

CHAPTER - 9

DISTILLATION IN PACKED COLUMNS

Information available about the applicability of the generalised correlations developed for gas absorption in packed columns to other operations like distillation is very limited. Hence it was thought desirable to make a systematic analysis of the "HETP" data on distillation in packed columns and propose a reliable design correlation for predicting the values of the height equivalent to a theoretical plate (HETP) based on the generalised correlations developed for k_La , k_L , k_G and a for gas absorption in packed columns.

9.1.0 MODEL DEVELOPMENT FOR HETP :

Using the two film mass transfer model as well as the concept of the transfer unit and allowing for significant resistance to mass transfer in both phases, the overall transfer unit height (H_{OV}) during distillation results from individual phase transfer unit heights $(H_V$ and H_L) by the following interrelationship :-

$$H_{OV} = H_{V} + \lambda \quad H_{I} \tag{9.1}$$

where λ = ratio of slopes of the equilibrium and operating lines. The integration of the general flux equation, coupled with the definition of the number of transfer units, leads to defining expressions for the heights of individial transfer units as follows:-

$$H_V = [G/(k_V a_d P M_{avg})]$$
 (9.2)

Where G is the gas flow rate (kg/m^2-s) , k_V is the true vapour side mass transfer coefficients (k mol/m²s atm), a_d is the effective interfacial area during distillation (m^2/m^3) and M_{avg} is the average molecular weight of the vapour phase (kg/k mol).

$$H_{L} = [L/(k_{L} a_{d} \rho_{L})]$$
(9.3)

where L is the liquid flow rate (kg/m^2-s) , k_L is the true liquid side mass transfer coefficients (m/s) and ρ_L is the liquid density.

The interrelationship between the height equivalent to a theoretical plate (HETP) and the height of overall transfer unit in terms of vapour composition (H_{OV}) is expressed as under :

$$HETP = \frac{\ln \lambda}{(\lambda - 1)} [H_{OV}]$$
(9.4)

A combination of equations (9.1), (9.2), (9.3) and (9.4) gives the following relationship - model correlation - for predicting the values of HETP :-

HETP =
$$[\ln \lambda / (\lambda - 1)] [H_v + \lambda H_r]$$
 (9.5)

HETP =
$$\frac{\ln \lambda}{\lambda - 1}$$
 [(G)/(k_V.a_d.P. M_{avg}) + (λ) (L/(k_La)_d. ρ_L)] (9.6)

Distillation involves vapour - liquid contact while gas absorption gas - liquid contact. Therefore involves nydrodynamically these two operations appear to be similar in However the distillation operation is equimolar counter nature. diffusion while the gas absorption is unidirectional. However this difference is expected to have little effect on the values of transfer coefficients. Therefore individual mass under identical/similar conditions, ${\bf k}_{\rm G}$ during gas absorption and ${\bf k}_{\rm V}$ during distillation are expected to be equal. Further under identical conditions, k_{t} during gas absorption and k_{t} during distillation are also expected to be the same. Therefore one can write the following relationships :-

$$k_{G}$$
 for gas absorption = k_{V} for distillation (9.7)

$$k_{\rm L}$$
 for gas absorption = $k_{\rm L}$ for distillation (9.8)

Hence, the generalised correlations developed for predicting the values of k_{G} and k_{L} during gas absorption can be utilised for predicting the values of k_{V} and k_{L} during distillation under otherwise identical conditions.

The hydrodynamics of a packed column during gas absorption and distillation is expected to be similar in nature. Hence "the static area model" developed for the case of gas absorption in packed columns can be extended to the case of distillation in packed columns.

Consider a region in the rectifying section of a packed distillation column. The liquid reflux which trickles down over the packed bed acts as a working liquid to remove the less volatile component from the rising vapours. Thus the liquid trapped in the semistagnant/stagnant pockets in this section would get very quickly saturated and could come in thermodynamic equilibrium with the rising vapours. Since the semistagnant pockets are likely to lose their effectiveness very rapidly, the static area (a_{st}) is likely to be non-contributory during distillation. Thus in this region the effective interfacial area available for mass transfer during distillation is thus expected to be equal to a_{dy} i.e. $a_d = a_{dy}$.

In the stripping section also, the semistagnant liquid pockets are stripped of the volatile component by the rising vapours very quickly and come into equilibrium with the vapours thus losing their effectiveness in contributing to the effective interfacial area for mass transfer during distillation. Thus in this region also the effective interfacial area available for mass transfer during distillation (a_d) is equal to a_{dy} only i.e. $a_d = a_{dy}$.

It has been already discussed in detail that effective interfacial area during physical gas absorption is also equal to a_{dy} only. Hence one can write different interrelations as under :-

 a_d = effective interfacial area during distillation = a_{dy} a_p = effective interfacial area during physical absorption = a_{dy} . Therefore, $a_d = a_{dy} = a_p$ (9.9)

and also $[k_{L}a]_{phy.} = k_{L}a_{dy} = k_{L}a_{d} = [k_{L}a]_{dist.}$ (9.10)

Therefore, if the above analysis happens to be appropriate and sound then the generalised correlations developed for predicting the values of a_p and $k_L a$ during physical gas absorption can be utilised for predicting the values of a_d and $[k_L a]_{dist}$. under otherwise identical conditions.

9.2.0 DATA BANK FOR THE "HETP" VALUES :

Although packed columns are extensively used for gas absorption operations, their applications in distillation operation has been rather restricted. That is why the experimental HETP data for distillation in packed columns avaliable in the literature is perhaps limited. The literature survey with respect to HETP data presented in Chapter - (2) : Literature Survey can be utilised conveniently to prepare a "Data bank" for HETP values. Tables (9.1) and (9.2) summarizes the literature information (116 - 121) on the HETP values packed columns inclusive of other relevant in information about physical properties of the distillation systems. This data bank primarily incorporates the effect of variables such as liquid and gas flow rates (L and G) on the values of HETP and also includes packing characteristics (d and a_t) as well as the relevant physical properties of the system like surface tension (σ), slope of the equilibrium line to the operating line (λ), the average molecular weight of the vapour phase (M_{avg}) , liquid density $^{\textrm{p}}$ $_{L}), liquid viscosity (<math display="inline">^{\textrm{\mu}}$ $_{L}),$ liquid diffusivity (D $_{L}),$ vapour (density (ρ_V), vapour viscosity (μ_V) and vapour diffusivity (D_V).

This data bank reported in Table (9.1) consists of 110 data points with 17 different variations inclusive of system variations like ethyl benzene - styrene, n-heptane-toulene, ethanol-methanol etnanol - water, and n-heptane - cyclohexane. This data bank provided all of the model validation material for the present work.

9.3.0 RESULTS FOR THE PREDICTED VALUES OF HETP :-

The generalised correlation [Equation (9.6)] to be utilised for predicting the values of HETP during distillation requires the knowledge of the following model parameters :-

(i) The value of volumetric liquid side mass transfer coefficient during distillation - $(k_La)_{dist}$.

(ii) The values of liquid side and vapour side mass transfer coefficients during distillation $(k_L \text{ and } k_V)$.

(iii) The value of effective interfacial area avaliable for mass transfer during distillation (a_d) .

(iv) The values of height of liquid phase transfer unit (H_L) and height of vapour phase transfer unit (H_V) based on relevant values of physical properties of the system like ρ_L , M_{avg} , P, and the superficial flow rates of vapour and liquid (G and L).

Estimation of different model parameters :-

(i) <u>Estimation of (k</u>a)dist :-

The generalised correlation developed in this investigation for predicting the values of $(k_La)_{phv}$, during physical absorption

Table - (9.1)

No.	т	P	a+	Ø	M	λ	L	G	HETP
	ိင	aim a		mN/m	uvg		ka	2 /m 8	m
1	73.3	0.131	330	25.9	105.42	0.933	0.938	0.932	0.271
2	73.3	0.131	330	25.9	105.46	0.912	1.042	1.025	0.213
3	73.9	0.131	330	25.9	105.37	0.949	1.130	1.121	0.277
4	73.9	0.131	185	25.9	105.37	0.965	0.733	0.740	0.405
5	73.3	0.131	185	25.9	105.42	0.958	0.948	0.967	0.302
6	72.8	0.131	185	25.9	105.44	0.928	1.146	1.140	0.262
7	73.3	0.131	185	25.9	105.42	0.939	1.178	1.178	0.262
8	72.8	0.131	142	25.9	105.48	0.918	0.368	0.367	0.561
9	73.3	0.131	142	25.9	105.48	0.922	0.621	0.621	0.512
10	72.8	0.131	142	25.9	105.50	0.913	0.919	0.916	0.418
11	72.8	0.131	142	25.9	105.46	0.927	1.076	1.076	0.357
12	72.8	0.131	142	25.9	105.48	0.927	1.153	1.159	0.354
13	73.3	0.131	142	25.9	105.44	0,926	1.265	1.255	0.393
14	72.8	0.131	142	25.9	105.37	0.952	1.390	1.383	0.491
15	73.3	0.131	95	25.9	105.46	0.895	0.365	0.352	0.706
16	73.9	0.131	95	25.9	105.46	0.941	0.578	0.586	0.689
17	73.9	0.131	95	25.9	105.48	0.915	0.897	0.890	0.594
18	73.3	0.131	95	25.9	105.50	0.921	1.178	1.185	0.488
19	73.3	0.131	95	25.9	105.50	0.918	1.332	1.335	0.424
20	73.9	0.131	95	25.9	105.50	0.916	1.409	1.409	0.402
21	72.8	0.131	95	25.9	105.48	0.922	1.508	1.508	0.424
22	58.9	0.066	95	27.3	105.45	0.927	0.192	0.192	1.143
23	58.9	0.066	95	27.3	105.47	0.916	0.669	0.666	0.893
24	57.8	0.066	95	27.3	105.49	0.914	0.890	0.890	0.716
25	56.1	0.066	95	27.3	105.51	0.916	1.009	1.018	0.582
26	57.2	0.066	95	27.3	105.51	0.908	1.102	1.102	0.530
27	55.6	0.066	95	27.3	105.47	0.919	1.198	1.178	0.591
28	54.4	0.066	95	27.3	105.40	0.943	1.230	1.230	0.866
29	100.0	1.000	190	14.9	78. 01	0.834	0.913	0.947	0.277
30	100.0	1.000	190	14.9	98.01	0.879	1.235	1.352	0.235
31	100.0	1.000	190	14.9	97.88	0.872	1.469	1.595	0.204
32	78.7	1.000	190	22.0	40.46	0.733	0.392	0.392	0.213
33	78.7	1.000	190	22.0	40.25	0.725	0.588	0.588	0.227
34	78.7	1.000	190	22.0	40,18	0.722	0.783	0.783	0.232
35	78.7	1.000	190	22.0	40.25	0.725	0.979	0.979	0.227
36	78.6	1.000	190	22.0	40.67	0.732	1.175	1.175	0.207
37	78.6	1.000	190	22.0	40.72	0.733	1.371	1.371	0.201
- 38	78.6	1.000	190	22.0	40.72	0.733	1.567	1.567	0.210
39	78.8	1.000	190	22.0	40.00	0.717	1.763	1.763	0.244
40	78.9	1.000	190	22.0	39.21	0.694	1.958	1.958	0.305
41	78.9	1.000	142	22.0	39.41	0.699	0.392	0.392	0.287
42	79.0	1.000	142	22.0	39.21	0.694	0.588	0.588	0.305
43	79.0	1.000	142	22.0	39.17	0.693	0.783	0.783	0.335
44	79.1	1.000	142	22.0	38.96	0.690	1.175	1.175	0.329
45	79.0	1.000	142	22.0	39.21	0.695	1.371	1.371	0.279
46	78.9	1.000	142	22.0	39.48	0.702	1.367	1.367	0.280
47	78.9	1.000	142	22.0	39.63	0.706	1./63	1./63	0.268
48	78.8	1.000	142	22.0	39.91	0./14	1.428	1.428	0.239

Data bank for HETP : Distillation in packed columns.

•

Table - 9.1 (contd.)

No.	т	Р	a,	Ø	M	λ	L	G	HETP
	ိင	atm a	_ 2_ີ 3 ຫ້∕ ຫ	mN/m	uvy		ka	2 /m 8	m
49	78.9	1.000	142	22.0	39.55	0.702	2.154	2.154	0.274
50	101.7	1.633	62	15.2	85.54	0.702	3.540	3.536	0.660
51	99.4	1.633	62	15.6	85.32	0.688	2.697	2.698	0.787
52	99.4	1.633	62	15.6	85.21	0.683	3.096	3.101	0.787
53	102.8	1.633	62	14.5	87.33	0.799	3.544	3.547	0.660
54	72.8	0.131	350	25.9	105.46	0.927	1.378	1.378	0.271
55	72.2	0.131	350	25.9	105.41	0.944	1.655	1.655	0.256
56	72.2	0.131	207	25.9	105.46	0.927	1.172	1.172	0.421
57	72.2	0.131	207	25.9	105.39	0.950	1.432	1.432	0.357
58	72.2	0.131	207	25.9	105.39	0.950	1.659	1.659	0.329
59	72.2	0.131	207	25.9	105.44	0.934	1.854	1.857	0.344
60	73.9	0.131	148	25.9	105.48	0.997	0.346	0.374	0.564
61	73.9	0.131	148	25.9	105.48	0.957	0.619	0.642	0.512
62	73.9	0.131	148	25.9	105.48	0.946	0,908	0.932	0.485
63	73.9	0.131	148	25.9	105.48	0.938	1.139	1.158	0.454
64	73.3	0.131	148	25.9	105.48	0.936	1.349	1.370	0.430
65	72.8	0.131	148	25.9	105.50	0.976	1.472	1.568	0.399
66	73.9	0.131	148	25.9	105.46	0.928	1.893	1.893	0.338
67	73.3	0.131	148	25.9	105.40	0.873	2.131	1.970	0.387
68	73.9	0.131	115	25.9	105.48	0.922	0.318	0.318	0.518
69	75.0	0.131	115	25.9	105.48	0.923	0.555	0.555	0.546
70	74.4	0.131	115	25.9	105.48	0.886	0.940	0.904	0.543
71	73.9	0.131	115	25.9	105.46	0.930	1.141	1.144	0.533
72	74.4	0.131	115	25.9	105.48	0.912	1.357	1.342	0.515
73	73.9	0.131	115	25.9	105.46	0.928	1.511	1.511	0.509
74	73.9	0.131	115	25.9	105.48	0.922	1.553	1.553	0.475
75	73.9	0.131	115	25.9	105.48	0.922	1.765	1.765	0.430
76	72.8	0.131	115	25.9	105.46	0.914	1.948	1.921	0.433
77	72.8	0.131	115	25.9	105.44	0.951	2.008	2.048	0.472
78	65.0	1.000	350	19.0	36.58	0.911	1.790	1.758	0.222
79	63.9	1.000	350	19.0	36.58	0.914	1.884	1.857	0.201
80	63.9	1.000	350	19.0	36.58	0.915	1.933	1.907	0.174
81	63.9	1.000	350	19.0	36.83	0.938	1.966	1.947	0.183
82	62.8	1.000	207	19.0	34.74	0.799	1.444	1.445	0.323
83	63.3	1.000	207	19.0	35.04	0.817	1.779	1.850	0.320
84	62.8	1.000	207	19.0	35.04	0.817	1.926	1.926	0.308
85	62.8	1.000	207	19.0	35.14	0.822	2.323	2.323	0.311
86	62.8	1.000	207	19.0	35.87	0.873	2.562	2.562	0.250
87	65.0	1.000	148	19.0	36.32	0.896	1.668	1.648	0.390
88	64.4	1.000	148	19.0	36.32	0.898	2.031	2.012	0.378
89	63.9	1.000	148	19.0	36.81	0.923	2.625	2.563	0.302
90	63.9	1.000	148	19.0	37.33	0.962	2.672	2.605	0.274
91	65.6	1.000	115	19.0	35.86	0.859	0.909	0.897	0.558
92	65.6	1.000	115	19.0	35.97	0.877	1.091	1.087	0.549
93	65.6	1.000	115	19.0	35.86	0.868	1.360	1.355	0.530
94	63.3	1.000	115	19.0	36.20	0.897	2.740	2.740	0.415
95	65.0	1.000	115	19.0	35.97	0.879	2.925	2.923	0.405
96	63.9	1.000	115	19.0	35.97	0.879	3.025	3.022	0.421
97	78.3	1.000	207	22.0	41.73	0.805	0.294	0.294	0.235
98	78.3	1.000	207	22.0	41.94	0.802	0.391	0.391	0.216
99	78.3	1.000	207	22.0	42.01	0.801	0.587	0.587	0.210
100	78.3	1.000	207	22.0	41.93	0.802	0.783	0.783	0.217

.

Table - 9.1 (contd.)

No.	Т	P	a,	Ø	M	λ	L	G	HETP
	ိင	aim a	_2_ີອ ‴∕‴	mN∕m	avg		kg/	2 m s	m
101	78.3	1.000	207	22.0	41.81	0.804	0.978	0.978	0.227
102	78.3	1.000	207	22.0	41.72	0.805	1.174	1.174	0.237
103	78.3	1.000	207	22.0	41.65	0.806	1.370	1.370	0.244
104	78.4	1.000	207	22.0	41.52	0.807	1.566	1.566	0.258
105	78.4	1.000	207	22.0	41.48	0.807	1.761	1.761	0.263
106	78.4	1.000	207	22.0	41.52	0.807	1.957	1.957	0.258
107	78.3	1.000	207	22.0	41.76	0.804	2.153	2.153	0.233
108	78.3	1.000	207	22.0	42.18	0.770	2.348	2.348	0.210
109	78.3	1.000	207	22.0	41.98	0.802	2.427	2.427	0.213
110	78.4	1.000	207	22.0	41.59	0.806	2.505	2.505	0.250

Relevant details regarding Table - 9.1 :

Data No.	System and Packing characteristics.
1-28	Ethylbenzene and Styrene. Steel R.R., $\sigma_{c} = 75 \text{ mN/m}$, No.1-3, dp = 0.015 m, No.4-7, dp = 0.025 m, No.8-14, dp = 0.035 m, No.15-28, dp = 0.05 m, Ref.(118).
29-31	n Heptane and Toluene. Ceramic R.R., $\sigma_c = 61 \text{ mN/m}$, $d_p = 0.025 \text{ m}$, Ref.(119).
32-49	Ethanol and Water. Ceramic R.R., $\sigma_{c} = 61 \text{ mN/m}$, No.32-40, dp = 0.025 m, No. 41-49, dp = 0.035 m, Ref.(120).
50-53	Cyclohexane and n Heptane. Ceramic R.R., $\sigma = 61 \text{ mN/m}$, dp = 0.075 m, Ref.(121).
54-77	Ethyl benzene and Styrene. Steel Pall Rings., $\sigma_c = 75 \text{ mN/m}$, No.54-55, dp = 0.015 m, No.56-59, dp = 0.025 m, No.60-67, dp = 0.035 m, No.68-77, dp = 0.05 m, Ref.(118).
78-96	Ethanol and Methanol. Steel Pall Rings, $\sigma_{c} = 75 \text{ mN/m}$, No.78-81, dp = 0.015 m, No.82-86, dp = 0.025 m, No.87- 90, dp = 0.035 m, No.91-96, dp = 0.05 m, Ref.(118).
97-110	Ethanol and Water. Steel Pall Rings, $\sigma = 75 \text{ mN/m}$, dp = 0.025 m, Ref.(120).

[Equation (8.6)] was utilised to estimate the values of $(k_La)_{dist}$. Based on the values of L, a_t , ρ_L , μ_L , σ , σ / σ_c and D_L reported in Tables (9.1) and (9.2), the values of $(k_La)_{dist}$, were calculated under otherwise identical conditions for all the 110 data points under consideration. These values of $(k_La)_{dist}$, are reported in Table (9.2).

(ii) <u>Estimation of a</u> :-

The generalised correlation developed in this investigations for predicting the values of a_p during physical absorption [Equation (7.7)] was utilised to estimate the values of effective interfacial area during distillation (a_d) . Based on the values of L, a_t , μ_L ρ_L , σ and (σ / σ_c) reported in Tables (9.1) and (9.2), the values of a_d were calculated under otherwise identical conditions for all the 110 data points under consideration. These values of a_d are reported in Table (9.2).

(iii) <u>Estimation of k</u>_V :-

The generalised correlation developed in this investigation for predicting the value of the true gas side mass transfer coefficient during physical absorption [Equation (8.11)] was utilised to predict the values of k_V . Based on the values of G, a_t μ_G , ρ_G , and D_G reported in Tables (9.1) and (9.2) the values of k_V were calculated under otherwise identical conditions for all the 110 data points under consideration and are also reported in Table (9.2)

(iv) Estimation of H_L and H_V :-

Knowing the value of $(k_L a)_{dist.}$ and the corresponding values of L and P_L from Tables (9.1) and (9.2), the value of H_L were

Table -(9.2)

Predicted values of mass transfer coefficients inclusive of physical properties of liquids and vapours.

No.	Ρ.	μ_	D	Ρ.,	μ.,	D	aj	k.	k_a
	L	L	× 10 ²	v	× 10 ³	x 10 [°]	a	× 10	v 10
	8 kg∕m	z mNs/m	 	kg∕m ³	mNs∕m	ີ 2 ຫ້∕ຮ	23 m ⁄ m	kmol/m sa	-1
•,		· · · · · · · · · · · · · · · · · · ·						-	
1	822.9	0.390	3.569	0.480	7.689	23.400	94.2	6.023	15.044
2	822.9	0.390	3.573	0.480	7.692	23.400	99.7	6.436	16.265
3	824.5	0.390	3.569	0.480	7.698	23.470	104.2	6.852	17.248
4	822.9	0.390	3.569	0.480	7.698	23.470	55.5	4.513	9.438
5	822.9	0.390	3.569	0.480	7.689	23.400	63.8	5.445	11.394
6	822.9	0.390	3.566	0.480	7.679	23.330	70.8	6.111	13.095
7	822.9	0.390	3.569	0.480	7.689	23.400	71.8	6.253	13.368
8	829.3	0.390	3.569	0.480	7.681	23.330	31.8	2.427	4.993
9	829.3	0.390	3.575	0.480	7.693	23.400	42.3	3.508	7.335
10	829.3	0.390	3.571	0.480	7.682	23.330	52.3	4.604	9.772
11	829.3	0.390	3.567	0.480	7.680	23.330	57.0	5.154	10.965
12	827.7	0.390	3.569	0.480	7.681	23.330	59.2	5.430	11.539
13	829.3	0.390	3.571	0.480	7.690	23.400	62.2	5.740	12.354
14	830.9	0.390	3.558	0.480	7.675	23.330	63.4	6.146	13.213
15	826.1	0.390	3.5/3	0.480	7.692	23.400	24.1	2.146	4.0/1
16	826.1	0.390	3.3/9	0.480	7.703	23.470	30.9	3.084	3.705
17	824.5	0.390	3.581	0.480	7.704	23.470	37.3	4.105	7.882
18	824.5	0.390	3.3//	0.480	7.674	23.400	43.3	5.017	9.62/
14	822.9	0.390	3.5//	0.480	7.674	23.400	48.7	3.433	10.336
20	822.9	0.390	3.083	0.480	7.703	23.470	50.2	J.66∠ 5.047	10.987
21	824.3	0.390	3.367	0.480	7.081	23.330	32.1	J.742	21.527
22	840.3	0.470	2.840	0.236	7.383	43.000	70.1	1.50 1.50	2.007
23	042-1 042-1	0.470	2.841	0.236	7.300	43.000	31.0	0.000	4 191
24		0.470	2.833	0.254	7.304	42.820	70 5	0.047	6.101
23	070 0	0.470	2.021	0.256	7 353	42.400	37.0	0-051	7 225
20	030.7	0.470	2.030	0.256	7.333	42.070	AT T	7.3-0	7.223
20	940 5	0.470	2.013	0.256	7 700	42.270	AT 0	10 109	7 707
20	646.J	0.770	5 101	3 202	9 174	7 977	93.7	0 774	74 041
30	656.4 451 A	0.230	5-674	3.202	0.130 Q 134	3.733 7 977	109 5	0 993	30 037
30	656.4 656 A	0.230	5 677	3.202	8 166	3.933	120.3	1.113	33.965
32	771 7	0.500	5.642	1 399	9.169	15.280	40.5	1.334	6.920
33	771.7	0.500	5.554	1.392	9.174	15.270	50.5	1.775	9.250
34	771.7	0.500	5-527	1.390	9-178	15.280	59.0	2.173	11.396
35	771.7	0.500	5.554	1.392	9.174	15.270	66.6	2.539	13.457
36	770.1	0.500	5.670	1.405	9.163	15,270	73.5	2.875	15.546
37	769.1	0.500	5.706	1.410	9.160	15.270	80.0	3.198	17.465
38	769.1	0.500	5.706	1.410	9.160	15.270	86.0	3.512	19.263
39	774.6	0,500	5.463	1.383	9.185	15.290	91.5	3.842	20.542
40	779.7	0.500	5.177	1.355	9.211	15.300	96.8	4.167	21.596
41	778.1	0.500	5.250	1.362	9.205	15.300	33.1	1.203	5.780
42	779.7	0.500	5.170	1.354	9.212	15.310	41.3	1.602	7.724
43	779.7	0.500	5.165	1.353	9.213	15.310	48.2	1.960	9.535
44	782.9	0.500	5.100	1.345	9.220	15.320	60.1	2.609	12.756
45	779.7	0.500	5.180	1.354	9.212	15.310	65.4	2.878	14.399
46	778.1	0.500	5.278	1.365	9.202	15.300	70.3	3.172	16.033
47	776.5	0.500	5.332	1.370	9.198	15.300	75.0	3.441	17.573
					~				

-

Table 9.2 (contd.)

No.	PL	μ_{L}	DL	Pv	μ _v	Dva	a	k v	k a L
	a ka∠m	2 mNs/m	× 10 Z	ka∠m ³	x 10 2 mNs/m	x 10 2 m / 5	23 m/m	x 10 2 kmol/m so	x 10 ~1
40	774 0	0 500	E 470	1 700	0 107	15 000	70 4	7 (0.4	10 1/6
40	770 1	0.500	J.43∠ € 200	1 744	9.18/	15.290	/7.4	3-674	17.100
47 50	110.1	0.300	3.278	1.000	9.201	13.300	00.0 04 A	0.077	20.274
51	203.0 105.7	0.201	4-437	4.077	0.332	2.373	77 1	0.872	27.0JO 22 977
57	203.Z	0.275	4.200	4.707	0.320	2.307	70.1	0.734	25 042
52 57	600.4 444 0	0.273	4.101 5 150	4.707	0. 140	2.007	70.J	0.005	23.042
54	000.0	0.234	3.137	A 400	7 400	2.400	170.0	7 649	20 574
5-7 55	827.3	0.390	3.00/	0.400	7 445	23.000	133 3	9 494	23.357
54	930 9	0.370	3,330	0.400	7.000	23.260	77 2	5 876	14 053
57	930.9	0.390	3.562	0.490	7 664	23.260	94 0	5.020 4 704	14.000
58	830.9	0.390	T 554	0.480	7 664	23 260	93.2	7 433	18.118
59	830.9	0.390	3.554	0.400	7 667	23.260	99 0	7.934	19.672
60	826 1	0.390	3 581	0 480	7 704	23 470	31.7	2.398	4-876
A1	826 1	0.370	3 581	0.490	7 704	23.470	AT A	3 502	7.472
62	826.1	0.390	3 581	0 480	7 704	23.470	53.5	A 543	9.903
62 47	824 1	0.00	3 591	0 480	7 704	23.470	60.5	5 290	11 692
60	874.1	0 390	3.001	0.480	7 693	23.400	66.3	5.952	13.228
65	826.1	0.390	3.571	0.480	7.682	23.330	69.5	6.543	14.096
66	826.1	0.390	3.579	0.480	7.703	23.470	79.7	7.461	16.972
67	826.1	0.390	3-548	0.480	7.688	23.400	85.0	7.677	18.486
48	876.1	0.390	3.581	0 480	7.704	23.470	25.5	1.780	4.044
49	826.1	0.390	3 592	0.480	7 727	23.600	34.4	2.627	6.097
70	826.1	0.390	3.586	0.480	7.716	23.540	45.9	3.699	8.974
71	826.1	0.390	3.579	0.480	7.703	23.470	51.0	4.364	10.337
72	826.1	0.390	3.584	0.480	7.716	23.540	56.0	4-878	11.749
73	826.1	0.390	3-579	0.480	7.703	23.470	59.4	5.302	12.699
74	822.9	0.390	3.581	0.480	7.704	23.470	60.3	5.405	12.966
75	826.1	0.390	3.581	0.480	7.704	23.470	64.6	5.911	14.239
76	818.1	0.390	3.567	0.480	7.680	23.330	68.3	6.275	15.289
77	830.9	0.390	3.566	0.480	7.679	23.330	69.2	6.563	15.614
78	752.5	0.450	4.173	1.185	8.502	9.170	172.0	3.587	31.150
79	754.1	0.450	4.159	1.169	8.471	9.115	176.8	3.751	32.285
80	754,1	0.450	4.159	1.169	8.471	9.115	179.3	3.822	32.904
81	754.1	0.450	4.184	1.185	8.476	9.115	180.9	3.855	33.411
82	755.7	0.450	3.934	1.169	8.402	8.998	106.8	2.679	19.931
83	754.1	0.450	3.978	1.169	8.424	9.025	119.7	3.183	23.355
84	754.1	0.450	3.972	1.169	8.408	8.998	125.0	3.275	24.741
85	754.1	0.450	3.984	1.169	8.410	8.998	138.4	3.734	28.433
86	754.1	0.450	4.071	1.169	8.426	8.998	145.9	3.997	30.882
87	752.5	0.450	4.148	1.201	8.497	9.107	92.0	2.655	19.277
88	754.1	0.450	4.141	1.201	8.481	9.080	102.3	3.055	22.254
89	754.1	0.450	4.184	1.201	8.475	9.052	117.6	3.618	27.007
90	754.1	0.450	4.234	1.201	8.485	9.052	118.7	3.659	27.522
91	752.5	0.450	4.105	1.217	8.504	9.072	55.7	1-429	10.848
92	752.5	0.450	4.117	1.217	8.506	9.072	61.5	1.635	12.419
93	752.5	0.450	4.105	1.217	8.504	9.072	69.3	1.908	14.573
94	755.7	0.450	4.115	1.217	8.448	8.964	101.3	3.127	24.396
75	752.5	0.450	4.111	1.201	8.490	9.045	105.0	3.287	25.589
96	755.7	0.450	4.097	1.233	8.459	8.991	106.8	3.331	26.176
97	761.3	0.500	6.125	1.445	9.125	15.240	40.3	1.023	6.677
98	760.2	0.500	6.178	1.453	9.125	15.240	47.2	1.249	8.283

.

Table 9.2 (contd.)

-

No.	PL	μ _L	D _L	Pv	$\mu_{\mathbf{v}}$	D _v	a d	k v	k_a L
	3 kg∕m	2 mNs/m	× 10 2 m /s	a kg∕m	x 10 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	x 10 2 m /s	2 3 m / m	x 10 ² kmol/m ² sa	x 10 -1 5
99	759.8	0.500	6.196	1.454	9.125	15.240	58.8	1.658	11.171
100	760.2	0.500	6.174	1.452	9.125	15.240	68.7	2.029	13.772
101	760.5	0.500	6.146	1.447	9.125	15,240	77.6	2.375	16.186
102	761.3	0.500	6.121	1.444	9.125	15.240	85.6	2.701	18.465
103	761.3	0.500	6.103	1.443	9.125	15.240	93.1	3.010	20.646
104	763.7	0.500	6.072	1.438	9.125	15.250	100.0	3.310	22.710
105	763.7	0.500	6.062	1.436	9.125	15.250	106.6	3.596	24.741
106	763.7	0.500	6.072	1.438	9.125	15.250	112.9	3.870	26.752
107	761.3	0.500	6.132	1.446	9,125	15.240	119.0	4.126	28.837
108	759.8	0.500	6.196	1.454	9.125	15.240	124.8	4.376	30.902
109	759.8	0.500	6.189	1.454	9.125	15.240	127.0	4.478	31.637
110	761.3	0.500	6.090	1.440	9.125	15.250	129.2	4.596	32.119

.

.

estimated and are reported in Table (9.3). Knowing the values of k_V , a_d and also knowing the corresponding values of P, M_{avg} , and G from Tables (9.1) and (9.2), the values of H_V were estimated. These values of H_V are also reported in Table (9.3).

Prediction of HETP by using model correlation : [Equation (9.6)] :-

Knowing the values of model parameters - $(k_La)_{dist.}$, k_V , $a_d H_V$ and H_L and knowing the corresponding value of λ [reported in Tables (9.1), (9.2) and (9.3)] the values of HETP during distillation were predicted using the model correlation [Equation (9.6)] and are reported in Table (9.3) along with the values of HETP during distillation obtained from HETP data bank for distillation Table (9.1). A typical sample calculation for obtaining the predicted values of HETP using a procedure consisting of eight steps is illustrated in <u>Appendix - A.1.4</u>.

The values of HETP during distillation were also predicted using the model correlation [Equation (9.6)], however using the other basis as $a_d = a_w$ and $(k_L a)_{dist.} = k_L . a_w$. These predicted values of HETP are reported in Table (9.4) along with the values of HETP during distillation obtained from HETP data bank for distillation.

9.4.0 COMPARISON BETWEEN EXPERIMENTAL VALUES BASED ON DATA BANK AND THE PREDICTED VALUES OF HETP :-

The experimental values of HETP obtained from data bank and the predicted values of HETP using the model correlation [Equation (9.6)] are reported in Table (9.4) for the following two cases :-

Table - (9.3)

~

Results inclusive of processing parameters for HETP : Distillation in packed columns.

No.	. т	L	G	H	н	Hay	HETP	HETP	% err
	്പ	ka	2	m	m	m	70	" (a	
	-						exp.	pred.	- *
			-	•					
_									
1	73.3	0.938	0.932	0.076	0.119	0.189	0.271	0.196	27.8
2	73.3	1.042	1.025	0.078	0.115	0.186	0.213	0.195	8.6
3	73.9	1.130	1.121	0.079	0.113	0.189	0.277	0.194	30.1
4	73.9	0,733	0.740	0.094	0.213	0.305	0.405	0.310	23.5
5	73.3	0.948	0.967	0.101	0.201	0.298	0.302	0.304	-0.9
6	72.8	1.146	1.140	0.106	0.190	0.289	0.262	0.300	-14.5
7	73.3	1.178	1.178	0.107	0.190	0.290	0.262	0.299	-14.2
8	72.8	0.368	0.367	0.089	0.343	0.425	0.561	0.443	21.0
9	73.3	0.621	0.621	0.102	0.303	0.397	0.512	0.413	19.3
10	72.8	0.919	0.916	0.113	0.275	0.378	0.418	0.396	5.2
11	72.8	1.076	1.076	0.118	0.265	0.374	0.357	0.389	-9.0
12	72.8	1.153	1.159	0.121	0.261	0.372	0.354	0.387	-9.4
13	73.3	1.265	1.255	0.123	0.254	0.368	0.393	0.383	2.7
14	72.8	1.390	1.383	0.127	0.249	0.369	0.491	0.378	22.9
15	73.3	0.365	0.352	0.109	0.492	0.589	0.706	0.623	11.8
16	73.9	0.578	0.586	0.123	0.447	0.562	0.689	0.580	15.9
17	73.9	0.897	0.890	0.138	0.399	0.525	0.594	0.549	7.7
18	73.3	1.178	1.185	0.148	0.374	0.511	0.488	0.532	-9.2
19	73.3	1.332	1.335	0.154	0.363	0.504	0.424	0.526	-24.1
26	73.9	1.409	1.409	0.156	0.358	0.501	0.402	0.523	-30.0
21	72.8	1.508	1.508	0.159	0.352	0.498	0.424	0.519	-22.5
22	58.9	0.192	0.192	0.114	0.626	0.732	1.143	0.760	33.5
23	58.9	0.669	0.666	0.158	0.462	0.607	0.893	0.634	29.0
24	57.8	0.890	0.890	0.171	0.431	0.587	0.716	0.614	14.3
25	56.1	1.009	1.018	0.177	0.418	0.581	0.582	0.607	-4.2
26	57.2	1.102	1.102	0.182	0.408	0.573	0.530	0.602	-13.4
27	55.6	1.198	1.198	0.186	0.400	0.571	0.591	0.595	-0.7
28	54.4	1.230	1.230	0.186	0.398	0.574	0.866	0.591	31.7
29	100.0	0.913	0.947	0.058	0.134	0.183	0.277	0.200	28.0
30	100.0	1.235	1.352	0.063	0.127	0.182	0.235	0.194	17.3
31	100.0	1.469	1.595	0.066	0.122	0.179	0.204	0.192	6.1
32	78.7	0.392	0.392	0.073	0.179	0.233	0.213	0.271	-27.0
33	78.7	0.588	0.588	0.082	0.163	0.223	0.227	0.260	-14.7
34	78.7	0.783	0.783	0.089	0.152	0.216	0.232	0.254	-9.5
35	78.7	0.979	0.979	0.094	0.144	0.212	0.227	0.248	-9.3
36	78.6	1.175	1.175	0.098	0.137	0.209	0.207	0.243	-17.1
37	78.6	1.371	1.371	0.102	0.132	0.206	0.201	0.240	-19.4
38	78.6	1.567	1.567	0.106	0.127	0.205	0.210	0.238	-13.4
39	78.8	1.763	1.763	0.111	0.125	0.205	0.244	0.241	1.3
40	78.9	1.958	1.958	0.116	0.124	0.205	0.305	0.244	19.9
41	78.9	0.392	0.392	0.087	0.249	0.310	0.287	0.369	-28.9
42	79.0	0.588	0.588	0.098	0.227	0.294	0.305	0.352	-15.4
43	79.0	0.783	0.783	0.105	0.212	0.285	0.335	0.340	-1.4
44	79.1	1.175	1.175	0.118	0.193	0.274	0.329	0.328	0.5
45	79.0	1.371	1.371	0.122	0.185	0.269	0.299	0.321	-7.6

Tabl	e -	9.3	(centd.	.)

No.	T	L	G	H	H	Hov	HETP	HETP	% err
	°c	kg/	2 тв	m	m	m	m	m (a	a = a
							exp.	pred.	
46	78.9	1.567	1.567	0.126	0.178	0.266	0.280	0.316	-12.7
47	78.9	1.763	1.763	0.129	0.172	0.264	0.268	0.312	-16.4
48	78.8	1.958	1.958	0.132	0.167	0.261	0.259	0.308	-18.8
49	78.9	2.154	2,154	0.136	0.164	0.260	0.274	0.309	-12.6
50	101.7	3.540	3.536	0.175	0.336	0.459	0.660	0.545	17.5
51	99.4	2.697	2.698	0.172	0.361	0.479	0.787	0.574	27.0
52	99.4	3.096	3.101	0.180	0.351	0.473	0.787	0.569	27.7
53	102.8	3.544	3.547	0.154	0.310	0.433	0.660	0.484	26.8
54	72.8	1.378	1.378	0.081	0.108	0.183	0.271	0.190	30.0
55	72.2	1.655	1.655	0.085	0.103	0.184	0.256	0.189	26.2
56	72.2	1.172	1.172	0.100	0.188	0.281	0.421	0.292	30.5
57	72.2	1.432	1.432	0.106	0.179	0.280	0.357	0.287	19.4
58	72.2	1.659	1.659	0.110	0.173	0.278	0.329	0.285	13.4
59	72.2	1.854	1.857	0.113	0.171	0.277	0.344	0.286	16.9
60	73.9	0.346	0.374	0.086	0.356	0.441	0.564	0.442	21.6
61	73.9	0.619	0.642	0.100	0.305	0.401	0.512	0.410	20.0
62	73.9	0.908	0.932	0.111	0.277	0.382	0.485	0.393	19.0
63	73.9	1.139	1.158	0.118	0.261	0.372	0.454	0.384	15.4
64	73.3	1.349	1.370	0.123	0.251	0.366	0.430	0.378	11.9
65	72.8	1.472	1.568	0.126	0.249	0.372	0.399	0.377	5.6
66	73.9	1.893	1.893	0.135	0.230	0.355	0.338	0.369	-9.0
67	73.3	2.131	1.970	0.140	0.218	0.340	0.387	0.364	6.1
68	73.9	0.318	0.318	0.095	0.506	0.594	0.518	0.619	-19.4
69	75.0	0.555	0,555	0.110	0.443	0.544	0.546	0.566	-3.8
70	74.4	0.940	0.904	0.127	0.385	0.497	0.543	0.528	2.8
71	73.9	1.141	1.144	0.134	0.371	0.496	0.533	0.514	3.6
72	74.4	1.357	1.342	0.140	0.355	0.482	0.515	0.505	2.0
73	73.9	1.511	1.511	0.144	0.347	0.480	0.509	0.499	2.0
74	73.9	1.553	1.553	0.146	0.344	0.478	0.475	0.498	-4.7
75	73.9	1.765	1.765	0.150	0.334	0.472	0.430	0.492	-14.4
76	72.8	1.948	1.921	0.156	0.324	0.466	0.433	0.487	-12.6
77	72.8	2.008	2.048	0.155	0.326	0.473	0.472	0.485	-2.6
78	65.0	1.790	1.758	0.076	0.078	0.147	0.222	0.154	30.6
79	63.9	1.884	1.857	0.077	0.077	0.147	0.201	0.154	23.4
80	63.9	1.933	1.907	0.078	0.076	0.147	0.174	0.154	11.3
81	63.9	1.966	1.947	0.078	0.076	0.149	0.183	0.154	15.9
82	62.8	1.444	1.445	0.096	0.145	0.222	0.323	0.248	23.3
83	63.3	1.779	1.850	0.101	0.139	0.221	0.320	0.244	23.7
84	62.8	1.926	1.926	0.103	0.134	0.219	0.308	0.241	21.6
85	62.8	2.323	2.323	0.108	0.128	0.217	0.311	0.239	23.1
86	62.8	2.562	2.562	0.110	0.122	0.218	0.250	0.234	6.5
87	65.0	1.668	1.648	0.115	0.186	0.289	0.390	0.305	21.8
88	64.4	2.031	2.012	0.121	0.177	0.286	0.378	0.302	20.2
89	63.9	2.625	2.563	0.129	0.164	0.283	0.302	0.294	2.5
90	63.9	2.672	2.605	0.129	0.161	0.285	0.274	0.290	-5.7
91	65.6	0.909	0.897	0.111	0.314	0.410	0.558	0.442	20.8
92	65.6	1.091	1.087	0.117	0.301	0.403	0.549	0.430	21.6
93	65.6	1.360	1.355	0.124	0.286	0.394	0.530	0.422	20.4
74 `	63.3	2.740	2.740	0.149	0.239	0.372	0.415	0.393	5.2
75	65.0	2.925	2.923	0.152	0.235	0.369	0.405	0.393	3.0
96 ·	63.9	3.025	3.022	0.153	0.236	0.371	0.421	0.395	6.1

Table - 9.3 (contd.)

.

°_			L	ïν	''ov	F 112. 5 5	192.11	<i>1. 61.1.</i>
~	kg/	т <mark>в</mark>	m	m	m	m	(a	= a
						exp.	pred.	-
· <u>.</u>	<u> </u>	<i>ب</i> ر						
78.3	0.294	0.294	0.058	0.170	0.217	0.235	0.241	-2.7
78.3	0.391	0.391	0.062	0.158	0.208	0.216	0.232	-7.4
78.3	0.587	0.587	0.069	0.143	0.199	0.210	0.222	-5.4
78.3	0.783	0.783	0.075	0.134	0.194	0.217	0.214	0.6
78.3	0.978	0.978	0.079	0.127	0.191	0.227	0.213	6.4
78.3	1.174	1.174	0.084	0.122	0.189	0.237	0.210	11.1
78.3	1.370	1.370	0.087	0.117	0.188	0.244	0.209	14.4
78.4	1.566	1.566	0.090	0.114	0.187	0.258	0.207	19.5
78.4	1.761	1.761	0.093	0.111	0.186	0.263	0.207	21.5
78.4	1,957	1.957	0.096	0.108	0.185	0.258	0.206	20.2
78.3	2.153	2.153	0.098	0.105	0.184	0.233	0.205	12.0
78.3	2.348	2.348	0.100	0.102	0.179	0.210	0.203	3.3
78.3	2.427	2.427	0.101	0.102	0.183	0.213	0.203	4.4
78.4	2.505	2.505	0.102	0.101	0.184	0.250	0.205	18.2
	78.3 78.3 78.3 78.3 78.3 78.3 78.3 78.4 78.4 78.4 78.3 78.3 78.3 78.3 78.3	78.3 0.294 78.3 0.391 78.3 0.587 78.3 0.783 78.3 0.978 78.3 1.174 78.3 1.370 78.4 1.566 78.4 1.957 78.3 2.153 78.3 2.348 78.3 2.427 78.4 2.505	78.3 0.294 0.294 78.3 0.391 0.391 78.3 0.587 0.587 78.3 0.783 0.783 78.3 0.978 0.978 78.3 1.174 1.174 78.3 1.370 1.370 78.4 1.566 1.566 78.4 1.957 1.957 78.3 2.153 2.153 78.3 2.348 2.348 78.3 2.427 2.427 78.4 2.505 2.505	78.3 0.294 0.294 0.058 78.3 0.391 0.391 0.062 78.3 0.587 0.587 0.069 78.3 0.783 0.783 0.075 78.3 0.783 0.783 0.079 78.3 0.978 0.978 0.079 78.3 1.174 1.174 0.084 78.3 1.370 1.370 0.087 78.4 1.566 1.566 0.090 78.4 1.761 1.761 0.093 78.4 1.957 1.957 0.096 78.3 2.153 2.153 0.098 78.3 2.348 2.348 0.100 78.3 2.427 2.427 0.101 78.4 2.505 2.505 0.102	78.3 0.294 0.294 0.058 0.170 78.3 0.391 0.391 0.062 0.158 78.3 0.587 0.587 0.069 0.143 78.3 0.783 0.783 0.075 0.134 78.3 0.783 0.797 0.127 78.3 1.174 1.174 0.084 0.122 78.3 1.370 1.370 0.087 0.117 78.4 1.566 1.566 0.090 0.114 78.4 1.761 1.761 0.093 0.111 78.4 1.761 1.757 0.096 0.108 78.3 2.153 2.153 0.098 0.105 78.3 2.348 2.348 0.100 0.102 78.3 2.427 2.427 0.101 0.102 78.4 2.505 2.505 0.102 0.101	78.3 0.294 0.294 0.058 0.170 0.217 78.3 0.391 0.391 0.062 0.158 0.208 78.3 0.587 0.587 0.069 0.143 0.199 78.3 0.783 0.783 0.075 0.134 0.194 78.3 0.783 0.783 0.079 0.127 0.191 78.3 0.978 0.978 0.079 0.127 0.191 78.3 1.174 1.174 0.084 0.122 0.189 78.3 1.370 1.370 0.087 0.117 0.188 78.4 1.566 1.566 0.090 0.114 0.187 78.4 1.761 1.761 0.093 0.111 0.186 78.4 1.757 1.957 0.096 0.108 0.185 78.3 2.153 2.153 0.098 0.105 0.184 78.3 2.348 2.348 0.100 0.102 0.179 78.3 2.427 2.427 0.101 0.102 0.183 <th< td=""><td>78.3 0.294 0.294 0.058 0.170 0.217 0.235 78.3 0.391 0.391 0.062 0.158 0.208 0.216 78.3 0.587 0.587 0.069 0.143 0.199 0.210 78.3 0.783 0.783 0.075 0.134 0.194 0.217 78.3 0.783 0.797 0.127 0.191 0.227 78.3 1.174 1.174 0.084 0.122 0.189 0.237 78.3 1.370 1.370 0.087 0.117 0.188 0.244 78.4 1.566 1.566 0.090 0.114 0.187 0.258 78.4 1.761 1.761 0.093 0.111 0.186 0.263 78.3 2.153 2.153 0.098 0.105 0.184 0.233 78.3 2.348 2.348 0.100 0.102 0.179 0.210 78.3 2.535 2.505 0.102 0.101 0.184 0.233</td><td>78.3$0.294$$0.294$$0.058$$0.170$$0.217$$0.235$$0.241$78.3$0.391$$0.391$$0.062$$0.158$$0.208$$0.216$$0.232$78.3$0.587$$0.587$$0.069$$0.143$$0.199$$0.210$$0.222$78.3$0.783$$0.775$$0.134$$0.194$$0.217$$0.216$78.3$0.783$$0.075$$0.134$$0.194$$0.227$$0.213$78.3$0.978$$0.978$$0.079$$0.127$$0.191$$0.227$$0.213$78.3$1.174$$1.174$$0.084$$0.122$$0.189$$0.237$$0.210$78.3$1.370$$1.370$$0.087$$0.117$$0.188$$0.244$$0.209$78.4$1.566$$1.566$$0.090$$0.114$$0.187$$0.258$$0.207$78.4$1.761$$1.761$$0.093$$0.111$$0.186$$0.258$$0.206$78.3$2.153$$2.153$$0.098$$0.105$$0.184$$0.233$$0.205$78.3$2.348$$2.348$$0.100$$0.102$$0.179$$0.210$$0.203$78.3$2.427$$2.427$$0.101$$0.184$$0.250$$0.205$</td></th<>	78.3 0.294 0.294 0.058 0.170 0.217 0.235 78.3 0.391 0.391 0.062 0.158 0.208 0.216 78.3 0.587 0.587 0.069 0.143 0.199 0.210 78.3 0.783 0.783 0.075 0.134 0.194 0.217 78.3 0.783 0.797 0.127 0.191 0.227 78.3 1.174 1.174 0.084 0.122 0.189 0.237 78.3 1.370 1.370 0.087 0.117 0.188 0.244 78.4 1.566 1.566 0.090 0.114 0.187 0.258 78.4 1.761 1.761 0.093 0.111 0.186 0.263 78.3 2.153 2.153 0.098 0.105 0.184 0.233 78.3 2.348 2.348 0.100 0.102 0.179 0.210 78.3 2.535 2.505 0.102 0.101 0.184 0.233	78.3 0.294 0.294 0.058 0.170 0.217 0.235 0.241 78.3 0.391 0.391 0.062 0.158 0.208 0.216 0.232 78.3 0.587 0.587 0.069 0.143 0.199 0.210 0.222 78.3 0.783 0.775 0.134 0.194 0.217 0.216 78.3 0.783 0.075 0.134 0.194 0.227 0.213 78.3 0.978 0.978 0.079 0.127 0.191 0.227 0.213 78.3 1.174 1.174 0.084 0.122 0.189 0.237 0.210 78.3 1.370 1.370 0.087 0.117 0.188 0.244 0.209 78.4 1.566 1.566 0.090 0.114 0.187 0.258 0.207 78.4 1.761 1.761 0.093 0.111 0.186 0.258 0.206 78.3 2.153 2.153 0.098 0.105 0.184 0.233 0.205 78.3 2.348 2.348 0.100 0.102 0.179 0.210 0.203 78.3 2.427 2.427 0.101 0.184 0.250 0.205

.

Table - (9.4)

~

Comparison between experimental values based on data bank and predicted values of HETP.

No.	т	Ł	G	HETP	HETP	% err	HETP	7. err
				exp.	pred.	(case I)	pred.	(cose ID
					a	, = a	a. =	a
					c	1 p	a	¥
1	73.3	0,938	0.932	0.271	0.196	27,75	0.100	63.28
2	73.3	1.042	1.025	0.213	0.195	8.61	0.101	52.61
3	73.9	1.130	1.121	0.277	0.194	30.10	0.102	63.32
4	73.9	0.733	0.740	0.405	0.310	23.52	0.167	58.85
5	73.3	0.948	0.967	0.302	0.304	-0.88	0.172	43.13
6	72.8	1.146	1.140	0.262	0.300	-14.50	0.175	33.12
7	73.3	1.178	1.178	0,262	0.299	-14.22	0.176	32.99
8	72.8	0.368	0.367	0.561	0.443	20.99	0.221	60.60
9	73.3	0.621	0.621	0.512	0.413	19.33	0.227	55.66
10	72.8	0.919	0.916	0.418	0.396	5.24	0.234	44.00
11	72.8	1.076	1.076	0.357	0.389	-9.01	0.236	33.76
12	72.8	1.153	1.159	0.354	0.387	-9.40	0.238	32.69
13	73.3	1.265	1.255	0.393	0.383	2.67	0.239	39.11
14	72.8	1.390	1.383	0.491	0.378	22.90	0.240	51.01
15	73.3	0.365	0.352	0.706	0.623	11.77	0.332	52.95
16	73.9	0.578	0.586	0.689	0.580	15.87	0.337	51.15
17	73.9	0.897	0.890	0.594	0.549	7.69	0.346	41.77
18	73.3	1.178	1.185	0.488	0.532	-9.19	0.353	27.60
19	73.3	1.332	1.335	0.424	0.526	-24.12	0.357	15.82
20	73.9	1.409	1.409	0.402	0.523	-29.96	0.358	10.95
21	72.8	1.508	1.508	0.424	0.519	-22.48	0.360	15.06
22	58.9	0.192	0.192	1.143	0.760	33.52	0.349	69.50
23	58.9	0.669	0.666	0.893	0.634	29.03	0.368	58.80
24	57.8	0.890	0.890	0.716	0.614	14.31	0.376	47.57
25	56.1	1.009	1.018	0.582	0.607	-4.20	0.380	34.78
26	57.2	1.102	1.102	0.530	0.602	-13.42	0.383	27.84
27	55.6	1.198	1.198	0.591	0.595	-0.70	0.384	35.01
28	54.4	1.230	1.230	0.866	0.591	31.72	0.383	55.78
29	100.0	0.913	0.947	0.277	0.200	27.97	0.124	55.18
30	100.0	1.235	1.352	0.235	0.194	17.34	0.127	45.76
31	100.0	1.469	1.595	0.204	0.192	6.12	0.130	36.42
32	78.7	0.392	0.392	0.213	0.271	-27.02	0.128	39.91
33	78.7	0.588	0.588	0.227	0.260	-14.66	0.133	41.54
34	78.7	0.783	0.783	0.232	0.254	-9.47	0.136	41.18
35	78.7	0.979	0.979	0.227	0.248	-9.33	0.139	38.86
56	78.6	1.175	1.175	0.20/	0.243	-1/.11	0.140	32.36
3/	78.6	1.3/1	1.3/1	0.201	0.240	-19.37	0.143	29.13
- 38 , - 3 0	78.8	1.36/	1.36/	0.210	0.238	-13.35	0.143	31.08
37	78.8	1./63	.1./65	V.244 0 705	U.241	1.28	0.130	30.0/ 10 00
40	78.7	T.428	7.428	0.303	0.244	17.0/ 	0.133 V.133	47.22 75 79
41 47	70.7	0.372	0.372	0.201	0.367	-15 75	0 100	JJ./ L
42 A7	79.0	0.797	0.797	0.303	0.332	-1 41	0.107	37.74 40 AL
43	77.0	1 175	1 175	0.300	0.340		0 200	74.70
~~*	/7.1	2 2 2 4 4 4	ق الد مد	V . JE 7	V.JED	V.70	V.200	J V

~

Table - 9.4 (contd.)

No.	т	L	G	HETP	HETP	% err	HETP	% err
				exp.	pred.	(case I)	pred.	(cose II)
					a. d	=a p	a, = d	°a. ₩
45	70 0	1 371	1 371	0.200	0 321	-7 43	0 202	
45	70.0	1 547	1 547	0 290	0.314	-17 48	0 203	07 53
40	70.7	1 747	1 743	0.200	0.310	-14 30	0.205	27.33
	70.7	1 050	1 050	0 259	0.312	-19 94	0.205	20.51
70	70.0	2 154	2 154	0.235	0.308	-17 67	0.208	20.31
50	101 7	3 540	7 574	0.440	0.507	17 57	0 521	21.11
50	101 ./	7 497	7 400	0.000	0 574	27 03	0 519	34 04
57	777 00 A	3 094	7 101	0.787	0.549	27.03	0.527	34.00
57 57	107.9	3.070	3,101	0.567	0.494	2/ .07	0.447	20 25
50	72.0	1 370	1 370	0.000	0.190	70 90	0 103	47.17
57	72 2	1 455	1 455	0.254	0 199	27.17	0 105	58 97
54	72 2	1 172	1 177	0.471	0.292	30 53	0 169	59.84
57	72 2	1 437	1 437	0 357	0.297	19 41	0 172	51 78
50	77 7	1 450	1 450	0.307	0.285	13 40	0 175	46.82
50	72 2	1 954	1 957	0.327	0.286	16.84	0.180	47.82
<u>60</u>	77 9	1.004 AAX 0	0 374	0.544	0 447	21.63	0.216	61.67
60	77.9	0 619	0 642	0 512	0.410	19.97	0.224	56.33
67	77.9	0.0017	0 937	0 495	0 393	18.99	0.230	52.56
62 43	73.9	1.139	1.159	0.465	0.384	15.44	0.234	48.38
<u>۲۵</u>)3,) 77 7	1 349	1 370	0.434	0.378	11 94	0.238	44.58
45	77 9	1 472	1 549	0.700	0.377	5.44	0.240	39.77
55	73.9	1.893	1.893	0.338	0.369	-8.95	0.247	27.11
67	73.3	2.131	1.970	0.387	0.364	6-07	0.249	35.68
67 68	73.9	0.318	0.318	0.518	0.619	-19.38	0.313	39.68
49	75 0	0.555	0 555	0 546	0.566	-3-82	0.318	41.67
70	74.4	0.940	0.904	0.543	0.528	2.76	0.328	39.63
71	73.9	1 141	1 144	0.533	0.514	3.63	0.330	38.09
77	74.4	1.357	1.342	0.515	0.505	1.99	0.335	34.95
73	73.9	1.511	1.511	0.509	0.499	2.04	0.337	33.75
74	73.9	1.553	1.553	0.475	0.498	-4.73	0.339	28.79
75	73.9	1.765	1 765	0.430	0.492	-14.39	0.342	20.39
76	72.8	1.948	1.921	0.433	0.487	-12.60	0.345	20.22
77	72.8	2.008	2.048	0.472	0.485	-7-65	0.345	26.98
78	65.0	1.790	1.758	0.222	0.154	30.59	0.087	60.70
79	63.9	1.884	1.857	0.201	0.154	23.44	0.088	56.29
80	63.9	1.933	1.907	0.174	0.154	11.34	0.088	47.16
81	63.9	1.966	1.947	0.183	0.154	15.90	0.088	51.70
82	62.8	1.444	1.445	0.323	0.248	23.33	0.150	53.48
83	63.3	1.779	1.850	0.320	0.244	23.71	0.154	52.00
84	62.8	1.926	1.926	0.308	0.241	21.57	0.154	50.00
85	62.8	2.323	2.323	0.311	0.239	23.14	0.157	49.37
86	62.8	2.562	2.562	0.250	0.234	6.52	0.156	37.63
87	65.0	1.668	1.648	0.390	0.305	21.81	0.200	48.68
88	64.4	2.031	2.012	0.378	0.302	20.18	0.205	45.75
89	63.9	2.625	2.563	0.302	0.294	2.54	0.209	30.86
90	63.9	2.672	2.605	0.274	0.290	-5.74	0.206	24.99
91	65.6	0.909	0.897	0.558	0.442	20.76	0.274	50.83
92	65.6	1.091	1.087	0.549	0.430	21.60	0.276	49.73
93	65.6	1.360	1.355	0.530	0.422	20.41	0.282	46.84
94	63.3	2.740	2.740	0.415	0.393	5.20	0.297	28.30

No.	Т	L	G	HETP	HETP	% err	HETP	% err
				exp.	pred.	case I >	pred.	(case II)
					a d	= a p	a = d	a w
				,				
95	65.0	2.925	2.923	0.405	0.393	3.00	0.301	25.69
96	63.9	3.025	3.022	0.421	0.395	6.12	0.304	27.61
9 7	78.3	0.294	0.294	0.235	0.241	-2.70	0.107	54.62
98	78.3	0.391	0.391	0.216	0.232	-7.41	0.108	49.93
9 9	78.3	0.587	0.587	0.210	0.222	-5.39	0.111	47.08
100	78.3	0.783	0.783	0.217	0.216	0.59	0.114	47.42
101	78.3	0.978	0.978	0.227	0.213	6.42	0.117	48.49
102	78.3	1.174	1.174	0.237	0.210	11.12	0.120	49.46
103	78.3	1.370	1.370	0.244	0.209	14.45	0.122	50.01
104	78.4	1-566	1.566	0,258	0.207	19.54	0.124	51.86
105	78.4	1.761	1.761	0.263	0.207	21.46	0.126	52.02
106	78.4	1.957	1.957	0.258	0.206	20.21	0.128	50.35
107	78.3	2.153	2.153	0.233	0.205	12.02	0.130	44.31
108	78.3	2.348	2.348	0.210	0.203	3.30	0.131	37.68
109	78.3	2.427	2.427	0.213	0.203	4.37	0.132	38.16
110	78.4	2.505	2.505	0.250	0.205	18.16	0.133	46.81

Table - 9.4 (contd.)

CASE I : Basis for calculating the values of HETP was as under :-Effective interfacial area during distillation (a) = Effective d interfacial area during physical absorption (a_p) . Further $(k_La)_{dist.} = (k_La)_{pny}$.

CASE II : Basis for calculating the values of HETP was as under :-Effective interfacial area during distillation (a_d) = Wetted surface area (a_w) . Further $(k_La)_{dist} = (k_L) (a_w)$.

The comparison between the values of HETP from data bank and the predicted values of HETP using the two different basis [Cases (I) and (II)] performed for some typical observations from Table (9.4) reveals the following :-

(I) Observation (5) : System - Ethylbenzene and Styrene.

For a column packed with 0.025m steel Raschig rings, under conditions of T = 73.3°C, P = 0.131 atm a, λ = 0.958, L = 0.948 kg/m²-s. and G = 0.967 kg/m²-s, the experimental data bank value of HETP is reported as 0.302m. Under identical conditions the predicted value of HETP for Case (I) wherein $a_d = a_p$ turns out to be 0.304 m and the corresponding value of $\frac{1}{2}$ error is -0.88. While under identical conditions, the predicted value of HETP for Case (II) wherein $a_d = a_w$ turns out to be 0.172 m and the corresponding value of $\frac{1}{2}$ error is 43.13.

(II) Observation (31) : System - n Heptane and Toluene.

For a column packed with 0.025m ceramic Raschig rings, under conditions of T = 100°C, P = 1.0 atm a., λ = 0.872, L = 1.469

kg/m²-s and G = 1.595 kg/m²-s, the experimental data bank value of HETP is reported as 0.204m. Under idential conditions, the predicted value of HETP for Case (I) wherein $a_d = a_p$ turns out to be 0.192m and the corresponding value of $\frac{1}{2}$ error is 6.12. While under identical conditions the predicted value of HETP for Case (II) wherein $a_d = a_w$ turns out to be 0.130 m and the corresponding value of $\frac{1}{2}$ error is 36.42.

(III) Observation (89) : System - Ethanol and Methanol.

For a column packed with 0.035m steel Pall rings under conditions of T = 63.9°C, P = 1.00 atm abs, λ = 0.923, L = 2.625 kg/m²-s and G = 2.563 kg/m²-s, the experimental data bank value of HETP is reported as 0.302 m. Under identical conditions, the predicted value of HETP for Case (I) turns out to be 0.294 m and the corresponding value of & error is 2.54. While under identical conditions the predicted values of HETP for Case (II) wherein $a_d = a_w$ turns out to be 0.209 m and the corresponding value of & error is 30.86.

(IV) Observation (100) : System - Ethanol and Water.

For a column packed with 0.025 m steel Pall rings under conditions of T = 78.3, P = 1.00 atm, λ = 0.802, L = 0.783 kg/m²-s and G = 0.783 kg/m²-s, the experimental value of HETP is reported as 0.217m. Under identical conditions, the predicted value of HETP for Case (I) wherein $a_d = a_p$ turns out to be 0.216 m and the corresponding value of % error is 0.59. While under identical conditions the predicted value of HETP for Case (II) wherein $a_d = a_w$ turns out to be 0.114 m and the corresponding value of % error is 47.42.

Similar trend is observed for all the other 106 observations which are compared in Table (9.4). If one assumes that the effective interfacial areas during distillation are equal to the wetted surface areas and then one predicts the values of HETP by the model correlation : Equation (9.6), the predicted values of HETP thus differ considerably from the HETP values obtained from data bank. However, when one assumes that the effective interfacial areas during distillation are equal to the effective interfacial areas during physical absorption and then one predicts the values of HETP by the model correlation : Equation (9.6), the predicted values of HETP compare fairly well with the HETP values obtained from the data bank as could be seen from all the 110 observations compared in Table (9.4). The statistical analysis of the values of HETP predicted by the model correlation using the two different basis [Case (I) and Case (II)] can be described as follows :-

		CASE I	CASE II
¥	E _{avg} .	6.28	41.93.
Ł	E _{abs} .	14.72	41.93.
f	s _{dev} .	7.87	10.59.

From the above statistical analysis, it is clear that effective interfacial areas during distillation (a_d) are expected to be equal to effective interfacial areas during physical absorption i.e. a_{dy} . Thus similar to physical absorption, during distillation operation also the static areas are expected to be ineffective for mass transfer.

Therefore, for all the 110 data points under consideration, one should use model correlation [Equation (9.6)] for predicting the

values of HETP using basis as $a_d = a_p$ [Equation (9.9)] and $(k_La)_{dist.} = (k_La)_{phy}$ [Equation (9.10)].

The detailed statistical analysis of the model correlation [Equation (9.6)] can be described as follows :-

(i) The total number of data points used in the model correlation is 110, with 17 variations inclusive of system variations like ethyl benzene-styrene, n-heptane-toulene, ethanol-methanol, ethanol-water and n-heptane - cycloxhexane.

(ii) The values of $\frac{1}{8} E_{avg}$, $\frac{1}{8} E_{abs}$ and $\frac{1}{8} S_{dev}$ were 6.28, 14.7 and 7.87 respectively.

(iii) Out of 110 data points, $85 \ \%$ of the predicted values of HETP were within $\pm 25 \ \%$ of the experimental data bank values, 70 % were within $\pm 20 \ \%$ and 65 % were within $\pm 15 \ \%$.

(iv) Only 5 % of the points registered deviations greater than ± 30 % with the value of maximum deviation being 33.5 %.

Figure (9.1) shows a parity plot wherein the HETP values predicted for Case (I) [utilising the various generalised correlations for k a, a_p , k_G and k_L developed in this investigation for the case of gas absorption] are plotted versus the HETP values from data bank. The satisfactory data fit in Figure - (9.1) clearly reflects that the model correlation can correlate satisfactorily all the data points obtained from various sources covering a wide range of variables as mentioned earlier. The above mentioned satisfactory data fit also indicates the following :-

Fig.9.1 HEIGHT EQUIVALENT OF THEORETICAL PLATE. COMPARISON OF THE PREDICTED vs. EXPERIMENTAL (LIT.) DATA.

LEGENDS FOR FIG. 9.1

Data No.	Relevant Information	Symbol
1-7	Billet (118), Ethylbenzene – Styrene, Steel R.R., 15mm, 25mm.	
8-28	Billet (118), Ethylbenzene - Styrene, Steel R.R., 35mm, 50mm.	Δ
29-31	Clump (119), n Heptane - Toluene, C.R.R., 25mm.	×
32-49	Kirschbaum (120), Ethanol - Water, C.R.R., 25mm, 35 mm.	
5 0- 5 3	Silvey (121), Cyclohexane - n Heptane, C.R.R., 75mm.	×
54-59	Billet (118), Ethylbenzene – Styrene, Steel Pall ring, 15mm, 25mm.	ØB
60-77	Billet (118), Ethylbenzene - Styrene, Steel Pall ring, 35mm, 50mm.	a z
78-86	Billet (118), Ethanol - Methanol, Steel Pall ring, 15mm, 25mm.	ΦΘ
87-90	Billet (118), Ethanol - Methanol, Steel Pall ring, 35mm, 50mm.	• •
97-110	Kirschbaum (120), Ethanol - Water, Steel Pall ring, 25 mm.	0

•

(i) The volumetric liquid mass transfer coefficient during physical absorption $[(k_La)_{phy}]$ and that during distillation $[(k_La)_{dist}]$ are expected to be comparable/equal.

(ii) The distillation operation is equimolar counter diffusion while the gas absorption is undirectional ; but this difference in any case has little effect on the values of k_L and k_V . Hence the true liquid side and gas/vapour side mass transfer coefficients during physical absorption and distillation are also expected to be comparable/equal.

(iii) The values of effective interfacial area during physical absorption and that during distillation are also expected to be equal/comparable.

Thus, it can be concluded that the generalised correlations developed for k_L^a , k_G^a , k_L^a and 'a' for the case of physical gas absorption in packed columns can be extended to distillation in packed columns. The comparison between the HETP values based on data bank and the HETP values predicted using these generalised correlations appears to be also quite satisfactory.

Hence, it will be interesting to obtain the data on HETP during distillation with chemical reaction. The values of effective interfacial area during distillation with chemical reaction and the values of effective interfacial area during chemical absorption are expected to be comparable. Hence, while predicting the values of HETP during distillation with chemical reaction probably, one will have to use the basis as $a_d = a_c$ and $(k_L a)_{dist} = (k_L a)_{chem}$.