7) as an intermediate, which on protonation opens to a tertiary carbonium ion 5, which in turn is an important intermediate for <u>exo-</u>3,2-methyl shift in Berson's hypothetical route. D-catalysed rearrangement of longifolene to isolongifolene will require incorporation of a deuterium at C-1 in the latter, if the transformation is mediated through longicyclene. Simultaneously, it will incorporate deuteriums at positions C-5 and C-1, if this isomerisation is proceeding through intermediate hydrocarbons 18 and 19 respectively, as it is shown in Chart IV. This is the rationale for carrying out the rearrangement of longifolene with BF3Et20-AcOD. When longifolene was treated with BF3Et20-AcOD, it produced isolongifolene with deuterium contents as shown in Table 1 (Expt. 1) by mass spectral analysis. The PMR spectrum (Fig 88) showed a significant loss of absorption at the vinyl proton and at two of the four methyl groups. To see whether deuteriums have been incorporated in isolongifolene during transformation from longifolene or it was a result of an interaction between isolongifolene with deuterated reagent under the reaction conditions, a time study was carried out, the results of which are recorded in Table 1. It shows that isolongifolene under the condition of the rearrangement (in 20 min), incorporates negligible amount of deuteriums and that too only at vinylic proton at C-8 (PMR). Deutereoisolongifolene was treated with BF3Et20-AcOH for 20 min to wash off extra deuteriums which isolongifolene itself incorporated under the reaction conditions. Similarly, longicyclene (7) and cycloisolongifolene (18) on treatment with BF3Et20-AcOD, passed over to

CHART III ISOMERIZATION OF LONGIFOLENE (MCMURRY)

.

18 CHART IV: ACTION OF DO POSTULATED INTERMEDIATES

m/e 161

CHART V: MASS FRAGMENTATION OF 9-0X01SOLONGIFOLENE

<u>Table 1</u>: DEUTERIUM CONTENTS IN M⁺ OF ISOLONGIFOLENE DERIVED FROM VARIOUS SUBSTRATES

,

, .

с Х Ц	۔ ب	Acid		Reaction	Ľ	lelative	регсеп	tage of	deute	rated s	pecies	÷	Total
N N N	JUDSTRATES	media BF3Ét,	2 ₀	time	do .	1D ,	2D	3D	6 4	50	G G	QL,	
-	Longifolene [`]	AcOD	20	nin	2.29	6.52	14.89	23.82	21•64	1.6.15	11.34	3.32	3 • 66
2.	Product of 1	AcOH	20	min x 2	6.43	9 . 91	20,86	25.91	15.47	14.43	6,95	Ţ	3.06
M	Product of 1	AcOH	24	hrs	10.97	12.67	22.25	31.23	12.47	6.48	2.99	0.89	2.57
4•	Isolongifolene	A COD'.	20	m i n	.65 . 89	32.55	1.55	1	I	I	- I	1	0.35
• ហ	Product of 4	AcOH	20	·min x 2	97.61	1.42	0.95	1	, 1	1	3	I	0.04
6.	Isolongifolene	AcOD	27	hrs	8,00	12.25	23.82	2,2 • 00	14.05	10.41	5.67	2.48	2.96
. 2	Product of 6	AcOH	, 20	min x 2	12.10	26.14	25.43	.14.73	10.70	7.01	2.63	1.22	2.23
æ.	Product of 6	AcoH	. 24	hrs	41.95	26,13	13.06	9•90	8.11	0.82	1	ł	1.18
е •	Longicyclene(<u>7</u>) AcOD	20 45	t, t, t,	1.10	5.70	9.20	13.70	18.50	16.70	16.10	13.10	4.59
•	Cycloisolongi- Priene	AcOD	20	min + hra	2,50	6.93	26.90	39.81	18.73	3 • 75	1.40	ľ	2.82

•

58

, .

isolongifolene with deuterium contents as given in Table 1.

Our next problem was to locate the deuteriums in isolongifolene derived from longifolene (BF3.Et20-AcOD) and to see which of these three routes is operative.

2.1. Location of Deuteriums in Isolongifolene

Deuterated isolongifolene (2a) from longifolene(BF₃Et₂O-AcOD) was oxidized^{2,11} to α, β -unsaturated ketone (8a) with oxygen over cobalt naphthenate; the ketone obtained contained deuteriums as shown in Table 2, and is comparable with deuterio-isolongifolene in its deuterium content. Further, even after treatment with NaOH/EtOH, 8a did not show any loss of deuteriums (Table 2) by mass spectral analysis (Fig. 15, A.B.C). Mass fragment ion at m/e 162, which is a result of the loss of C₄H₈ (M-56) from ketone 8a carries all of its deuteriums intact. C-10, C-11 along with its <u>gem</u>-dimethyl groups can account for the loss of C₄H₈ unit in the above fragmentation, by a mechanism depicted in Chart V. These results clearly indicate that there are no deuterium atoms at C-9, C-10 and two methyls at C-11.

To ascertain the location of deuterium at other positions in isolongifolene-d₇, it was planned to functionalize the relevant positions in the molecule. In order to achieve this, isolongifolene-d₇ was exposed to perbenzoic acid to give isolongifolene oxide (9a) which was isomerized over alumina

	Table 2: 0	E UTE	RIUM CON	TENTS IN DM LONGI	I M ^T OF T FOLENE A	HE DERIV. FTER TRE.	ATIVES DI ATMENT U	TH BF3E	GIFOLENE t20-Acod	
1 -	0+0-1-0-0-0		Relative	percent	age of d	euterium	species	in 'prod	ucts.	Total
-	00		1D	2D	3D	4D	50	6D ,	-02	• Tom / n
(Isolongifolene(<u>2a</u>) 2.	29	6.52	14.89	23 82	- 21 • 64	16.15	11.34	3.34	3.66
0	ketone <u>Ba</u>	. 65	5 • 75	12.33	21.47	20.45	16.34	12.94	3 . 8 .	3.• 73
0	c,B- Unsaturated ketone after_treat- 3. ment with OH_	86	6.36	15.43	22 • 78	21.06	15.73	10.83	3.79	3.61
	Cycloisolongi- 1. folol (<u>10a</u>)	0	4•60	12.80	21.20	22.2	0 •	13.7	4 • 9`	3 . 96
	Homoallylic 2. alcohol <u>12a</u>		5.2	12.6	21•6	21.8	18•3	14.0	4•8	3.82
	Ketone <u>13a</u>	2	4 • 5	12.2	20.4	22.9	19.7	14.3	م	3,86
1	Ketone 13a after washing with OH 2.	; ; ;	5 • 6	14.6	20.2	243	1 6 6	5 19 19	4•3	3.91
	Unsaturated alcohol <u>14a</u>	œ	9•4	13.6	24.4	20.7	16.8	13.1	4 • 2	3 . 80

60

Ì.,)

to cycloisolongifolol (10a) and dehydrocycloisolongifolene (11a)(Chart VI). It has been reported¹² in literature that cycloisolongifolal (10), when refluxed with aqueous phosphoric acid gets converted to a homoallylic alcohol 12. However, we could not get this alcohol (12) under the conditions reported. Through personal communication from Prof. Shaffer, we understood that it was obtained in a very poor yield (<u>ca</u> 10-15%)^{12,13}. The Better yields (54%) of homoallylic alcohol 12 were obtained by exposing 10 to 1% aq H_2SO_4 (50% v/v) in acetic acid at 5-10° for 12 hours. PMR spectrum (Fig 10B) of alcohol <u>12a</u> clearly indicates the absence of deuterium at position & to OH i.e. at C-5, since the proton \pmb{lpha} to OH appears as a double doublet, with the same coupling constants ($J_1 = 3Hz$, $J_2 = 6Hz$) as in non-deuterated alcohol <u>12</u> (Fig. 10A); it further demonstrates the absence of deuteriums at vicinal carbon C-4. To confirm this result further alcohol 12a was oxidized to ketone 13 a which was refluxed with NaOH/EtOH to exchange any deuterium, if at all present, at active methylene carbon C-4. Mass spectra of ketone <u>13a</u> before and after treatment with alkali did not show any loss of deuteriums (Table 2, Fig 17D). These results firmly establish the absence of deuteriums at C-4and C-5.

Similarly, epoxide $\underline{9a}$ was treated with 1% HCl in chloroform for 12 hrs at $-3\pm 2^{\circ}$ to get an unsaturated alcohol <u>14a</u> to trace deuteriums at C-1 and C-2⁶. In the PMR spectrum (Fig 12B) of this alcohol <u>14a</u>, the signal due to the olefinic proton at 5.47 ppm was intact and further it appeared as a doublet with

.

a: DERIVED

FROM ISOLONGIFOLENE (20)

.

I. BF3 Et2 O-ACOH (D) 2. COBALTNAPHTHENATE-02 3. NaOH-EtOH 4. Ph COOOH-C6H6

5. Ab03 6. H^{\$}AcOH 7. Jone's Reagent 8. HCI-CHCI3,0°

.

CHART VI: LOCATION OF DEUTERIUMS

the same coupling constant as in non-deuterated alcohol <u>14</u> (see Fig 12A). These results rule out the presence of deuterium at C-2 also. Mass spectrum (Fig 18C) of <u>14a</u> did not show any loss of mass (Table 2) indicating that only a proton and not a deuteron had been lost from C-1 during the elimination, to form an olefinic alcohol <u>14a</u>.

Thus, the above experiment clearly demonstrates the absence of deuteriums at C-1, C-2, C-4, C-5, C-9 and C-10. The only possible positions left out for locating deuteriums in isolongifolene 2a are at the methyl groups and also ofcourse partially at the olefinic proton at C-8. Four methyl groups resolve nicely in the PMR spectra of compounds 11, 13 and 14. The PMR spectra (Fig 98, 108, 118, 128) of these compounds show a significant loss of absorption (66%) for one of the methyl oroups and the loss of ~34% of the intensity of another methyl group. The remaining two methyl groups do not show any diminution in intensity of absorption in PMR. Any mechanism for isomerization of longifolene to isolongifolene, therefore, involves protonation (deuteronation) of olefinic bond to give tertiary carbonium ion 3 which may undergo racemization by migration of seven-membered rings to give enantiomeric tertiary carbonium ion 3' (c, Chart I). This equilSibrium between two enantiomeric carbonium ions coupled with deprotonation-protonation would ultimately lead to the deuteration of both methyl groups C-14 and C-15.

As indicated earlier, the intermediacy of longicyclene $(\underline{7})$

in the isomerization of longifolene to isolongifolene with BF_3Et_2O -AcOD demands the incorporation of deuterium at C-1 in isolongifolene (2a). The absence of deuterium at C-1 precludes such a proposition. Simultaneously, it also eliminates the possibility of hydrocarbons <u>18</u> and <u>19</u> as intermediates for the formation of <u>2</u> from <u>1</u>.

2.2 Evidence based on Mass spectral Analysis

The mass spectra of isolongifolene <u>1</u> and some of its deuterated derivatives <u>2a</u> and <u>2b</u> are reproduced in Fig No. 14A-F. Deuterioisolongifolene <u>2b</u> was obtained by the rearrangement of site-specifically labelled longifolene-4,4,5,5-d₄ (<u>vide infra</u>). The location of deuteriums in both <u>2a</u> and <u>2b</u> is well-secured by chemical transformations. The mass fragmentation pattern for

isolongifolene has been deduced by comparing the spectra of deuterated derivatives 2a and 2b with that of non-deuterated isolongifolene and is delineated in Chart VII. The principal mass spectral fragmentation peaks are recorded in Table 3. It is clear from Table 3 (Expt. No. 1) that the fragment/m/e 175

AND M-43 SUBSTRATES IN THE M, M-29 FROM DIFFERENT MASS SPECTRAL DEUTERIUM DISTRIBUTION IONS FROM ISOLONGIFOLENE DERIVATIVES ON TREATMENT WITH BF₃Et₂O-AcOD

Total D/mol 3.67 2.66 0.61 3.47 1.24 2.96 2.52 4.59 2.82 2.28 2.67 4.14 4 . • 02**.**5 3**.**9 03.3 13.1 . ŧ 1 1 ۱ ۱ I ۱ ļ ۱ ~ v species . 6.3 1 1.1.5 5.11 3.9 1 ł I 1 1 ł ı 1 ŧ ~ ~ Ø 1<u>1</u>.8 10.4 8.9 0.8 6. 7 6. 2 16.2 .40 . . 1 deuterium I I I 1 1 ~ <u>~</u> ហ 14.10 11.8 6.0 21**.**6. 22.2.2 4 18.5 21.8 03.4 8.7 13.0 9.24 13.0 07.1 I I ں 0 4 . 3.5 54.45 percentage 13.7 16.4 6.8 22.0 20.0 22.6 23**.**8 24**.**9 39.8 29.7 54.5 02.8 45-0 29.1 \cdot S 30,9 23,38 26.9 49.0 23.4 13.9 23.8 28.9 37.6 09, 2 08, 9 28, 6 14.9 15.4 02.8 N Relative 05.7 08.6 48.7 62.6 133.9 12.3 19.1 22.5 06.5 07.2 47.2 06.9 13.3 05.3 52.2 5.3 0 ~~ ï 01.1 01.6 12.6 02.5 00.5 02.5 00.0 12.6 12.1 2.5 08.0 05.2 07.3 02.3 02.2 47.2 đ C Fragment 204(M) 175(M-29) 161(M-43) 204(M) 175(M-29) 161(M-43) 204 (M) 175 (M-29) 161 (M-43) 204 (M) 175 (M-29) 161 (M-43) 204(M) 175(M-29) 161(M-43) ion m/e Longicyclene (20 min+ 45 min) . Substrate (Reaction (20 min+ Isolongifolene (27 hrs) 1 Longifolene (20 min) Cycloisolongi Longifolenetime) 4,4,5,5-d4 folene 2 hrs) Expt.No. 4. . ص 5 ; 2 -

65

Table 3:

(M-29) from <u>2a</u> retains all the deuteriums, whereas, 2.23 D/mole or 64% of total deuterium is lost in the corresponding fragment from <u>2b</u>. It is reasonable to assume, therefore, that the fragment at m/e 1.75 involves a loss of C-4 and C-5 according to the sequence $2 \rightarrow 17$ shown in Chart VII.

The base peak in the mass spectrum of isolongifolene appears at m/e 161 (M-43). The corresponding peak from 2a appears at m/e 162 (47.23%), 163 (2.77%) and 164 (2.77%) and contains only 0.61 D/mole compared to 3.67 D/mole in the parent ion peak. The same peak from 2b contains 2.67 D/mole and retains approximately 77% of the total deuterium present. These results are rationalized by the loss of C-14 and C-15 as an isopropyl radical via the route 2→16a→16b→16 as depicted in Chart VII. In the fragment at m/e 148 (M-56) both 2a and 2b retain their deuteriums. This fragment thus involves a cleavage of CAHR unit by Fetro-Diels-Alder mechanism. It is indeed gratifying that the principal mass spectral peaks at m/e 175, 161 and 148 arise from different parts of isolongifolene molecule. These data proved to be of immense value in locating deuterium in isolongifolene derived from different substrates. This in turn resolved a number of speculations regarding the genesis of isolongifolene from longifolene, longicyclene etc.

2.3 Is Longifolene to Isolongifolene Rearrangement Reversible?

Treatment of isolongifolene $\underline{2}$ with $BF_3Et_2O-AcOD$ for .

m/e 161 (100%)

in un

m/e 148

CHARTIVII. MASS FRAGMENTS OF ISOLONGIFOLENE

2C •major D-atoms ominor D-atoms

CHARTIVIII DEUTERATION OF ISOLONGIFOLENE WITH ACOD-BE3 EF20

27 hours resulted in deuterium incorporation to the extent of 2.96 D/mole which could mostly be washed off with $BF_3Et_2O-AcOH$ (Table 1, Expt. No. 6 and 8). At the first glance it was speculated that longifolene to isolongifolene may be reversible and an equillibrium may exist. However, the following analysis clearly rules out such a proposition.

The distribution of deuteriums in mass spectral peaks of the product from a typical experiment are recorded in Table 3 (Expt. No. 4). It can be seen that peaks at m/e 175 and 161 retain. about 85% and 66% of the total deuteriums in the parent ion peak. Clearly, the product contains substantial deuterium: at carbons other than C-4, C-5, C-14 and C-15. There is no loss of deuterium in the peak at m/e 148, indicating the absence of deuteriums at C-10, C-11, C-12 and C-13.

A number of other hydrocarbons derivable from isolongifolene can be postulated which will cause the deuterium incorporation at C-1, C-5, C-8 and C-15 ($\underline{2c}$) as shown in Chart VIII. The PMR spectrum of deuterioisolongifolene ($\underline{2c}$) resulting from the above reaction shows a significant decrease (33%) in intensity for one of the methyl groups appearing at 1.05 ppm (Fig.8c). This methyl is less deuterated in isolongifolene $\underline{2a}$ derived from longifolene, while the methyl group at 0.99 ppm is more deuterated in $\underline{2a}$. This observation is significant in resolving the question of reversibility of longifolene to isolongifolene. The initial step in the transformation of longifolene to isolongifolene 2a, in presence of deuterated acid, is the deuteronation of exomethylene double bond (ie. at C-14) to give the tertiary carbonium ion 3. The methyl group generated from the exomethylene group is likely to be highly deuterated. By any of the proposed mechanisms this methyl group should appear as <u>exo</u>-methyl group (C-14) in the products. By contrast, deuterioisolongifolene (2c, derived from isolongifolene) carries the methyl group at <u>endo</u> C-15 position; <u>2c</u> conceivably arises by the deuteronation of hydrocarbon <u>20</u> (Chart VIII) followed by <u>exom</u>methyl migration from C-7.

It is thus abundantly clear that the rearrangement of longifolene to isolongifolene is not reversible.

2.4. Rearrangement of Longicyclene to Isolongifolene

Transformation of longicyclene $(\underline{7})$ to isolongifolene $\underline{2}$ can proceed either through the formation of longifolene or as proposed by McMurry, by direct protonation of cyclopropane ring to give the ion $\underline{5}$ which can rearrange according to Berson's mechanism to isolongifolene. The question has been resolved by analysing the PMR and Mass spectra of the deuterioisolongifolene obtained from the treatment of longicyclene with BF_3Ft_2O -AcOD. In the mass spectrum, the base peak at m/e 161 contains only about 31% of the total deuterium present in the molecular ion peak at m/e 204 (Table $\underline{3}$, Expt. No. 5). This implies that

significant amounts of deuterium are present at C-14 and/or C-15. If longicyclene were to directly open to ion 5, only one of the methyl groups can be conveniently deuterated as shown in Chart X. The deuteration of both methyl groups requires equilibration of ion 5 to ion 21, which being highly strained, is less probable. On the other hand, it is more likely that protonation of longicyclene takes place at the less hindered carbon C-4 to give cation 3 in preference to protonation at more hindered carbon (C-2) leading to cation 5. Thus, conversion of longicyclene to isolongifolene proceeding through longifolene is a distinct possibility. It may further be emphasized that longicyclene 7 to isolongifolene isomerization is slower than the rate of isomerization of longifolene to isolongifolene. Longicyclene may not be the intermediate in this isomerization.

Based on the above conclusion, the rearrangement of longicyclene (7) to isolongifolene with deuterated reagent could, in principle, distinguish between the two proposed mechanisms. D⁺-Catalysed opening of longicyclene 7 would produce 4-deuteriolongifolene; isomerization of the latter according to Ourisson's and Sukh Dev's mechanism should give deuterioisolongifolene carrying deuterium at C-4. On the other hand, Berson's mechanism will produce deuterioisolongifolene with deuterium at C-1 (Chart IX). Unfortunately, deuterium at C-1 could also

CHART IX. ISOMERIZATION OF LONGICYCLENE

CHART, X DEUT FERATION OF METHYLS

.

appear by deuteration of isolongifolene <u>via</u> the olefinic hydrocarbons <u>19</u> (Chart VIII). Also, mass spectral analysis of deuterioisolongifolene (derived from longicyclene, Table 3, Expt. No. 5) does not permit a clear location of deuterium at C-1 or C-4. Hence, recourse was taken to the synthesis and rearrangement of site-specifically labelled longifolene, which is described in the next section.

3. USING SITE-SPECIFICALLY LABELLED LONGIFOLENE-4,4,5,5-D4

We have already established that the mechanism proposed by McMurry is not valid for the isomerization of longifolene to isolongifolene. However, the above data is inadequate to decide which of the two mechanisms proposed by Berson on one hand and Ourisson and Sukh Dev on the other, is operative. These mechanisms differ from each other in two respects:

(i) The two carbon atoms indicated by heavy dots in longifolene <u>1b</u> will acquire different relationship depending on whether one or the other of the mechanisms being followed. In Sukh Dev's and Durisson's mechanism these assume a 1,3-relationship, whereas in Berson's mechanism these are vicinally located (Chart XI & XII).

(ii) Similarly, tetradeuterated longifolene 1b would produce isolongifolene-4,4,5,5-d₄ 2d or isolongifolene-1,2,4,4-d₄ (2b) depending upon the former or latter mechanisms as given below, (Chart XIII).

CHART XI: ISOMERIZATION OF LONGIFOLENE-4,4,5,5-d₄ (SUKH DEV AND OURISSON)

~

CHART XII: ISOMERIZATION OF LONGIFOLENE -4,4,5,5-d (BERSON etal)

CHART XIII: DISTINCTION OF MECHANISMS

Longifolene with 13 C at positions indicated by heavy dots in <u>1c</u> would produce <u>2e</u> or <u>2f</u> which can be easily distinguished, as <u>2e</u> should show large 13 C- 13 C coupling, whereas, there will be very small coupling between 13 C-C- 13 C for <u>2f</u>. Since it is rather difficult to synthesise a complex molecule like longifolene with 13 C at C-1 and C-11, it was considered more practical to synthesise tetradeuteriolongifolene <u>1b</u> in order to make the distinction between these two mechanisms.

3.1. Synthesis of Longifolene-4,4,5,5-d₄ <u>1b</u>

Any method for introducing deuteriums in longifolene at C-4 and C-5 would require functionalization of atleast one of these carbon atoms. A search of literature^{14,15} reveals that isolongifolol (22) on oxidative cyclization, gives ether 23, thus providing an entry for the functionalization of C-4 carbon in <u>1</u> and ultimately to the synthesis of deuteriolongifolene. Isolongifolol (22) was prepared in the following way: Oxidation of longifolene with chromic acid in acetic acid which gave isolongifolic acid together with other acids; methyl esters of mixture of acids were fractionally crystallized to obtain pure methyl isolongifolate^{16,17} (m.p. 55-56°). The latter compound on reduction with lithium aluminium hydride gave isolongifolol¹⁸ 22.

The earlier method for the preparation of this ether 23 from alcohol 22 was by oxidative cyclization with lead tetraacetate in refluxing benzene, which is reported 14,15 to give a very poor yield (10-15%), the major product being corresponding acetate of alcohol 22 and the reaction rate cish very slow. However, an excellent yield (98%) of this ether 23 was obtained by irradiation of isolongifolol with 250 watt tungesten lamp in presence of lead tetraacetate and iodine in cyclohexane - by a general procedure reported by Heusler et al.¹⁹. When lead tetraacetate is used alone, isolongifolol, being consumed as isolongifolyl acetate, gives very poor yield of ether 23, whereas, it does not happen when lead tetraacetate-iodine combination is used. The reported work up procedure for LTA-I, reaction is tedious and gives poor yield of the product. We have modified the work up procedure to give much better yield and it is given below.

After completion of the reaction, the violet coloured reaction mixture is brought to room temperature $(28-30^{\circ})$ and silica gel impregnated with KI (15% w/w) is introduced portion-wise till the colour is discharged. By this the lead oxide becomes grannular so that it can be filtered and washed easily. The filtrate is directly fractionated without any further treatment.

× 1.1.

The sequence of reactions used to synthesize longifolene-4,4,5,5-d₄ <u>1b</u> from ether <u>23</u> is outlined in Chart XIV. Ether <u>23</u>

D

- I. Cro₃-AcOH-H₂SO₄ 2. MeOH-H₂SO₄ 3. LAH 4. LTA-I₂ 5 CrO₃-ACOH 6. NBS,t-BUOH-C₅H₅N
- 7. Jone's reagent 8. ≠BUOK-D_O - (CH CHOD) O 9. ND2ND2D2O-KOD 10. CHN2 11. p-TsCl-C5H5N 12. Al2O3

n

D

IЬ

CHART XIV: SYNTHESIS

OF LONGIFOLENE - 4,4,5,5 - $d_4(\underline{1b})$

was oxidized to lactone 24 which on reduction with lithium aluminium hydride gave diol¹⁴ 25. Oxidation of diol 25 with Jone's reagent²⁰ gave a poor yield of ketoacid <u>28</u> and a lactone acid was also isolated whose spectral data (vide experimental) were in agreement with structure 27. However, we achieved a quantitative conversion (95%) to ketoacid 28 by selective oxidation^{21,22} of the secondary alcohol function in <u>25</u> with N-bromosuccinimide to hemiacetal 26, followed by treatment with Jone's reagent. Ketoacid 28 was dissolved in diethylene glycol-0-d2 containing KOD (prepared by adding D_O in t-BuOK) and refluxed to exchange active methylene protons at C-5 for deuteriums. To this solution was added ND2ND2D20 to carry out Wolf-Kishner reduction to deuterio-isolongifolic acid, which was esterified to methylisolongifolate-3, 4, 4, 5, 5-d5 (21a). This was reduced with lithium aluminium hydride to isolongifolol-3,4,4,5,5-d 22a. Isolongifoly1 tosylate²⁴ on passing through dry packed column of alumina produced longifolene-4,4,5,5-d, 1b in 95% yield. This method of dehydration of isolongifolo1 22 via. the tosylate is more convenient than the one previously reported 23 . Longifolene-4,4,5,5-d₄ was isomerized with BF_3Et_2O in benzene to get isolongifolene.

3.2. Location of Deuteriums in Isolongifolene-da

To determine the positions of deuteriums in isolongifolene-d₄, it was converted to its epoxide, whose conversion to other related

derivatives has already been discussed in the previous section (depicted in Chart XV).

Derivatives 12, 13 and 14 are eminently suited for spectroscopic distinction between the two possible structures of isolongifolene-d,; 2b is derivable from Berson's mechanism and 2d will arise according to Ourisson's and Sukh Dev's proposed pathways (Chart XV). The appearance of 1H singlet at 4.07 ppm (CHOH) in the PMR spectrum of deuterioalcohol 12 (Fig 10C) is consistent with structure 12b derived from isolongifolene 2b. The singlet nature of the resonance signifies the presence of deuterium at C-4, while in nondeuterated <u>12</u> the proton on the hydroxyl bearing carbon (CHOH) appears as a double doublet $(J_1 = 3H_Z, J_2 = 6H_Z)$ (Fig. 10A). On the other hand 12c dictates absence of any signal in this region (cf. Table 4). The mass spectrum (Fig. 17A, B) of deuterioketone 13 (obtained by exidation of deuterical cohol 12) shows M^+ at m/e 222 which is four mass units more than the M^+ at m/e 218 for the unlabelled ketone 13. These results clearly support the absence of any deuterium at C-5 in isolongifolene-d,. Furthermore, deuterioketone 13 on treatment with alkali loses two mass units $(M^{+} \text{ at } m/e 220)$ which lends support to the presence of two deuteriums at C-4, lpha to carbonyl function. This pattern of deuterium distribution can arise only from <u>2b</u>. In contrast <u>2d</u> would have given a parent peak at m/e 220 for 13c and after base treatment would have shown a peak at m/e 218 for the ketone <u>13c</u> (c_f. Fig 178, 17C).

S.No. Compounds to during the first of th		ring	proton	13 &	to	OH p	rotons		olefi	nic p	roton	10	Total No. of	Total No. of	No.
1. Wathyl isolongi- 14 11 - non - non - aeutera 1. Wathyl isolongi- 14 11 - no - non - aeutera 2. Longifolane <u>40</u> 13 10 n n n n 2. Longifolane <u>40</u> 13 10 n n n 26 2 3. Igolongifolane <u>20</u> 11 8.1 1 - 1 - 26 2 3. Igolongifolane <u>20</u> 11 8.1 - 1 - 26 2 2 4. Cycloisolongi- 11 8.1 - 1 - 26 2 2 4. Cycloisolongi- 11 8.1 - 1 - 26 2 2 5. Alcohol 12D 9 6 4.07 4 1 1 2 2 6. Ketone 13D 9 6 - 1 - 1 - 1 1 2 2 2 2 7. Ketone 13D 9 6 - 1 - 1 1 1 2 2 2 2 2 2 2 2	5.No. Compounds	bət	pəj	0 1 9 1 9 1 9	n-deu ated	t.	Jeute- rated		non-d erate	eut- d	Deut	1	protons in non- deuterate	protons in deutera-	
1. Methyl isolongi- 14 11 - - - - - - 26 2 2. Longifolene <u>21</u> 13 10 - - - - - 26 2 3. Isolongifolene <u>2b</u> 11 8.1 - - - - - 24 2 3. Isolongifolene <u>2b</u> 11 8.1 - - - - 5.1 1 1 24 2 4. Cycloisolongi- 11 7.9 4.17 1 1 1 24 2 4. Cycloisolongi- 11 7.9 4.17 1 1 1 24 2 5. Alcohol <u>12b</u> 9 6 4.07 dd 1 1 1 24 2 5. Alcohol <u>12b</u> 9 6 - - - - 24 2 7. Ketone <u>13b</u> 9 6 - - - - 24 1 1 1 24 2 7. Ketone <u>13b</u> 9 6 - <th>· · ·</th> <th>-non erejueb</th> <th>erətuəb</th> <th>l Idd- g</th> <th>puittiqe</th> <th>brotons</th> <th>pritting</th> <th>e - bbu ا</th> <th>QUIJJIIQS</th> <th>snotorq</th> <th>pnittiqs</th> <th>- broțoua</th> <th>•</th> <th>t . q</th> <th></th>	· · ·	-non erejueb	erətuəb	l Idd- g	puittiqe	brotons	pritting	e - bbu ا	QUIJJIIQS	snotorq	pnittiqs	- broțoua	•	t . q	
2. longifolene <u>4b</u> 13 10 $ -$ </td <td>1. Methyl isolongi- folate 21</td> <td>14</td> <td></td> <td>۰ ۱</td> <td>L L</td> <td></td> <td></td> <td></td> <td>T T</td> <td>1</td> <td>1</td> <td></td> <td>26</td> <td>23</td> <td>3.0</td>	1. Methyl isolongi- folate 21	14		۰ ۱	L L				T T	1	1		26	23	3.0
3. Isolongifalene <u>2b</u> 11 8.1 - - 5.1 t 1 24 2 4. Cycloisolangi- 11 7.9 4.17 t 1 t 1 24 2 5. Alcohol <u>10b</u> 11 7.9 4.17 t 1 t 1 24 2 5. Alcohol <u>10b</u> 9 6 4.07 dd 1 s 1 5.20 t 1 t 1 24 2 6. Ketone <u>13b</u> 9 6 - - - - 5.52 t 1 t 1 22 1 7. Ketone 13b after 9 7 - - - 5.52 t 1 t 1 22 2	2. Longifolene <u>4b</u>	13	10	1. 1	1	1	·1	4 • 4 • 4 • 7(4 C 8 8	~ .~	ເ ຊີ (0,	← ←	24	21	 2•
4. Cycloisolongi- 11 7.9 4.17 t 1 t 1 - - - 24 2 5. Alcohol 12b 9 6 4.07 dd 1 s 1 5.20 t 1 t 24 2 6. Ketone 12b 9 6 - - - - 5.52 t 1 t 1 24 2 7. Ketone 12b 9 6 - - - - 5.52 t 1 t 1 22 1 7. Ketone 13b after 9 7 - - 5.52 t 1 t 1 22 2	3. Isolongifalene <u>2b</u>	. []	8.1	I	1	1	1	5.1	4	~~	ىب	-	24	21.1	2.9
5. Alcohol 12b 9 6 4.07 dd 1 s 1 5.20 t 1 t 1 24 2 6. Ketone 13b 9 6 - - - - 5.52 t 1 t 1 22 1 7. Ketone 13b after 9 7 - - 5.52 t 1 t 1 22 2	4. Cycloisalangi- Polol <u>10b</u>	-	6.7.	4.17	4	~	 	I,	, 1 ,		1	I	24	20.9	
6. Ketone <u>13b</u> 9 6 5.52 t 1 t 1 22 1 7. Ketone 13b after 9 7 5.52 t 1 t 1 22 2	5. Alcohol <u>12b</u>	9	Ś	4.07	qq.	Ĺ,	S S	5.21	<u>ب</u> ب ت	~ ,	<u></u> цэ	~	24	21	3•0 2
7. Ketone 13b after 9 7 5.52 t 1 t 1 22 2	6. Ketone <u>13b</u>	6	9	1	1	Ĭ	1 , 1	ល • •	5 5	۲-	دي.	« —	22	19	3 • D
alkall treatment	7. Ketone 13b after alkali treatment	م	~~	ì	I	t	t	ີ ດີ ເ	7 7	۲.	42	~	22	20	2.0
8. Alcohol 14b 9 6.73.83 t 1 t 1 5.67 t 1 s 0.25 24 2	8. Alcohol 14b	G	6.7	3.83	ىب	~ -	ц Т	а . 6	7 7	~~	ω	0•2	5 24	21.43	2.5'

The location of other two deuteriums in isolongifolene-d₄ was revealed from the spectral characteristics of derivative <u>14</u> (prepared from the opening of deuterated epoxide with HC1-CHCl₃). The PMR spectrum (Fig 12C) of this compound was characterized by the presence of an olefinic proton (1/4H,S) at 5.67 ppm. It can be inferred that due to predominantly <u>trans</u>-elimination 3/4H is lost from C-1 during rearrangement of epoxide <u>9</u> to <u>14</u>. It is also noteworthy that the resonance appears as a singlet, thus indicating a D-atom at C-2 as in <u>14b</u> (in unlabelled <u>14</u> the olefinic proton appears as doublet J= $3H_z$, Fig. 12A). Consistent with the PMR data, the mass spectrum (Fig. 18C) of <u>14b</u> reveals two strong peaks at m/e 223 (26%) and at m/e 224 (50%) corresponding to <u>14b</u> arising from either the loss of D or H respectively during elimination step.

The location of D-atoms in isolongifolene-d₄ has been unequivocally established at C-1, C-2 and C-4 corresponding to structure <u>2b</u>. This, in turn, provides experimental proof for the mechanism proposed by Berson <u>et al.</u>⁹ involving <u>exo-3,2-</u> methyl shift in preference to <u>endo-3,2-methyl</u> migration in implicated / Durisson's and Sukh Dev's proposal^{2,7}.

4. DISCUSSION

Berson's original contention for an <u>exo-3,</u>2-methyl

migration in the rearrangement of longifolene to isolongifolene was based on the analogy with norbornane derivative, where methyl migration almost always takes place from an $exo-side^{25-28}$. However, subsequent to his proposal a number of cases where endoendo migrations are involved, have been brought to light. For instance, the deamination of 3-hydroxybornyl-2-amine hydrochloride 29 to give camphor 30 or the pinacol rearrangement of diol 31 to produce corresponding ketone 32 involve endo-endo-3,2-hydride shift^{29,30}, since such a process relieves the interaction between C-7 methyls and 3-exo-hydroxyl group by generating a planar carbonium ion at C-3. Similarly, the decomposition of phosphorylated triazoline 33 to diethyl endo-3-methyl-2-norbornylidene phosphoramidate 34 involves an endo-endo-3,2-methyl migration³¹ (see Chart XVI). Recently it has been shown that racemization of camphene also involves, upto some extent, endo-endo methyl mioration³². Thus, under compelling steric or electronic reasons, endo-endo migrations do sometimes take precedence over the competing Wagner-Meerwein shifts.

In longifolene molecule, the <u>exo</u>-side is crowded by the seven membered ring. This is reflected in the addition of hydrogen halides to longifolene, which gives exclusively <u>endo</u>longibornyl halides <u>35</u>³³. Longifolene molecule, after protonation undergoes a Wagner-Meervein shift and the resulting carbonium ion traps the nucleophile only from the <u>endo</u> side³⁶,

0

32

.OH

~н он

31

~

·

.

-

CHART XVI SOME EXAMPLES OF endo, endo-MIGRATIONS

partly because the <u>exo</u>-side is blocked by transannular hydride participation. Hydration and hydroboration also proceed this way, where the approach of the reagent is from the <u>endo</u>-face^{34,35}. But, still, the steric crowding on <u>exo</u>-side of longifolene molecule does not force an <u>endo-endo</u>-3,2-methyl migration to give carbonium ion <u>4</u>, which is an important intermediate in Ourisson's and Sukh Dev's proposal. It is worthwhile to rationalize why the reaction takes a circuitous route involving an <u>exo</u>-3,2-methyl shift as outlined in Berson's scheme (Chart II). A close scrutiny of the two mechanisms reveals that two distinct bridgehead carbonium ions <u>4</u> and <u>6</u> are implicated in the two mechanisms.

Bridgehead carbonium ion $\underline{6}$ is situated at the bridge of a bicyclo [4,3,1] decane system, whereas ion $\underline{4}$ is located at the

bridge of bicyclo [4,2,1] nonane system. The ion <u>6</u> is therefore situated in a larger ring and can take up more planar structure than ion <u>4</u> and is hence more stable and may be preferred to ion <u>4</u>. The energy difference or stability of

86

ion <u>6</u> may be responsible for the transformation to follow the route depicted in Chart II.

. .

5. CONCLUSION

.

/

Thus, the rearrangement of longifolene to isolongifolene proceeds according to Berson's mechanisms plausibly because the bridgehead carbonium ion formed in this process is more stable.

6. EXPERIMENTAL

All m.ps and b.ps are uncorrected. Light petroleum ether and petroleum ether refer to the fractions b.p. 40-60° and 60-80° respectively. All solvent extracts were finally washed with brine and dried over anhydrous sodium sulphate.

IR spectra were recorded as smears (liquid) or nujol mulls (solid), unless stated to the contrary, on Perkin-Elmer Infra cord model 137E. PMR spectra were taken in 10-20% carbon tetrachloride solution (unless stated to the contrary) with TMS as an internal standard, on Varian A-60 or T-60 spectrometer; signals are indicated in δ ppm relative to TMS. Mass spectra were obtained with a consolidated Electrodynamics corporation spectrometer type 21-110B (mass 70 eV direct inlet system). Natural abundance spectra were recorded for comparison with spectra of deuterated samples.

Analytical GLC was run on 'Aerograph' model A-350B, using a 150 mm x 5 mm column packed with 20% stationary phase on chromosorb W (60-80 mesh) and 20% silicone SE-30 celite (60-100 mesh) with H_2 as carrier gas.

Alumina used for detosylation and rearrangement was neutral pulla lein to phenolate test and was activated at 450° for 6 hrs.

Isolongifolene oxide used for the present work was the solid (+) epoxide m.p. 39-40°.

Heavy water (minimum isotopic purity 99.5 atom % deuterium) was purchased from Isotope Division of Bhabha Atomic Research Centre, Bombay, India and used for preparing deuterated reagents such as AcOD, $ND_2ND_2D_2O$ and $(CH_2CH_2OD)_2O$ and the isotopic purity of reagents was ascertained by PMR and Mass spectrometer.

6.1. SYNTHESIS OF LONGIFOLENE-4,4,5,5-D₄ (<u>1</u>b)

6.1.1. Methyl isolongifolate (21)

Longifolene (505 gm) in gl AcOH (2 ltr) was mechanically stirred in a three necked flask, equipped with a stirrer, thermometer and a dropping funnel. To this, a solution of CrO_3 (1 kg) in water (600 ml) and conc H_2SO_4 (25 ml) was added at such a rate that the inside temperature was maintained at 45-50° (addition time, 3 hrs). The oxidation was completed by warming the resulting green reaction mixture on a water bath for 2 hours. The green material was cooled to room temperature, diluted with water (6 ltr) and separated into acidic (210 gm) and neutral (110 gm) portions with 10% aq. KOH. The mixture of crude acids (210 gm), MeOH (250 ml), conc H_2SO_4 (70 ml) and benzene (500 ml) was refluxed on a water-bath for 70 hours. The benzene layer was separated and the aqueous layer was diluted with water (1 ltr) and extracted with benzene (500 ml x 3). The combined organic extracts were mixed and separated into acidic (80 gm) and neutral (126 gm) fractions with 10% aq KOH. The neutral fraction was diluted with pet. ether (20 ml) and chilled to $-10^{\circ}C$ (ice salt bath) to give methyl isolongifolate (60 gm, m.p. 48-53°) which was recrystallized from petroleum ether to furnish white crystals of m.p. 54.5°-55.5° (52 gm).

6.1.2 Isolongifolol (<u>22</u>)

To a stirred slurry of lithium aluminium hydride (LAH, 7.8 gm, 92%) in ether (150 ml) was added dropwise, methyl isolongifolate (52 gm) in ether (175 ml). After the addition was over, the mixture was stirred for an additional six hours and then cooled to 10° , water (8 ml) was added dropwise cautiously and then 15% aq NaOH (8 ml) followed by more water (24 ml). The white grannular solid was filtered off and washed with ether (25 ml x 4). The residue (50 gm, m.p. $110-112^{\circ}$ C) was crystallized from petroleum ether to furnish white glass-wool-like crystals of isolongifolol <u>22</u> (m.p. 112.5- 113° , 48 gm). IR: OH 3170, 1038, 1015 cm⁻¹. PMR: -C-Me (3H, s, 0.85 ppm, 6H, s, 1.03 ppm), CHOH (1H, d, 3.67 ppm; J₁= 7Hz). 6.1.3. 4,14-Isolongifolanoxide (23)

Isolongifolol 22 (20.0 gm, 0.09 mol), commercial lead tetraacetate (44.4 gm, 0.1 mol) and iodine (11.47 gm, 0.045 mol) were placed in a one litre three necked flask and cyclohexane (250 ml, purified, benzene free) was added. * This reaction mixture was heated with stirring to reflux by irradiating with a 250 Watt tungsten lamp from underneath (N2 atmosphere). After the reaction was over (in 1/2 hr, monitored by TLC), excess lead tetraacetate was destroyed by adding ethanediol (10 ml). To remove excess iodine, silica gel (35 gm) coated with 15% KI, was added portionwise and stirred for 15 minutes. The dark violet colour of the reaction mixture turned into light pink and lead tetraacetate had become grannular and so it was filtered off and washed easily. The lead salt and silica gel were filtered through alumina (gr. III, mixed with 10% (w/w) sodium thiosulphate, 5 cm x 4 cm) and washed with ether-cyclohexane (1:3, 25 ml x 5). The colourless residue (21 gm), after removal of solvent, was distilled, b.p. 128-130°/ 2.5 mm. (19 gm, 95%; GLC and TLC pure). IR: C-D-C 1062, 1042, 1038, 990, 935 cm⁻¹. PMR: -C- Me (3H, s, 0.93 ppm; 6H, s, 0.98 ppm), $C_{\frac{H}{2}}OC$ (1H, q, 3.42 ppm, $J_{gem} = 8.5Hz$, $J_{vic} = 3.5Hz$; 1H, d, 3.67 ppm, J = 8.5Hz, J = 0) CHOC (1H, br.t 4.18 ppm, $J_1 = J_2 = 6Hz$).

*Without iodine, lead tetraacetate oxidation gives the ether 3 in very poor yield (15% only)^{14,15}

6.1.4. 4,14-Isolongifolanolide (24)

Chromium trioxide (21 gm) in water (40 ml) and glacial acetic acid (360 ml) was added to isolongifolanoxide 23 (19 gm) in gl. AcOH (400 ml). The reaction mixture was kept at 50° for 6 hours. The reaction product was cooled to room temp (30°), diluted with water (2 ltr) and extracted with petroleum ether (500 ml x 4). Organic layer was washed with aqueous sodium carbonate (400 ml x 3) and water (300 ml x 3). The residue (20.0 gm, m.p. 40-50°), after removal of solvent, was saponified by refluxing with KOH (15 gm) in water (10 ml) and methanol (40 ml) for 3 hours. The product was cooled to room temperature, diluted with water and extracted with petroleum ether (50 ml x 3) to remove unreacted ether 23 (1.9 gm). The aqueous portion, after acidification with dil HCl, was extracted with petroleum ether (50 ml x 6). The organic extract was washed with aqueous sodium carbonate (50 ml x 3) and water (50 ml x 3) and dried. Solvent was flashed off, residue (17 gm, m.p. 52-59°) on crystallization from petroleum ether gave white crystals of lactone 24 (m.p. 60.5-61.5°, 15 gm). IR: CO 1775, C-O-C 1182, 1072, 1038, 1028 cm⁻¹. PMR: -C- Me (6H, s, 1.02 ppm; 3H, s, 1.10 ppm), CHCO (1H, t, 3.07 ppm, J = 5Hz) CHOCO (1H, t, 4.60 ppm, J = 6Hz).

6.1.5. <u>4-endo-Hydroxyisolongifolol (25)</u>

Lactone <u>24</u> (16 gm) in dry ether (150 ml) was added dropwise to a slurry of LAH (3.2 gm) in ether (100 ml) with stirring. Excess LAH was destroyed by adding water (3.5 ml) and 15% aq. NaOH (3.5 ml) followed by water (10 ml). The grannular precipitate was filtered off and washed with ether. Diol <u>25</u> (m.p. 72-78°, 16.2 gm) was crystallized from petroleum ether to furnish white crystals (m.p. 94.5-95.5°, 14.8 gm; lit.¹⁴ m.p. 88-89°). R: OH 3250, 1098, 1065, 1040, 1018, 1005 cm⁻¹. PMR: -c -Me (9H, s, 0.93 ppm); CHOH (3H, m, spanned between 3.40 and 4.38 ppm).

5.1.6. 4-0xoisolongifolic acid (28)

6.1.6.1.0xidation of diol $\underline{25}$ with CrO_3 : Jone's reagent was added to a cooled (5°C) and stirred solution of diol $\underline{25}$ (12.07 gm) in acetone (250 ml) till the orange colour persisted. The reaction mixture was left at 25° for 1 hr, then diluted with water (1 ltr) and extracted with ethyl acetate (300 ml x4). The organic layer was washed with 10% aq KOH (200 ml x 4) to separate into neutral (4.1 gm) and acid portions. The aqueous portion after acidification and extraction with ethyl acetate (150 ml x 4) gave a mixture of two acids $\underline{27}$ and $\underline{28}$ (8.0 gm). The crude acid after crystallization from acetonitrile gave ketoacid $\underline{28}$ (5.0 gm, m.p. 184.5-185.5^o). The mother liquor

on chromatography (silica gel gr. III, 150 gm, 7 cm x 35 cm) gave some more ketoacid 28 (1.8 gm) with ethyl acetate-benzene (1:1, 200 ml x 4). The lactone acid 27 (0.6 gm, m.p. 221-222⁰) was eluted out with ethyl acetate (500 ml). Small amounts of both acids were esterified with diazomethane, crystallized from petroleum ether and characterized. 4-oxo-Methylisolongifolate (<u>28a</u>, m.p. 77.5-78.5⁰). .IR: CO 1748, '1185, 1100 cm⁻¹. PMR: -C- Me (3H, s, 0.97 ppm; 3H, s, 1.01 ppm; 3H, s, 1.08 ppm), CHCOOMe (1H, d, 3.13 ppm, J= 5Hz), COOMe (3H, s, 3.63 ppm). Methyl ester of lactone acid (27); m.p. 107-108°C. IR (Fig.4): CO 1740, 1200, 1167, 1052 cm⁻¹. PMR (Fig. 3): -C-Me (3H, s, 1.07 ppm; 3H, s, 1.10 ppm; 3H, s, 1.18 ppm), CHCOOMe (1H, d, 3.0 ppm J = 4Hz), COOMe (3H, s, 3.67 ppm), CHOCO (1H, bd 4.77 ppm, J = 4Hz). $C_{16}H_{24}O_4$ requires C, 68.54; H, 8.63%; found C, 68.77; H, 8.69%. Mass: Ten most intense peaks, M⁺ 280 (33.5%), 237 (44.5%), 205 (25%), 137 (95%), 136 (100%), 135 (31%), 121 (55%), 109 (73.5%), 107 (51%), 105 (50%).

6.1.6.2. Oxidation of diol <u>25</u> with N-bromosuccinimide to 4-oxo-isolongifolol-hemiacetel <u>26</u> and further

oxidation to ketoacid <u>28</u>: Diol <u>25</u> (5.8 gm) was dissolved in t-BuOH (135 ml), pyridine (4.5 ml) and water (15 ml) and to this, N-bromosuccinimide (8.8 gm, 2 mole equivalent) was added in one lot at room temperature $28-29^{\circ}$ and stirred for half an hour. The product was diluted with saturated aq $Na_2^{\circ}CO_3$ (150 ml) and extracted with ether (50 ml x 5). Ether extract was washed with water and dried. Removal of solvent gave hemiacetal <u>26</u> (5.8 gm, m.p. 122-128⁰).

The above crude hemiacetal (5.6 gm) was dissolved in acetone (150 ml), cooled to 0° C and treated with Jone's reagent (10 ml) dropwise addition with stirring) and left at room temperature 25° for one hour. The product was diluted with water (400 ml) and extracted with ethyl acetate-benzene (1:1, 150 ml x 4). The organic extract was washed with water. Ketoacid <u>28</u> (5.3 gm, m.p. 170-178°, 90% yield based on diol), obtained was crystallized from acetonitrile to furnish; white crystals (5.0 gm m.p. 184-185.5°, mixed m.p. was not depressed with authentic sample).

A small amount of hemiacetal was crystallized from petroleum ether (m.p. $133.5-134.5^{\circ}$) and characterized. IR (Fig.1): (no carbonyl absorption), OH 1160, 1130, 1118, 1043 cm⁻¹. PMR (Fig. 1) (CDCl₃): $-c_{-Me}^{c}$ (6H, s, 0.98 ppm; 3H, s, 1.02 ppm), CHOC (1H, d, 3.58 ppm, J_{gem} = 9Hz; 1H, q, 3.82 ppm, J_{gem} = 9Hz, J_{vic} = 3Hz). D_{2}° exchangeable OH (1H, bs 2.90 ppm); $C_{15}H_{24}O_{2}^{\circ}$ requires C, 76.22; H, 10.24% found C, 76.07; H, 9.93%. Mass: Ten most intense peaks, M⁺ 236 (100%), 165 (43%), 153 (80%), 152 (85%), 121 (33%), 107 (90%), 105 (40%), 95 (42%), 93 (46%), 91 (96%). 6.1.7. Deuteration of hydrazine with D_2^0

Anhydrous hydrazine (NH₂NH₂, b.p. $113-114^{\circ}/715$ mm, 15 ml) was placed in a three necked 500 ml flask assembled with two dropping funnels and an efficient total-condensation-partial-take-off condenser. D₂O (50 ml) was added from one funnel, refluxed for 30 minutes and distilled azeotropically with dry xylene (130 ml) delivered from the second funnel. This process was repeated four times with more D₂O (40 ml, 35 ml, 35 ml, and 30 ml) with xylene (115 ml, 110 ml, 110 ml and 80 ml) respectively. Finally the resulting hydrazine hydrate-D₆ (ND₂ND₂D₂O) was distilled, b.p. $118-120^{\circ}/715$ mm in a current of dry nitrogen.

6.1.8. Deuteration of Diethylene glycol

Diethylene glycol (125 ml) was deuterated by adding D_2^0 (75 ml), refluxing for half an hour and distilling the water off. This process was repeated thrice with more D_2^0 (50 ml, 50 ml and 50 ml).

6.1.9. Methyl isolongifolate-3,4,4,5,5-d₅ (21a)

6.1.9.1. Wolff-Kishner Reduction of ketoacid <u>28</u> using potassium <u>as base</u>: Potassium (1.7 gm) was dissolved (in several portions) in diethylene glycol-Od₂ (30 ml), placed in a three necked flask

(assembled with a reflux condenser, dropping funnel and downward distillation condenser) under nitrogen, with cooling and occasional swirling, when all the potassium had dissolved (in 8 hours), ketoacid 28 (4.8 gm) and D₂O (10 ml) were added, refluxed for 10 minutes and water was distilled off. This process was repeated three more times with D,O (8 ml, 7 ml and 5 ml) (to deuterate the active methylene protons to carbonyl group). Hydrazine hydrate-d₆ (ND₂ND₁D₂O, 3 ml) was then added and refluxed for two hours under N_2 in an oil bath (145-155°). Excess of hydrazine hydrate-d₆ and D_2^{0} were removed by distillation. The dropping funnel and distillation condenser were removed and the reaction mixture was refluxed for four hours under nitrogen. The product was diluted with water (100 ml) and extracted with ether-benzene (1:1, 50 ml x 4) to remove neutral material. The aqueous portion after acidification . with dil HCl and extraction with ether-benzene (1:1, 50 ml x 4) gave the crude acid (4.6 gm, m.p. 125-130°), esterified with diazomethane and the ester was distilled (4.2 gm, b.p. $128-130^{\circ}/$ 1.5 mm, m.p. $39-45^{\circ}$, GLC. methyl isolongifolate- \overline{g}_5 (95%) and methyl longifolate- $d_{5\%}$ (5%).

6.1.9.2. Using t-BuOK as base *: Ketoacid (4.9 gm) was dissolved

*This method was more convenient to generate KOD. In the first method there is always danger of fire during the addition of potassiu, besides this process takes a long time for the metal to dissolve. in diethylene glycol-Od₂ (30 ml). t-BuOK (6.4 gm) in D₂O (15 ml) was added to this, refluxed for half an hour and excess of t-BuOD and D₂O were distilled off. Similar work up procedure was followed as in the above experiment. In this method also we got same yield of ester <u>21a</u> with same deuterium content; methyl isolongifolate (4.8 gm, m.p. 41-47^O): GLC methyl isolongifolate-d₅ (95%), and methyl longifolate (5%). Methyl isolongifolate <u>21</u> (m.p. 54-55^O). PMR (Fig. 5A): $-\dot{C}-\underline{Me}$ (3H, s, 0.89 ppm; 3H, s, 0.95 ppm; 3H, s, 1.01 ppm), methylene protons (13H, spanned between 1.12 2.2 ppm), CHCOOMe (1H, d, 2.83 ppm, J = 4Hz), COO<u>Me</u> (3H, s, 3 $\frac{3}{49}$ ppm). Methyl isolongifolate-d₅, <u>21a</u> (m.p. 41-47^OC). PMR (Fig. 5B): $-\dot{C}-\underline{Me}$ (3H, s, 0.89 ppm; 3H, s, 0.95 ppm; 3H, s, 1.01 ppm), methylene protons (8.5H, spanned between 1.12-2.2 ppm), CHCOOMe (0.3H, d, 2.83 ppm J = 4Hz) COO<u>Me</u> (3H, s, 3.59 ppm).

Mass spectrum: Deuterium content of the U.K. reduction product

Produc t	No. prod	No. of deuteriums incorporated in the product					Total D/mol		
د موجوده ««««».»».»».»».»».»».»».»».»».»».»».»».»	0	`1	2.	3 ·	.`4	5	6 7		*
K as base	0	Ο.	D	5.28	5 6 ,76	37.80	0.16		4.32
t-BuOK as t	ase O	0	0	8.46	48.64	42.90).	, -	4.34

i.e. methyl isolongifolate-d₅ 21a

6.1.10. Isolongifolol-3,4,4,5,5-d₅ (<u>22a</u>)

Methyl isolongifolate (9.0 gm) in ether (150 ml) was reduced with LAH (2.6 gm) in ether (120 ml). After work up (as described in section 6.1.9) and crystallization resulted crystalline isolongifolol-3,4,4,5,5-d₅ 22a (7.4 gm, m.p. 112.5-113.5⁰).

6.1.11. Isolongifolyl tosylate

Isolongifolol (2.5 gm) was dissolved in pyridine (30 ml) and cooled to 0° in an ice bath, p-toluene sulphonyl chloride (4.0 gm) was added in one lot. After keeping the reaction mixture at 5° for 7 hours and at 25° for 12 hrs, it was diluted with ice cold water (160 ml) containing much of crushed ice (with stirring). The tosylate was filtered off; washed with ice cold water and dried over P_{205} under vacuum (1.5 mm) for 4 hours. Isolongifolyl tosylate (m.p. 68.5-69.5°, 4.8 gm; lit.²⁴ m.p. 68-69°). IR: SO 1180, 1097, 948 cm⁻¹, aromatic 1580 cm⁻¹. PMR: $-c_{c} -Me$ (3H, s, 0.77 ppm; 3H, s, 0.93 ppm; 3H, s, 0.97 ppm), Tos-Me (3H, s, 2.45 ppm); CHOTs (2H, d, 4.08 ppm, J₁ = 7Hz), aromatic protons (2H, d, 7.30 ppm, J₁ =7.5Hz; 2H, d, 7.73 ppm, J₁= 7.5Hz).

Similar treatment of isolongifolol-d₅ $\underline{22a}$ (4.0 gm) in pyridine (40 ml) with p-toluene sulfonyl chloride (6.0 gm)

gave pure crystalline isolongifolyl tosylate (m.p. 67-69⁰, 7.16 gm).

6.1.12. Longifolene-4,4,5,5-d₅ (<u>22a</u>)

Isolongifolyl tosylate (3.6 gm) in petroleum ether (100 ml) 2/3 v/w of alumina) was loaded on dry packed column (4 cm x 20 cm) of alumina (N/I, 1.50 gm). At the end of 12 hours, longifolene (1) was eluted out with petroleum ether (350 ml) and distilled; longifolene (b.p. $91-93^{0}/3$ mm, 2.0 gm, 90% GLC pure, 9% isolongifolene). IR: = CH₂ 1650, 875 cm⁻¹. PMR (Fig. 6A): -C-Me (3H, s, 0.90 ppm; 3H, s, 0.95 ppm; 3H, s, 1.00 ppm), methylene protons (11H, spanned between 1:1; 1.8 ppm), methylene protons (1H, bs, 2.08 ppm; 1H, bs, 2.61 ppm) = CH₂ (1H, s, 4.48 ppm; 1H, s, 4.63 ppm).

Similarly isolongifolyl tosylate-3,4,4,5,5-d₅ (7.1 gm) in petroleum ether (190 ml , 2/3 v/w of alumina) was loaded on dry packed column (4 cm x 30 cm) of alumina (N/I, 245 gm) and after 12 hrs, longifolene-d₄ (<u>1b</u>, 3.5 gm) was eluted out as described above. PMR (Fig. 6B): $-c_{1}-Me$ (3H, s, 0.90 ppm; 3H, s, 0.95 ppm; 3H, s, 1.00 ppm) methylene protons (7.5H, spanned between 1.1 -1.8 ppm), methine protons (1H, s, 2.08 ppm; 1H, s, 2.61 ppm), = CH₂ (1H, s, 4.48 ppm; 1H, s, 4.63 ppm). Mass: 0.9% d₁, 7.6% d₂, 35.0% d₃, 49.3% d₄ and 7.2% d₅. 6.2. ISOMERIZATION OF LONGIFOLENE TO ISOLONGIFOLENE

6.2.1 With BF3'Et20/Ac0D2,38

Longifolene (26.64 gm), borontrifluoride etherate (25 ml) and AcOD (125 ml; 98% isotopic purity) were mixed and stirred at room temperature (30°) for 20 minutes. Just after the mixing, the colour of the mixture was yellow, which soon changed to pale pink, then to reddish pink and finally the mixture turned to a dark reddish pink homogeneous solution. This was poured into water (250 ml) contained in a separating funnel, shaken well and extracted with pentane-ether (1:1, 100 ml x 3). The ethereal layer was washed with water (100 ml x 3), aq. sodium bicarbonate (10%, 50 ml x 2) and brine, dried (MqSO,) and then freed from solvent to give a yellow residue (28.98 gm). This was separated into hydrocarbon and acetate fractions by passing over a column (16 x 6 cm) of alumina (gr. I, 350 gm). The hydrocarbon fraction, eluted with petroleum ether, was distilled (b.p. 102-1050/6.5 mm) to give pure deuterated isolongifolene 2a (17.92 gm).

This general procedure mentioned above was used to isomerize different substrates to isolongifolene in deuterio and nondeuterio acid media employing standard conditions; hydrocarbons (1 gm), AcOH/AcOD (5 ml); BF₃ Et₂O (1 ml). PMR and mass spectral analysis are given in Table 5 and 1 respectively for the isolongifolene obtained from different substrates for different reaction time.

6.2.2. With BF3 Et20 in benzene²

A solution of longifolene-4,4,5,5-d₄ (<u>1b</u>, 8.5 gm) in dry benzene (30 ml) containing BF_3Et_2O (0.3 ml) was kept at 25° for 2 hours then the reaction mixture was diluted with satured sodium carbonate (20 ml), benzene layer separated and aqueous layer extracted twice with ether (20 ml x 2). Combined organic extracts were washed with water (20 ml x 3). The residue (8.5 gm), after removal of solvent, was distilled, b.p. 94-95°/2 mm (8.1 gm). PMR (Fig. 7B): $-c_{-Me}C-Me$ (3H, s, 0.83 ppm; 6H, s, 0.96 ppm; 3H, s, 1.03 ppm); methylene and methine protons (8H, spanned between 1.1-2 ppm); = CH (1H, t, 5.13 ppm, J₁ = J₂ = 3.5Hz). Mass: 2.6% d₁, 13.9% d₂, 29.1% d₃, 42.6% d₄ and 11.8% d₅.

6.3. LOCATION OF DEUTERIUMS IN ISOLONGIFOLENE

6.3.1. 9-0xoisolongifolene <u>8</u>³⁸

Isolongifolene <u>2</u> was oxidized to $\langle , \beta \rangle$ -unsaturated ketone <u>B</u> according to the procedure of Sukh Dev and co-workers¹¹; 9-oxoisolongifolene (<u>B</u>) m.p. 53-54^oC. IR: CO 1670, C=C 920, 901 cm⁻¹. PMR: $-\dot{C} - \underline{Me}$ (3H, s, 1.00 ppm; 6H, s, 1.07 ppm; 3H, s, 1.17 ppm); = C<u>H</u> (1H, s, 5.5 ppm). PMR SPECTRA OF ISOLONGIFOLENE DERIVED FROM DIFFERENT SUBSTRATE UITH BF_3Et_20-AcOH/AcOD Table 5:

5 ۰. 3-3.7 Total D/mol. o 0.4 0•5 2.2 1.7 2.3 ·. 0 \Box Ring protons 11.0 10.0 10.0 11.0 11.0 11.0 11.0 11.0 11.0 protons at 6 5-13 Olefinic 1.0 1.0 1.0 1.0 0.4 1.0 0.5 0.4 1.0 ç t 1.03 3.0 2.4 3.0 1.8 2.0 2.3 3.0 3.0 2.2 2.3 protons in 0 4 0.96 6**.**0. 50. 7 6 . ດີ 6.0 6.0 6.0 **6.**0 6.0 4.4 at No. of p Methyls ۰, 0.83 3.0 3**.**0 3.0 3.0 3.0 3°0 3**.**0 3.0 3.0 min'x2 20 min x2 20 minx2 Reaction ÷ hrs min hrs min 20 min 27 hrs time 20 24 24 20 20 Acid Medium AcOD AcOD . AcOH AcOH AcOH AcOH AcOH AcOD AcOH AcOD AcOD . Isolongifolene Isolongifolene Starting hydrocarbon ~ \sim · - N Product of 2 Product of 5 Longifolene Longifolene Product of Product of ۍ ۵ Product Expt. No. . 8 2. • • • 0 2. **. . .** 4. ,

.

103

٠

Isolongifolene-d (2a) (2.5 gm) was oxidized to ketone <u>Ba</u> (0.78 gm). PMR: -c -Me (3H, s, 1.00 ppm; 3.3H, s; 1.07 ppm, 2H, s, 1.17 ppm); = CH (0.5 H, s, 5.5 ppm). Mass: 5.65% d₀, 5.75% d₁, 12.33% d₂, 27.47% d₃, 20.45% d₄, 16.34% d₅, 12.94% d₆, and 3.8% d₇.

Ketone <u>Ba</u> was treated with alcoholic KOH for 2 hours under nitrogen and its deuterium content was analysed by mass: 3.98% d_o, 6.36% d₁, 15.43% d₂, 22.78% d₃, 21.06% d₄, 15.73% d₅, 19.83% d₆ and 3.79% d₇.

6.3.2. Isolongifolene epoxide <u>9</u>

To isolongifolene (60.6 gm, 0.3 mol), dissolved in dry benzene (120 ml, cooled to 0° , $[\besilves]_D - 26.5^{\circ}$); was added dropwise a benzene solution (1 lit., precooled to 5°) of perbenzoic acid (40.4 gm, 0.3 mol) during 20 min. At the end of 12 hours, at 5-8°C the reaction was almost complete and was worked up by extraction with 5% aq KOH (250 ml x 3). The organic layer was washed with water (250 ml x 3) followed by brine and dried. A colourless liquid residue (66 gm) was obtained after removal of solvent. This was diluted with n-hexane (75 ml) and chilled in dry ice (-60°) to give a white solid (m.p. 37-39°, 32.5 gm). Three subsequent crystallization from n-hexane gave white crystalline isolongifolene oxide , m.p. 40-41°. IR: epoxide 1240, 920, 808 cm⁻¹. PMR: -c - Me (3H, s, 0.75 ppm; 6H, s, 0.85 ppm; 3H, s, 0.9 ppm), CHOC (1H, t, 3.02 ppm).

Similarly isolongifolene- $d_4(\underline{2b})$ (7.1 gm, derived from longifolene-4,4,5,5- d_4 <u>1b</u>) in dry benzene (15 ml) was treated with perbenzoic acid (5 gm) in benzene (95 ml). Usual work up (as described above) gave the solid epoxide <u>9b</u> (m.p. 39-41°, 3.6 gm).

Isolongifolene-d₇ <u>2a</u> (10.54 gm) was oxidized to get pure epoxide <u>9a</u> (m.p. 40-41°, 4.23 gm).

6.3.3. Rearrangement of Isolongifolene epoxide on alumina

Isolongifolene epoxide (4.9 gm) in hexane (10 ml) was loaded on a dry packed column of alumina (gr. I,/N, 150 gm, 1.5 cm x 75 cm) and was immediately eluted out by methanol benzene (1:1, 1 ltr.) to yield crystalline cycloisolongifolol (4.85 gm) which was crystallized from acetonitrile to furnish needles: (m.p. 96-98°, 2.26 gm); the mother liquor on chromatography (alumina N/I, 45 gm, 1.5 cm x 30 cm) gave dehydroisolongifolene (0.815 gm) with petroleum ether and cycloisolongifolol (0.723 gm) with benzene methanol (1:1, 400 ml). Combined cycloisolongifolol was recrystallized from acetonitrile (m.p. 96.98°, 2.83 gm). IR: OH 3300, 1018 cm⁻¹. PMR: -Ċ-Me (3H, s, 0.82 ppm; 3H, s, 0.9 ppm; 6H, s, 0.93 ppm); CHOH. (1H, t, 4.13 ppm). The reaction was repeated with deuterated isolongifolene epoxide-d₇ (<u>9a;</u> 1.4 gm) which yielded deuterated cycloisolongifolol (<u>10a</u>, m.p. 97-98⁰; 0.537 gm). Mass spectral analysis indicated 1.1% d₀, 4.6% d₁, 12.8% d₂, 21.2% d₃, 22.2% d₄, 19.5% d₅, 13.7% d₆ and 4.9% d₇.

Isolongifolène epoxide-d₄ (<u>9b</u>) (2.14 gm, m.p. 39-41^o) gave cycloisolongifolol-d₄ (<u>10b</u>) (m.p. 95-96^o, 2.215 gm), Mass spectral analysis dictated 1.0% d₀, 2.5% d₁, 9.1% d₂, 23.7% d₃, 51.7% d₄ and 12.0% d₅.

6.3.4. Dehydrocycloisolongifolene (<u>11</u>) and Homoallylic Alcohol (<u>12</u>)

Cycloisolongifolol (<u>10</u>, 528 mg), gl. AcOH (3 ml) and 50% (v/v) aq H₂SO₄ (0.05 ml) were mixed and left aside at 8-10^o for 12 hours (monitored by TLC). The light pink coloured product was diluted with water (50 ml) and extracted with n-hexane (50 ml x 4). The organic layer was washed with 5% aq NaHCO₃ (50 ml x 3) and water followed by brine and dried. Solvent was removed, residue (530 mg). Prog. GLC: dehydrocycloisolongifolene <u>11</u> (34%), cycloisolongifolyl acetate (0.5%), acetate of alcohol <u>12</u> (54%), alcohol <u>12</u> (4.5%) and alcohol <u>10</u> (7%). It was chromatographed (silica gel II, 50 gm) 1.5 cm x 32 cm) with TLC monitoring (solvent, 5% EtOAc in benzene).

Fr.	1	pet ether	(50 ml x 3)	121. mg	liquid
Fr.	2	pet ether	(50 ml x 1) .:	- .	- .
Fr.	3	50% pet ether in benzene	(50 ml x 2)	25 2 mg	liquid
Fr.	4	benzene	(50 ml x 2)	51 mg	semisolid
Fr.	5	benzene methanol (1:1)	(50 ml x 2)	60 mg	solid.

<u>Fraction 1</u> was distilled, 90-110⁰ (bath)/1.5 mm and identified; dehydrocycloisolongifolene (<u>12</u>). IR: olefinic 1640, 755 cm⁻¹. PMR: (Fig. 9A): $-\dot{C}-\underline{Me}$ (3H, s, 0.82 ppm; 3H, s, 0.88 ppm; 3H, s, 0.95 ppm; 3H, s, 1.05 ppm); = C<u>H</u> (1H, d, 5.97 ppm; J₁ = 10Hz; 1H, m, spanned between 5.13-5.53 ppm).

<u>Fraction 3</u> was distilled, b.p. $145-155^{\circ}(bath)/1.5$ mm, identified as acetate of alcohol <u>12</u>. IR: CO 1730, 1024, C=C 850, 820 cm⁻¹. PMR: -C-Me (3H, s, 0.85 ppm; 3H, s, 0.98 ppm; 3H, s, 1.03 ppm; 3H, s, 1.07 ppm); CH_3CO (3H, s, 1.95 ppm); CHOAc (1H, dd, 4.80 ppm, $J_1 = 3Hz$, $J_2 = 6Hz$); = CH (1H, t, 5.33 ppm).

Fraction 5 was a mixture of alcohols 10 and 12.

Acetate of alcohol $(\underline{12})$ (655 mg) was refluxed with 5% alcoholic KOH (15 ml) on a waterbath for one hour. After completion of the reaction (monitored by TLC, 5% EtOAc in benzene), the product was diluted with water (150 ml), saturated with NaCl and extracted with petroleum ether (100 ml x 4). The organic layer was washed with water ($\underline{150}$ ml x 4) followed by brine and dried. Solvent was removed, the residue, white solid (m.p. 70-76°, 646 mg), was crystallized from acetonitrile to give a white crystalline solid alcohol <u>12</u> (m.p. 88.5-90°, 400 mg). IR: OH 3240, 1045, C=C 842, 817, 783 cm⁻¹. PMR (Fig. 10A): $-\dot{C}-\underline{Me}$ (3H, s, 0.84 ppm; 6H, s, 0.98 ppm; 3H, s, 1.15 ppm); C<u>H</u>OH (1H, dd, 3.80 ppm; J₁ = 3Hz, J₂ = 6Hz); = C<u>H</u> (1H, t, 5.23 ppm). C₁₅H₂₄O requires C, 81.76; H, 10.98%; found C, 81.68; H, 10.98%. Mass: Ten most intense peaks; 220 (35%), 176 (51%), 160 (51%), 132 (46%), 119 (100%), 118 (51%), 105 (78%), (91 (61%), 77 (38%), 41 (75%).

When in the above experiment, deuterated cycloisolongifolold₇ (<u>10a</u>, 1.0 gm) was employed, it gave deuterated dehydrocycloisolongifolene-d₇ <u>11a</u> (210 mg). PMR (Fig. 9B): $-\dot{C}-\underline{M}_{e}$ (1H, s, 0.82 ppm; 3H, s, 0.88 ppm; 2H, s, 0.95 ppm; 3H, s, 1.05 ppm); = C<u>H</u> (1H, m, centred at 5.35 ppm, 0.5H, d, 5.97 ppm); and deuterated alcohol-d₇ <u>12a</u> (m.p. 88-90°, 277 mg). PMR: (Fig. 10B): $-\dot{C}-\underline{M}_{e}$ (3H, s, 0.84 ppm; 3H, s, 0.98 ppm; 3H, s, 1.15 ppm); C<u>H</u>OH (1H, dd, 3.80 ppm); = C<u>H</u> (0.5H, t, 5.23 ppm), Mass: 2.0% d₀, 5.2% d₁, 12.6% d₂, 21.6% d₃, 21.8% d₄, 18.3% d₅, 14.0% d₆ and 4.8% d₇.

Cycloisolongifolol-d₄ (<u>10b</u>, 870 mg) under identical conditions, gave homoallylic alcohol <u>12b</u> (m.p. 87-88⁰, 320 mg). PMR (Fig. 10C): $-\dot{C}-\underline{Me}$ (3H, s, 0.84 ppm; 6H, s, 0.98 ppm; 3H, s, 1.15 ppm); C<u>H</u>OH (1H, bs, 3.80 ppm); = C<u>H</u> (1H, t, 5.23 ppm). Mass: 2.2% d₁, 8.5% d₂, 22.9% d₃, 53.7% d₄ and 12.7% d₅.

6.3.5. 5-0xoisolongifolene (13)

To a cooled (0°) solution of 5-hydroxyisolongifolene $(\underline{12}, 550 \text{ mg})$ in acetone (20 ml) was added dropwise, Jone's reagent (1 ml) till it became orange. The reaction mixture was kept at room temperature (28°) for 3 hours and then diluted with water (150 ml) and extracted with n-hexane (100 ml x 3). The organic layer was washed with 5% aq NaHCO₃ (100 ml x 3) and water (75 ml x 2) followed by brine and dried. The residue, after solvent removal and distillation, gave the ketone <u>13</u> (540 mg) b.p. 120-130^o(bath)/1.5 mm. IR[:] CO 1740, C=C 810 cm⁻¹. PMR (Fig. 11A): $-\dot{c}-\underline{Me}$ (3H, s, 0.77 ppm; 3H, s, 1.02 ppm; 3H, s, 1.09 ppm; 3H, s, 1.14 ppm); = C<u>H</u> (1H, t, 5.47 ppm) C₁₅H₂₂O requires C, 82.51; H, 10.16%; found C, 82.69; H, 10.59%. Mass: Ten most intense peaks, 218 (100%), 175 (78%), 162 (22%), 159 (15%), 147 (44%), 134 (23%), 119 (28%), 105 (23%), 91 (24%), 77 (14%).

Oxidation of the deuterioalcohol-d₇ <u>12a</u> (200 mg) gave ketone <u>12a</u> (195 mg). PMR (Fig. 11B): $-\tilde{c} - \underline{Ma}$ (3H, s, 0.77 ppm; 3H, s, 1.02 ppm; 2H, s, 1.09 ppm; 1H, s, 1.14 ppm); = C<u>H</u> (0.54, ' t, 5.47 ppm). Mass: 1.7% d₀, 5.0% d₁, 12.2% d₂, 20.4% d₃, 22.9% d₄, 19.7% d₅, 14.3% d₆ and 5.1% d₇.

Ketone <u>13a</u> (80 mg) in ethanol (1.5 ml) was mixed with aq. 1NNaOH (0.2 ml) and kept for 16 hours at room temperature (30°)

under nitrogen atmosphere. The reaction mixture was neutralized with AcOH, diluted with water (30 ml) and extracted with petroleum ether (30 ml x 3). The organic layer was washed with water. The residue (70 mg), free from solvent, was distilled, b.p. 120-130°(bath)/1.5 mm. Mass: 2.1% d_0 , 5.6% d_1 , 14.7% d_2 , 20.4% d_3 , 21.3% d_4 , 16.6% d_5 , 15.3% d_6 and 4.3% d_7 .

Ketone-d₄ <u>13b</u> (70 mg) was obtained from alcohol-d₄ <u>12b</u> (100 mg) by oxidation with Jone's reagent . Mass: 1.0% d₀, 2.6% d₁, 9.3% d₂, 26.2% d₃, 58.0% d₄ and 2.9% d₅.

The above ketone <u>13b</u> (30 mg) was refluxed with 10% alc. KOH for 16 hours and worked up as described above. Mass spectral analysis of this ketone indicated; 9.5% d_0 , 15.0% d_1 , 47.7% d_2 , 30.5% d_3 and 5.9% d_4 .

6.3.6. Action of HCl-CHCl₃ on Isolongifolene epoxide <u>9</u>

A CHCl₃ solution of dry HCl (0.5%, 5 ml) was chilled to -11 \pm 1° and isolongifolene epoxide (530 mg) was added in one lot and shaken till dissolved. The solution was left at the same temperature for one hour and then at -5° for 10 hours (monitored by TLC, 5% EtOAc in benzene). The product was then diluted with 5% aq. Na₂CO₃ (50 ml) and extracted with petroleum ether (30 ml x 3). The organic extracts were washed with water (25 ml x 3) followed by brine (40 ml) and dried. Solvent was removed and the residue (522 mg) was chromatographed $(Al_2O_3, N/III, 15.5 \text{ gm}, 1 \text{ cm x } 21 \text{ cm})$.

Fr.	1	petroleum ether	(3 ml x 4)	35.2 mg solid m.p.36-38 ⁰ , epoxide((TLC)
Fr.	2	Pet ether	(5 ml x 18))	340 mg liquid	
Fr.	3	75% pet ether in benzene	(5 ml x 4) 🎗		
Fr.	4	50% pet eth er i n benzene	(5 ml x 3)	10 7 m g solid	
Fr.	·5	benzene	(5.ml x 4)	102 mg solid m.p. 103-111 ⁰	

<u>Fraction 5</u> after four crystallizations from n-hexane, yielded white feather-like crystals of alcohol <u>14</u> (m.p. 123-124^o, 60 mg). IR: OH 3250, 1040; C=C 844, 822 cm⁻¹. PMR (Fig. 12A) (CDCl₃): $-C_{-Me}$ (3H, s, 0.83 ppm; 3H, s, 0.92 ppm; 3H, s, 1.03 ppm; 3H, s, 1.08 ppm); CHOH (1H, t, 3.87 ppm); = CH (1H, d, 5.67 ppm J₁ = 3Hz). Mass: Ten most intense peaks, 220 (17%), 193 (17%), 177 (89%), 164 (100%), 149 (17%), 136 (16%), 121 (23%), 105 (19%), 91 (28%), 77 (18%).

Similar experiment with isolongifolene-epoxide-d₇ $\underline{9a}$ (610 mg) gave alcohol-d₇ $\underline{14a}$ (m.p. $123-124^{\circ}$, 90 mg). PMR: (Fig. 12B): (CDCl₃): $-c_{-Me}$ (1H, s, 0.83 ppm; 2H, s, 0.92 ppm; 3H, s, 1.03 ppm; 3H, s, 1.08 ppm); CHOH (0.5H, t, 3.87 ppm); =C<u>H</u> (1H, d, 5.67 ppm, $J_1 = 3Hz$). Mass: 1.8% d₀, 5.4% d₁, 13.6% d₂, 24.5% d₃, 20.7% d₄, 16.8% d₅, 13.1% d₆ and 4.2% d₇.

Isolongifolene epoxide-d₄ <u>9b</u> (500 mg) on similar treatment gave unsaturated alcohol <u>14b</u> (m.p. 122-123^o, 30 mg). PMR (Fig. 12C): (CDCl₃): $-\dot{C}-\underline{Me}$ (3H, s, 0.83 ppm; 3H, s, 0.92 ppm; 3H, s, 1.03 ppm; 3H, s, 1.08 ppm); CHOH (1H, t. 3.87 ppm); =C<u>H</u> (0.25 H, s, 5.67 ppm). Mass: 2.9% d₁, 9.9% d₂, 25.9% d₃, 50.1% d₄ and 11.2% d₅.

REFERENCES

1. U.R. Nayak, and Sukh Dev, <u>Tetrahed</u> . 8, 42 (1960).
 R. Ranganathan, U.R. Nayak, T.S. Santhanakrishnan and Sukh Dev, <u>Tetrahed</u>. <u>26</u>, 621 (1970).
.3. J.R. Prahlad and Sukh Dev, Tetrahed. 26, 631 (1970).
4. T.S. Santhanakrishnan, U.R. Nayak and Sukh Dev, <u>Tetrahed</u> . <u>26</u> , 641 (1970).
5. R.R. Sobti and Sukh Dev, <u>Tetrahed</u> . <u>26</u> , 649 (1970).
6. T.S. Santhanakrishnan, R.R. Sobti, U.R. Nayak and Sukh Dev, <u>Tetrahed</u> . <u>26</u> , 657 (1970).
7. G. Ourisson, <u>Proc. Chem. Soc</u> . 274 (1964).
8. (a) P. Lipp and G. Stutzinger, <u>Ber. 65</u> , 241 (1932), (b) S. Nametkin and A.I. Schavrigin, <u>J. Gen. Chem. U.S.S.R</u> , 847 (1934), (c) J.D. Roberts and J.A. Yancey, <u>J. Am. Chem.</u> <u>Soc. 75</u> , 3165 (1953) (d) C.J. Collins and M.H. Lietzke, <u>J. Am. Chem. Soc. 95</u> , 6842 (1973); ref. cited therein.
9. J.A. Berson, J.H. Hammons, A.W. McRowe, R.G. Bergman, A. Remanick and D. Houston, <u>J. Am. Chem. Soc</u> . <u>89</u> , 2590 (1967).
10. J.E. McMurry, <u>J. Org. Chem. 36</u> , 2826 (1971).
11. C.S. Sharma, S.C. Sethi and Sukh Dev, <u>Synthesis</u> , 45 (1974).
12. E.H. Eschinasi, G.W. Shaffer and A.P. Bartels; <u>Tetrahed. Lett</u> . 3523 (1970).
13 Personal Communication from Prof. G.W. Shaffer; we are

Personal Communication from Prof. G.W. Snarrer; we are thankful to him for his generous supply of a sample of alcohol <u>12</u>.

- S.G. Patnekar and S.C. Bhattacharyya, <u>Tetrahed</u>. 23, 919 (1967).
- 15. J. Lhomme and G. Ourisson, <u>Tetrahed.</u> 24, 3177 (1968). Preliminary Communication, <u>Chem. Comm.</u> 436 (1967).
- 16. J.L. Simonsen, <u>J. Chem. Soc</u>. <u>123</u>, 2642 (1923).
- 17. U.R. Nayak, and Sukh Dev, <u>Tetrahed</u>. <u>19</u>, 2293 (1963).
- 18. H.H. Zeiss and M. Arakawa, <u>J. Am. Chem. Soc.</u> <u>76</u>, 1653 (1954).
- 19. Ch. Meystre, K. Heusler, J. Kalvoda, P. Wieland, G. Anner and A. Wettstein, <u>Experientia</u> <u>17</u>, 475 (1961); <u>Helv. Chim. Acta</u> <u>45</u>, 1317 (1962), and see also K.H. Baggley, T. Norin and S. Sundin, <u>Acta Chem. Scand</u>. <u>22</u>, 1709 (1968).
- 20. K. Bowden, I.M. Heilbron, E.R.H. Jones and B.C.L. Weedon, J. Chem. Soc. 39 (1946).
- 21. L.F. Fieser and S. Rajagopalan, <u>J. Am. Chem.Soc</u>. <u>71</u>, 3935, 3938 (1949).

. ..

- 22. N.E. Wolf and T. Morioka, J. Org. Chem. 30, 2553 (1965).
- 23. Y. Tanahashi, J. Lhomme and G. Burisson, <u>Tetrahed</u>. <u>28</u>, 2663 (1972).
- 24. J. Carnduff and G. Ourisson, <u>Bull. Soc. Chim. France</u> 3297 (1965).
- 25. J.A. Berson, in <u>Molecular Rearrangement</u> (Ed. P. de Mayo) Interscience Pub., New York (1963), part I pp 111-233.
- 26. ref. 9, papers I-V in the same series and preliminary communications.
- 27. G.E. Gorean, <u>Rev. Pure and Appl. Chem. 16</u>, 25 (1966).

115

28.	G.D. Sargent, <u>Quart. Rev.</u> 20, 301 (1966).
29.	P. Wilder Jr. and W.C. Hsieh, <u>J. Drg. Chem</u> . <u>36</u> , 2552 (1971).
30.	A.W. Bushell and P. Wilder Jr., <u>J. Am. Chem. Soc</u> . <u>89</u> , 5721 (1967).
31.	S. Rengaraju and K.D. Berlin, <u>Tetrahed</u> . <u>27</u> , 2399 (1971).
32.	C.W. David, B.W. Everling, R.J. Kilian, J.B. Stothers and W.R. Vaughan, <u>J. Am. Chem. Soc</u> . <u>95</u> , 1265 (1973).
33.	P. Naffa and G. Ourisson, <u>Bull. Soc. Chim. France</u> 1410 (1954).
34.	J.R. Prahlad, U.R. Nayak and Sukh Dev, <u>Tetrahed</u> . <u>26</u> , 663 (1970); ref. cited therein.
35.	J. Lhomme and G. Ourisson, <u>Tetrahed</u> . <u>24</u> , 3167 (1968).
36.	In contrast with camphene which produces <u>exo</u> -isomer, i.e. isobornyl halide under identical conditions. See ref. H. Meerwein and K. van Emster, <u>Ber, 55</u> , 2500 (1922).
•37.	We wish to emphasize that because D-assays in fragment ions are inherently inaccurate these estimates are crude, and only qualitative conclusion should be drawn from them.
38.	This experiment was carried out by Dr.R. Soman of this laboratory.

ABSORBAN GE (%)

FIG:4: IR SPECTRUM: LACTONE ESTER(270)

