

NOTATION

А	gaseous species (solute) that is being transferred
	from gas phase to the liquid phase ; reactive species.
[A [*]]	concentration of dissolved gas A at the gas liquid
	interface, k mol/m ³ .
а	effective interfacial area per unit packed volume, m^2/m^3 .
ac	effective interfacial area per unit packed volume
C	during chemical absorption, m^2/m^3 .
ad	effective interfacial area per unit packed volume
u	during distillation, m^2/m^3 .
a dv	dynamic area per unit packed volume, m ² /m ³ .
5	effective interfacial area per unit packed volume
ap	during physical absorption, m^2/m^3 .
	static surface area per unit packed volume, m^2/m^3 .
ast	
^a t	total dry surface area per unit packed volume, m^2/m^3 .
av	effective interfacial area per unit packed volume
	during vaporization, m^2/m^3 .
aw	wetted surface area per unit packed volume, m^2/m^3 .
[B]	concentration of reactive species in absorption
	media/solvent, k mol/m ³ .
С	proportionality constant in various generalised
	correlations.
DL	diffusivity of the dissolved gas A in liquid, m^2/s .
D _B	diffusivity of the reactant B in liquid, m ² /s.

.

-

D _G	diffusivity of solute gas in gas phase, m ² /s.
DV	diffusivity of solute in vapour phase, m^2/s .
d p	size of packing, also diameter of packing, m.
G	superficial gas flow rate, kg/m ² -s
g	acceleration due to gravity, m/s ² .
Н	Henry's law constant for absorption of gases into
	water, atm/(k mol/m ³).
H	Henry's law constant for absorption of gases into
	electrolyte solutions, atm/(k mol/m ³).
н _L	height of liquid phase transfer unit, m.
HV	height of vapour phase transfer unit, m.
HOG	height of overall gas phase transfer unit during
	absorption, m.
H _{OV}	height of overall vapour phase transfer unit during
	distillation, m.
h	Solubility factor in equation (4.10),
	$h = h_{+} + h_{-} + h_{G}, m^{3}/k mol.$
h ₊ , h_, h _G	individual contributions of positive ion, negative ion
-	and gas respectively, m ³ /k mol.
h	operating holdup, m ³ /m ³ .
hst	static holdup, m ³ /m ³ .
I	Ionic strength of solution, k ion/m ³ .
К _G	true overall gas side mass transfer coefficient,
6	k mol/m ² s atm.
k ₂	second order rate constant, m ³ /k mol -s.
k _a	third order rate constant, (m ³ /k mol) ² -s.
0	

- k_G true gas side mass transfer coefficient, k mol/m²s atm.
- k_L true liquid side mass transfer coefficient during physical absorption, also during distillation, m/s.
- kLa volumetric liquid side mass transfer coefficient, s⁻¹.
 kL liquid side mass transfer coefficient during chemical absorption, m/s.
- $k_{\mbox{MEA}}$ rate constant for reaction between carbon dioxide and monoethanolamine, $m^3/\ k\ mol-s$

- k_{OH} rate constant for reaction between carbon dioxide and hydroxyl ion, m^3/k mol s.
- k_V true vapour side mass transfer coefficient during distillation, k mol/m² s atm.

L superficial liquid flow rate,
$$kg/m^2$$
-s.

- M average molecular weight of the gas/vapour phase, kg/k mol.
 - m index of Schmidt number in generalised correlations.
 - n index of parameters $(\rho_L/\mu_L g) \in (a_t \stackrel{d}{\to})$ in generalised correlations for k_t and k_c respectively.
 - P pressure, atm.

1.-

R specific rate of absorption, $k \mod m m m m ^2$ -s.

R' volumetric rate of absorption, k mo/ m^3 -s.

S solubility of gases in liquids, $(k \mod m^3)/atm$.

```
T temperature, (°K)
```

- U superficial liquid velocity, (m/s)
- Z height of packed bed, m.

SUBSCRIPTS AND ABBREVATIONS.

- CBS. ceramic Berl saddle.
- chem. chemical absorption.
- CRR. ceramic Raschig ring.
- dist. distillation.
- exp. experimental.
 - G gas.
 - L Liquid.
- Lit. literature.
- obs. observed.
- phy. physical absorption.
- pred. predicted.
 - V vapour.

GREEK SYMBOLS

- α enhancement factor for interfacial area defined by
 equation (6.10); or index of Reynolds number in
 generalised correlations, or relative volatility.
- β Reaction factor defined by $K_L^{'}/K_L$; or index of Weber number in generalised correlations.
- γ parameter defined by $\sqrt{D_L K_2[B]}/k_L$ also known as Hatta number index of Froude number in generalised correlations.

- δ index of parameter (σ / σ) in generalised correlations.
- ϵ index of the parameter (RT/a_tD_G) in generalised correlation, void fraction of packed bed.
- λ ratio of the slope of equilibrium line to the slope of operating line.
- μ viscosity of liquid/gas/vapour, Ns/m² (also mNs/m²).
- v kinematic viscosity, m^2/s .
- ρ density of liquid/gas/vapour, kg/m³.
- σ surface tension, N/m (also mN/m).
- o critical surface tension of packing material, N/m
 (also mN/m).

DIMENSIONLESS NUMBERS

Froude number $Fr = L^2 a_t / \rho_L^2 g$. Reynold's number $Re = L/a_t \mu_L$, $G/a_t \mu_G$. Schmidt number $Sc = \mu_L / \rho_L D_L$, $\mu_G / \rho_G D_G$. Weber number $We = L^2/a_t \rho_L \sigma$.

PERCENTAGE ERRORS

 $\frac{1}{n} = \frac{1}{n} = \frac{1}{2}$ exp-pred exp.

$$\frac{1}{n} \sum_{k=1}^{n} \frac{1}{n} \sum_{k=1}^{n} \frac{$$