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CHAPTER -3

THEORETICAL CONSIDERATIONS

3 0 0 VARIOUS ASPECTS CONSIDERED UNDER HEADING
“THEORETICAL CONSIDERATIONS”

Theoretical considerations for quétemary phase equilibrium data which can be
converted to equivalent Ternary phase equilibrium data using concept of dual solvent-

( solvent + anti solvent) - have been outlined with respect to following:—

. (1) © Mutual solubility data and Tie - line data inclusive of plait point.
(ii).  Distribution curves diagrams and selectivity diagrams;
(iii). Tie line data correlations. '
~ (iv). Quaternary tie line data correlations based concept of eqmvalent ternary

phase equilibrium data. '
(v). - Unifac model, uniquac model and NRTL equations. |
'Theor‘etical‘ considerations for liquid — liquid extraction in a packed column have

been also outlined with respect to following -

().  Hold up of dispersed phase -
(). % aromatlcs extracted and % purity of extract

(iii).- Mass transfer aspects like NTU, HTU, Kodxa and Kocxa mcluswe of

determing these values.

All relevant necessary equations have been outlined in this chapter and these

equations have been used subsequently while preparing data processing tables.



3.1.0 Theoretical considerations for Phase equilibrium dat_a:.

3.1.1Ternary phase liquid equilibrium: v
Representation of ternary phase» equilibrium data, estimation of plait point and

construction ofDistributuion diagramshave been outlined in following paragraphs.
(i) Distribution curves:

The equilibrium data can also be represented by a dxsmbutmn curve'! obtained by

plottmg the equilibrium composmon of the solute in the solvent-nch phase against the
equilibrium composmon of the solute in the diluents-rich phase, as shown in Fig.1 The

slope of the equilibrium distribution curve thus obtained gives the value of the distribution

coef_ﬁcxent, m, at any location on the curve.
(ii)Other method of Representing Equilibrium Data:

The other method of representing equilibrium data is by nght angle Trxangular |

Dxagram ! as shown in Fig. 2

Fractions of solvent in both phaseé are plotted against the concentration of solute in
both phases, on solvent- free basis. In the method shown in Fig. 1 concentration of solute
in the conjugate phases at equilibrium is plotted on solute-free parameters: this method is

often used for systems in which the solvent and diluents are completely immiscible.
" (iii)Estimation of plait point

Plait paintl31 in the ternary systems indicates the maximum concentration of the
solute in the raffinate phases that can possibly be handled in any extraction system .
Various methods are available for the estimation of this plait point, The conjugate curve

method Fig. 3 is used for the determination of the plait point composition.
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Fig. 3 The determination of the plait point composition

3.1.2 Various methods for the Tie line Equilibrium data

correlation:

The following are the four important methods available in the literéture for

correlating Tie line data:

1) Hand’s method |

2) Campbell ‘s-method

3) Bachman’s method

4) Othmer and Tobias method

The relavant four correlations interms of mathematical equations are as under:



(i) Hand’s correlation:

d ' uses a double log arithmetic co-ordinate plot.

Hand’s mefho _
The data obtained could be correlated satisfactory by this method. Thus
an equation of type may be given by: - |
[(XXE)/(XSE'*'XWE)] K) [ Xar/ Xax]" M
Where, , ' ‘
Xae = wt.frac. of aromatic in Extract,
Xsg = wt.frac. of solvent in Extract phase.
Xwg = wt.frac. of water in Extract phase.
Xar = wt.frac. of aromatic in raffinate.
Xar = wt.frac. of aliphatic in raffinate.
K, n = Constants in Hand’s correlation.
Thus if one plots a graph of log Xar / Xag vs. log XagXse+ Xwg
‘ is expected to result in a straight lme having intercept (log K) and slope (n)

(ii)Campbell‘s correlation:

Campbell has shown that a straight-line correlation results, when the concentrations
of the solute in the conjugate phases are plotted on log-scale.

Campbell '** has given the following equation

Ci =ke (c2)™ ' @)

Where, S

C= We:ght fractlon of solute in extract.

- Cy= Welght fraction of solute in raffinate.
K.’ n. = Constants in Campbell’s correlation.

(iii)Bachman’s correlation:

Bachman’s method '** indicates that an equation of the following form is quite

representative: -
a; = ng (a1/by) + kg) 3
Where,
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a; = Weight fraction of solvent in extract.
b2 = Weight fraction of non-solute in raffinate.

kg + "s = Constants in Batechman’s correlation.

(iv)Othmer and Tobias correlation: |

Othmer and Tobias '*>-equation as under: |
(1- as)/as =kor. [((1- b2)/ba)] "o Where, @
a; = Weight fraction of solvent in extract.

b, = Weight fraction of non-solute in raffinate.
- ko1, Nor. = Constants in Othmer and Tobias correlation; -

3.1.3Quaternary Tie line data correlation base on Ternary“data o

Correlation:

(i) Moulton and Chang’s approach :

Moulton and Chang'® have suggested a method of predicting'the quaternary
mutual solubility data from the basic ternary mutual solubility data. Quaternary system
consisted of Ethyl alcohol -benzene-iso-valerate —water and corresponding two basic
ternaries were-Ethyl alcohol ~benzene-water andc Ethyl alcohol —Ethyl isovalerate-water
The quaternary system Ethyl alcohol — benzene- iso- valerate — water has been studied on
the basis of water in ethyl alcohol free ternary, equiratio ternary composition for the same
water composition are found from the mutu?l solubility curves of two basic ternaries i.e.
Ethyl- alcohol- benzene- water and Ethyl alcohol — Ethyl isovalerate — water, the

- difference between the ethyl alcohol and water composition .

i

It is than divided in the ratio of Benzene to ethyl isovalerate in origihal quaternary

composition and is added to or subtracted from the corresponding equiratio values of Ethyl

alcohol and water-respectively. Remaining is then divided in benzene to Ethyl isovalerate
ratio which completes the predicted quaternary composition. The predicted values are in

good agreement with the original quaternary data.
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- (i)Prince’s Approach:
Prince'**has given a generalized correlation for the double binary system i.e.
system having pairs of particularly miscible liquids in the following formal .
XAD/ XDD = [ XAH/ (k1XBH +k2 XCH ) ' -»¢1-m 5)
. For fhe system A,B,C,D, where B-D and C-D a‘re’ partially miscible pairs of
liquids.H denotes the d poor phase and m the ratio |

m= XCH / [XCH + XBH]

where XCH is the wt. fraction of C in H phase.n; and n; are the slopes of the basic

ternaries in hand’s plot . k; and k; are intercept for the same in the hand’s plot .

(iii) Hand’s approach applied to quaternary data-L-L extraction of

aromatics: . _
According to Hand’s correlatiqnm, for the ternary-benzene-Dmso-Water one can
writs the following correlation:- '

[ (Xoe )/ (Kee ) 1= (Ki) Xor/ X 1%

Where, A

Xpg = wt.frac. Of Dmf/ Dmso(solute) in Extract. phase..

Xge = wt.frac. Of Benzene(solvent) in Extract phase.
Xpr = wt.frac. Of Dmf/Dmso(solute) in raffinate. phase.
Xwr = wt.frac. Of water (non solute) in raffinate. phase.

' ~ Superimposing second ternary-Hexane- Dmf/Dmso-water, one can also write an
equation similar to equation (1) follows:-
[ (Xoe )/ (X*se) 1 = (K1) [Xor/ Xwr 1™
Where X*gg = Xus / (Ki/K2)+ Xae

Thus if one plots a graph of .
A n=(n1+-n2) and log XpeAKXsg +K2 Xug) Vs. nllog( Xpr / XBE) -



Where n1=(n;-Mg. A n) n; and n are the values of constants in the case of two '

basic ternaries namely-Benzene-Dmso-Water and Hexane-Dmso-water. Further

Mg =(Xur / XBR+ Xur ) (3.4) and An=n;-n, ( since in the present casé water acts

.asan antl—solvent -ve 31gn has been used for ny)
m=M/100=Wt.ester/(Wt ester+Wt.Benzene)

~ Thus, a plot of (- Mg . A n) log Xpr / Xwr Vs. log Xpg /(K1 Xgg +Kz Xyg) is
expected to bea straight line.

(iv)Modified Hand’s equation applied to quaternary data:

Though the systems under consideration are quaternary in nature, if one considers a
solvent as a dual solvent consisting of solvent + antisolvent, then all the systems under

conmderatxon can be reduced to ternary system. Data can be represented in terms Xgg, XuE,

and Xsg for Extract phase and Xpr, Xur and Xgsg for raffinate phase for a fixed

concentration of antisolvent.

It has been observed that the values of equilibrium compositions in Extract phase

and raffinate phase could be correlated in the form of an equation of type given by :-

[(Xxe)/ (XsetXwe) FO[Xar/Xar]™ )
Where, »

Xag = wt.frac. of aromgitic in Extract.

Xse = wt.frac. of solvent in Extract phase.

Xwe = wt.frac. of water in Extract phase. -
Xar = wt.frac. of aromatic in raffinate.

Xar = wt.frac. of aliphatic in raffinate.

Thus if one plots a graph of
log [Xar / Xar] vs. log [ (Xae) (Xse+ Xwe)]

:{,ﬂ '



is expected to result in a straight line having intercept (logK) and slope (n) .

Thus quaternary L-L equilibrium data has been converted to pseudo ternary

 equilibrium data by treating solvent as dual solvent being Dmf/Dmso.+anti solvent water.

3.14 UNIFAC (UNIFAC FUNCTIONAL GROUP ACTIVITY

COEFFICIENT) MODEL:"

This is a group contribution method for prediction of activity coefficient in non-
electrolyte liquid mixtures. The basic idea is that whereas there are thousands of chemical
compounds of interest in chemical technology, the number of functional groups which

consistute these compounds is much smaller. Therefore if we assume that a physical

- property of a fluid is the sum of contribution made by the molecule‘s functional groups, we -

obtain a possible technique for correlating the properties of a very large number of
fluids.In the UNIFAC method; originally i)resented by Fredenslund A. and Prausnitz J.M.
(1975) *the combinatorial part of the UNIQUAC model i.e. eq (8) is used directly
InyC=In(Si/x;)+22* giln 0/ D) +1i-Di/ % T (x;1) 8)

j=1
Parameters r; and q; are calculated as the sum of the group volume and area
parameters Ry and ka)sr o Rk and - qgi= Z vx @ Qy

Where vy @ is the numbexj' of groups of type k in molecule i.

The residual part of the ﬁNIQUAC~ equation is replaced by the solution-of-groups
. concept, and is glven by eq (9) ‘ '
' InYR=2u @[ In Iy - In T ® ] eeeeee=—(9)  where Iy is:the group reSIdual

' actmty coefficient and I3 is the residual activity coefﬁc:ent of group k in a reference

solutmn containing only moiecules of type i. The térm T ® is necessary to attain the
nonnahzanon that activity coefﬁment yi becomes unity as x; -- 1. The activity coefficient

for group k in molecule I depends on the molecule I in which k is situated..

The group activity coefficient I'kis found from eq (10)
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Tk=Qc[1-In( £ 0 ¥u)~2 (8 Pin/ 3 { 8 P DI---(10)

m=1 | m=1 h‘—’l ‘ The above also holds for In
I in the above eq (10) Oy, is the area fraction of group

m, and the sums are over all different groups and is given by

Om = Qm Xm / 2(Qm Xm)-—- Where X, is the mole fraction of groups m in the
mixture. Group interaétion parameter W, is given by

W= exp — [(Unn — Um) / RT] = €Xp — (ann / T) — (3.10)

where Uy, is the measure of the energy interaction between groups m and n. Also
amp and a,y, (two parameters per binary mixture of groups) are the parameters which must
be evaluated from experimental phase equilibrium data. The functional groups considered
and the R and Q values are given by Frendslund A. and Prausnitz J. M. ' . A
- comprehensive list of the interactions parameters are given by prausnitz et. Al 1% The. |
interaction parameters befweer; the groups can be done by regression of either VLE or LLE

data. The details of which are given in chapter 2 on literature surveys.

3.1.5 NRTL Method |
The activity cogfficient equations are as follows
In - y= X22[‘:21. Gn *+ Ap G
X1+ %Gy K2+ X1 G2y . 1L@)

In  1=X4%_An Gp %+ Al2 GI2

[ T X+ X Gn m} .11, (i)
Wherg Gi=exp (-2 A1z) f | .. 12(33)
Ga1 = exp (— o1 A2 ) ..12(i)
The infinite dilution activity coefficient are related to the constants as folloWs
Iny1®=Aa2+ A2 Gz - - 13(1)
Iny,” = A2+ A21 Gy ...13(ii)



* Renon — and Prausnits’’ indicate that for non-eledtrolyte organic and non
electrolyte mixtures ocj; = 0.3 and for non electrolyte organic water system ocj; = 0.3, for

system under consideration have the value of «j; = 0.30.

3.1.6 THE NONRANDOM TWO-LIQUID EQUATION (NRTL):

The basic idea used in the derivations of the Wilson‘s equation is also used by
Renon'! in his derivationkqf the NRTL equation: however, Renon‘s equation unlike
Wilson‘s is applicable to partially miscible as well ass completely miscible systems, which

is a major improvement.

12 two liquid theory of binary mixtures is

To define the local composition, Scoott's
used. If attention is focused on a central molecules -of type 1. the probability of finding a
molecule of type 2, relative to finding a molecule of type 1 about this central molecule is

expressed in terms of the overall mole fractions and the Boltzmann factors

X1 = X2 €Xp (-0t12 821/ RT) ==--emmmmnme ome (14)

X)) Xj1exXp (-042 gu/ RT} - (15)

And the probability of finding a molecule of type 1 about a central molecule of type

2 is given by
X12 = X1 eXp (-a2 812/ RT)- (16)
X1 = X2 €Xp (-0t12 822/ RT) 17

Where a;, is a constant characteristic of the nonrandom ness of the mixture

Xj is the local mole fraction of molecule I in the immediate neighbourhood of
molecule j | v ‘

G;; is the energy of interaction between an i-j pair of molecules

The local mole fractions are related by A

xant+txn=1 : --( 18)

Xpt+txn=I1 ene =-( 19)

Comparison of the assumptions in this theory with that of the quasichemical theory

shows that o, is the substitute of 1/z where z is the lattice coordination number details of
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which are given by Renon H. and‘ Prausnitz JM. ', Since z is in the order of 6 to 12, o, is

of the order of 0.1 to 0.3 (independent of temperature)

From eq (16) and (18), we obtain for the local mole fraction .

X21 =X €xp (-2 ( €21 — gn )/ RT) / %1+ x2exp (-o12 ( 821 — gu1 )/ RT) --(20) and
similarly form eq (3.24) and (3.26)

X12= X1 €xp (-ou2 ( g12 — g22 ) RT) / X1 + x26xp (-0u2 ( €12 — €22 Y RT)- (21)

' !

The above eq (20) and (21) are introduced into the two liquid theory of scott which
assumes that there are two types-of cells in a binary mixtures one for fnolecule 1 and one
for molecule 2 For cells containing molecules 1 at their center the residual gibbs energy
(i.e. compared with ideal gas at the same pressure, temperature and composition) is the
sum of all the residual gibbs energies for two body interactions experienced by the centre

molecule 1 and is given by

gP=xugu+xagn -(22)
If we consider pure liquid 1, x 1= 1 and x 2 =0, in this case the residual gibbs

energy is given by

gmpure gn 23)
Similarly for a cell containing mplecule 2 at its center

g¥=xngn+xngn - (24)

g(z)pure =gn (25)

The molar excess Gibbs energy for a binary solution is the sum of two changes in
residual gibbs energy first.that of transferring x1 molecules from a cell of the pure liquid 1
into a cell 1 of the solution, (g’ - g p are) X1 and that of transfemng x> molecules from a

cell of pure liquid 2 into a cell 2 of solutlon (g - g pure) X2. Therefore

gE =X (g(l) - g(l)pure) + %3 (g(z) - g(z)pure) (26) -

After appropriate substitution in equation-26 , one atrives at final equation-(27).
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g" =x1 X1 (g1 — g11) + X2 X12 (812 — £22) - 27)
Further,the following notation is introduced.

To=(gi2-g2)/RT and  Goy = exp (= 0t Top)ormrmememren (28)
- Tiz=(g21—gn)/RT and Gpp=exp (- aTi2) (29)
 Notng that g> = g;. the equation for gF becomes - .
g%/ RT =x1 Xp (T21 Gai / X1 + X3 G21 + Ti2 G2/ X2+ X) Gy ) = (30)

The activity coefficients for the NRTL equations are found by diffrenciation of the

above eq (3.36), the results of which are given below _
Iny; =57 ( Tos G2t / (%1 + %2.G21)* + T2 Gz / (X2 + %1 Gp2)? ) ——-——(31)

Iny; =% (T2 G*a/ (k2 + %1 Gi2)* + Tay Gai / (%1 + X2 Ggp)? ) —=mmemem (32)

For multicomponent mixtures the NRTL equation are readily generalized to

solutions containing any number of components. In multicomponent mixture the excess

gibbs energy is given by equation-(33)
N X T;Gjix;
gE/RT = 2xj=1 (33)
i=1 Y Guxx
| k=1

where N is no of components and

Tji=(gi—gi)/RT Gji = exp (- o4 Tji )
The activity coefficients obtained after diffrenciation are
' N o i _ N
2 Tji Gy x5 2 % TGy
i=1 N xGj 1= |
InyY; = SR JJ—— (Tji = weemmemmennenns)(34)
YGuxk ©  j=1X Ggxc ZijXk

k=1 ' k=1 k=1



The value of the nonrandomness parameter o is chosen depending on the type of -

system under consideration.

Type 1 includes those systems where deviations from ideality are not large,
~although they may be positive or negaﬁve. Type la systems includes most mixtures of
nonpolar substances such as hydrocarbons and cérbon tetrachloride but mixtures of
hydrocarbons and paraffins are excluded. Type 1b systems includes some mixtures of
nonpolar ‘and polar nonassociated liquids while type 1c¢ systems includes some mixtures of

polar liqﬁids with negative excess Gibbs energy. The recommended value of a is 0.3

Type 2 systems" include mixture of saturated hydrocarbons with polar

nonassociated liquids, the recommended value of a o is 0.2.

Type 3 systems include mixture of saturated hydrocarbons and the homolog

perfluorocarbons, the recommended value of o is 0.4.

Type 4 systems include mixtures of stronglyr self-associating substances like
alcohol with a nonpolar substance like an hydrocarbon or carbon tetrachloride, the

recommended value of o is 0.40 to 0.55.

Type 5 is represented by two systems of polar substances (acetonitrile and

nitromethane) with carbon tetrachloride, the recommended value of . is 0.47.

Type 6 'is rcpreéented by two systems of water plus a polar, nonassociated

substance ( acetone and dioxane), the recommended value of o is 0.3.

Type 7 is represented by two systems of water plus a polar, selfassociated

substance (butylglycol and pyridine), the recommened value of o is 0.47.
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3.1.7 UNIVERSAL QUASI CHEMICAL THEORY (UNIQUAC)

It is postulated that liquids can be represented by é three dimensional lattice of -
equispaced lattice sites. The f/olume in the ﬁmnediate vicinity of a site is called a cell. Each .
molecule of the liquid is considered to be divided into attached segments such that each
segment occupies one cell. The number of celIs is equal to the total number of segments ‘

( the assumption is that all cells are occupied i.e. there are no holes)

The partition function is given by Z = Z jattice Z cei

Where Z lattice refers to the situation where the center of ‘every segment and the
lattice sites coincide and Z cell providés for the contribution to z which aré caused by the
motion of segments about this central position and is assumed independent of composition. |
For a binary mixture containing N; molecules of component 1 and N, molecules of

component 2 the Helmholtz energy of miXing is given by AA = -kT 1n Z tatice N1, N2) / Z.
e (N1, 0) Z patsce (O, Np) -

Where k 1s the Boltzmann’s constant and z is the conﬁgtxfational partiticn function.
The molar excess Gibbs free energy is given by
| gf=af = AA/(m + 1) = RT (x; 1n X; + %2 Inx5) (35)
- Where R is the gas constant, x is the mole fraction and n is the number of :
moles.Following Guggenheim the lattice partition function is given by o
Z 1attice = 2. W (0 ) exp [~~.U0 0)/kT]

Where w is the combinatiorial factor (number of Ways in which the molecules can
be etrranged in space), and U, is the potential energy of the lattice (it closely resembles the o
energy of isothermal vaporization from the liquid to the ideal gas state). Here w émd U,
depend on the molecular configuration of the mixture designated by the varizibie 6 which

are permitted within the constraints of overall stichiometry.

A molecule of component 1 is represented by a set of bonded segments occupylng

1y lattice pomts All segments are of nearly identical size but they differ in extemal contact



area.For exmple in normal pentane the two methyl groups ha_vé a higher contact area than
the two methylene groups, in neo-pentane the central carbon atom has no external contact
area. For a molecule of component 1, the number of external nearest neighbours is given
by zq, where z is the co-ordination number of the lattice and -q; is the parameter .
_proportional to the molecules external surface.. Similarly for a molecule of type 2, the
structural parameters are r, and g, Now attention is focused on the composition of a region
in the immediate 'yicinity of a molecular 1. The local area fraction 62 is the fraction of
external sites around moiecule-l which are occupied by segments of molecule 2. similarly
011, 622 and 0;; are defined.81; + 62, =101 + 0 =1 Tl_le follqwing relation exits between
., gzandr % (r—-q)=r- iTh'e definition of the structural parameters r and q is as follows
1i=Vwi/VysAnd q;i=A wi/ A wsWhere V y; and A y; are the van der walls volume
and surface of a segment of type i and V s and A y; are the van der walls volume and
surface of a standard segment. The choice of standard segment is arbitary e.g. methylene is
the standard segment in a polymethylene chain. The volume and surface of the standard
sphere is given by V s = 4/3 R,sandA s =4 R%,sWe obtain |

| R s = 10.95 x10° cm /mole, V s = 15.17 om® / mole and A s = 2.5 x 10 cm? /
mole.The' derivation of the expression for thé lattice energy u is given by Abrams D. and
* Prausnitz J. M.. (1975)! as also the derivation for the combinatorial factor. The final
" results obtained are for a multicomponent mixtureg® = gF (combinatorial) + gF (residual) |
gf (comb) /RT=3x; In(@i/x ;) +2?2 Z(qi'x; In@:/D)) (36)
and. ' A | E A
¢F (res) /RT =~ X g xIn (5{6; Ty }) | 37
where Tj = exp { - [ui—w;i ] /RT} :
- and the actmty coefficient for component i becomes ,
Inyi= ln(@./x,)+z/2q1ln(G,/@,)+l, 0;i/x 2 (x1)— q,an(G Ti)+qi—q
26 Ty/ 20 Tig)) | o (38)
 wherelj=22 (- q) — (5~ 1) (39)
and where the average area fraction 0 and the average segment fraction & are

defined by
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0= q,x,/Z(qjxj)Q X/ (%) - (40)

A simple derivation based on the two-lxquxd theory for the UNIQUAC model is

given by Maurer **, which avoids the inconsistencies which arise when a lattice one—ﬂuld
theory is used to derive the UNIQUAC equation. The essential step in Maurer‘s derivation
is the adoption of Wilson‘s assumption that local composition can be related to overall

compositions through Boltzmann‘s factors.

For describing the excess properties of alcohols in unassociated active components,
an associated solution theory based on the UNIQUAC equation is déveloped by Nagata I.

and Kawamura Y. ', Nagata I. 16197 etc,

3.2.0 Theoretical considerations for Liquid-Liquid extraction in

packed column |

3.2.1 Holdup of the dispersed phase:

The initial investigations of the hold-up in packed columns are that of Appea'l and

Elgin *. However, no attempt was made to give any theoretical explanation of the curves

obtained.

The following equation was proposed by Gayler and Pratt® based on the theoretical

reasoning This equation correlates hold-up below flooding point with phase flow rates and
a characteristic velocity ¥V, characterxzmg, the packmg and liquid-liquid system emptoyed

No correlation was suggested for the evaluation of 7.

vd

( = Ve Y) where 41

Vd=dispersed phase superfacial velocity.
Ve=continuous phase superfacial velocity

Y=fractional free surface area of column used by continuous phase

V. =characteristic velocity
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Equation (42) was obtained by the same investigators'®*'"**

obtained as the slope of the straight line plot of
X
¥ v, | Vs. X(1-X
[ ".+(1 XJ } .(' )

. i}"d +(*1~:}?)I’:} "*"8 VOX(I-X) (42)

Gayler and Pratt 2 have'proposbed the following correlation for 43(a) the estimation

of the ‘characteristic velocityﬂ

05 £ \06 0.4 i ‘
KM%:C[APYj 20| (an ( E)am-m-M@)
y #oma ) \B,) \spr) \ad ). |

where,
¥ =interfacial tension,
M. i, =Viscosi of continuous phase and di'spersed phase réspeétively.
¢=fractional voidage of column =~ - | o
a,=surface area of packing pef unit vblurﬁe

.dr=tower diameéter,

where V, can be .

The value of ¥ o can also be obtained by Laaddha’s correlation'®® giver by .

following equation 43 (b):.
C

eVg=
P s
g &y

43(b)

H
2

where ,. :

C has tﬁe value 0f 4.9 and 6 for Raschig ring and Berl saddles, respectivély.f .
a,=surface area of pécking per unit volume i
pc=Density of continuous phase :

pd= Densify of dispersed phase

& =fractional voidage of column

A p =pc- pd=Differewnce of Density of continuous phase and Density of dispersed |

phase
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N - . w%ig
tried to replace the characteristic velocity&gs@g termgs> 4
SN

Sitaramayya and Laddha '*!

of the packing characteristic, and physical property of the system. Equations for Ve
0

which are proposed by Laddha showed 10.97% average deviation. Equation 44 (a) is then a

generalized

correlation for the hold-up below flooding velocity.

2 0.5
[V" + % “C 9 ”C} - 0.683 x(1- x) M@

V. 1- X ge’ A,

where,

X=fractional hold up of dispersed phase

pc=Density of continuous phase

g=gravitational constant.

Equation 44 (b) was proposed by Johnson and Laverng ' where A’, B’ and n are

constants.
" 3
X o4 Le X _| 4 p——44®)
Vd 1.5 le.S 1- X

For very high density difference systems like mercury and water, Watson and

McNeese ''® attempted to correlate the hold-up of dispersed phase by equation (45) in

terms of a ‘slip velocity’.

4 4
vV 14 - D—— 0 Rt
Wl +i"% *)

For Raschig rings and cylindrical packings a reliable correlation for prediction of

slip velocitir is available.

Burdett, et at '® deviced a new technique for measurement of static and dynamic
hold-up. But the restriction of similar refractive index of liquids and packing is so stringent

that the usefulness of the method for general purpose is doubtful.

& 3
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~ 3.2.2 Holdup of the dispersed phase at flooding.

19 suggested equation (46) for estimation of hold-up at flooding.

y a 0.25
X‘-_-Cd[ d";““} —-(46)
g ¢ A g

Gayler and Pratt

P

Venkatraman and I.,addllx«zl %0 modified the above equation by changing the exponent
to 0.11 and the proportionality constant by 0.753 instead of 0.25 and 0.62, respectively as
suggested by Gayler and Pratt. The equation suggested by Venkatraman and Laddha is as
follows: ‘ o o

where

Cd=constant of dispersed phase.

Vd=dispersed phase superfacial velocity

a,=surface area of packing per unit volume
pd= Density of dispersed phase

£ =fractional voidage of column

A p =pc- pd=Difference of Density of continuous phaée and Density of dispersed

phase
g=gravitational constant.
’ 0.11 |
X, =0.753 (Vd ‘jr] [1’4} —(47)
g € A,

The average deviation shown is 15.7% and the maximum deviation is + 36%.

In a subsequent modification Chandra Shekharan and -Laddha '* obtained the

equation (48) where C and n are constants. o
X =(-x%=c |[Vala]|pa]||l — (48)
1 ! z & 5 A ; |

The values of these constants for various types and size of packing are also reported

by the authors.

~
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In all the above equations an attempt was made to replace V o or characteristic -

'velocﬁy term by the variables, characterizing packing and the system properties.

Alsb, these equations are obtained under the conditions of no mass transfer between
the contacted phases. This transfer of solute between phases has the strong influence on
hold-up and flooding. This happens due to increase in local turbulence and changes in -

surface tension values.

3.2.3 Holdup of the dlspersed phase under solute transfer

condntmns*

Gayler and Pratt 105 correlated their data with equation (42). Degaleesan and
Laddha*’obtained the following transfer from continuous to dispersed phase (c-d), and for
solute transfer from dispersed phase to the continuous phase (d-c) Equations (49) and 50)
give the estimation of hold-up of the dispersed phase,

— 2 0.5

L’g,+.£_][.’ic_‘;_r_£z.] =0.637 X (1- X) “49)
|V, 1-X]| ge” Ap _—

_V ¥ V2 05

_1+.____][..s..fjf.£a} =0.82X(1-X) : - (50)
Vv, 1-X || g&* Ap | |

A p =pc- pd=Differewnce of Density of continuous phase and Density of dispersed
phase '

3.2.4 Correlations for maximum through put :

In the succeeding paragraphs, the correlations available for the flooding velocities

of dispersed and continuous phases are discussed.

Blénding and Elgin'"presented their resultsr as the plot of square root of continuoﬁs

phase flow rates against that of the dispersed phase.
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Equation (51) was proposed by Breckenfeld and Wilke 19 in terms of gacking

characteristic and physical properties (especially the surface tension) of the system. Data of

Elgin and of Wilke show 5% average deviation and maximum deviation of about 20%.

V™ we®> (@) 3980 | 1)
Ape? - (1 +I% )2 :

where,

Vc-weloéity of continﬁous phase.

a,=surface area of packing per unit volume "

L=ratio of dispersed phase to continuous phase velocity.

4, =viscosity of continuous phase

Row, Koffolt and Wiﬁuow 19 represented their data in the form of flooding curves
graphically. ' ‘

Bailard and Piret ''’defined the flooding in more precise way and presented an

entirely different correlation (52) when dispersed phase does not wet the packing. A

separate correlation (not obtained) would be neceséary if dispersed phase preferentially} .

wets packing. - . v
) 05 ' :
osdE7 N o | f6r6u)"_ 6 (7 Qé(fﬂjm )
. (V)as ( P)o; (Eo )ans(ﬂw)aos ( a,)o.és 6“8 CT Vf P
where ‘ | ' .
o=surface tension

Vs=slip velocity.
p =density -

Equation (53) is 2 more simple one to handle than equation (52), but is similar to it.
Extensive variation in column sixe (up to 150 mm dia) and packing size and type was
done. Dell and Pratt *> who proposed the correlation also took into account the data of
previous investigators. Values of constant C, are available for different packing types and

sizes.



P 025 V 0.5 V P ~0.25 :
1+0.835 (-Pi} (VdJ =C, H gE‘z J(A;)}eozs} (53)

Crawford and Wilke * first time used large packings and columns [ (12.5 mm to
37.5 mm) carbon Raschig rings and 300 mm dia column)] under the specified conditions,
the ﬂooding data were correlated by equations (54). The above correlations aré similar to
those proposed by Breckenfeld and Wilke'®. Comparison of the two correlations shows

. that for geometrically similar systems similar conditions of hydrodynamics prevails.

' 147 000 133 2 (i3] 05
(VIS + V05 = Sar k| for p, (I”c +V, ) <50 and

\ pe at pc atpc '
4 1.5 0.5 05
198000 VooV,
(Vco.s + Vdo.s)z - — A;s EUZ for p; LC__L"__Y_ > 50 - (54
\ oo (at) ¥ a,p.

Treybal > modified the equation of Hoffing and Lockhart *® and expressed Ve as a _

function of packing characteristic and pf_nysical properties of the systems [equation (55)].
Constant C of the equation can be evaluated by the equations given by Treybal. These

equations give average deviations of nearly 10% in flooding velocities.

CA oszs(at/ 012)—0-838 ' ‘» (55)

0.625
6
d0.275 dO.l 00.125 00.125 us
y4 pap ¥4 6.

Vo=

o=surface tension
ocr=critical surface tension

& =fractional voidage of column

Gayler and Pratt '% proposed graphical correlations for ﬂoodmg velocities in the
form of Y against Z plots where

7 —§
72df)Jand Z = 25

1 pAT 1

Vt=terminal velocity.

A p =Difference of Density
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y =interfacial tension,

In the above equétion, $=0.38 d,-0.92 (y/ Apg)®>.

For the calculation of limiting flow rate they have selected transition pbint (below

which hold — up varies linearly with dispersed phase superfacial velocity) as the criterion

of flooding.

Sakiadis and Johnson'*modified the correlation proposed by Dell and Pratt'!!
[equation (53)] by adding a viscosity term to it and modified the constant C2 by accounting
for packing characteristic, fractional voids' and surface tension effect. Equation (56) was
given as the, flooding correlation, where constant C’p can be evaluated by empirical
equations.(56-a) and (56-b)

025 p 05 C.a -025 . |
1+0.835 [_@_J (J—) =C ( < J L J 2,025 2.0.25 —(56)
Pc Vc ; ge Ap o

0.87 %008

P 0083 o016
a 7

C Jor Raschig rz’ngs..(56-a)

1 .2 80.78

P 0035 1/6
a 7

And C Jor Berlsaddles (56-b)

It is claimed that the relation, that is, equation (56), is useful even for gas-liquid-

systems.

Venkatraman and Laddhalsobased on Dell and Pratt' analysis, applied dimensional |

analysis to this problem and obtained equation (57) where constants C and n are reported
for different packing types. Average deviations in the range of 3% to 8% are claimed for
different packings. It seems that introduction of the modified Weber group (agy)(pcVe?)

converges the data of various investigators. -

P 0.25 V 05 . V 2 4 025 P 0.25 37 .
1+0.835| 24| |22 Za Lo Ze |l = A 57
{ (PJ (VH " Mges] (AH [Mﬁ] 0

Numunaitis, et al '** suggested that the group (a/e) which appears in the Crowford

and Wilke correlation is not the representative of the capacities of the packings, other than



Raschig rings. They replaced this group by‘ a packing. factor which empiricakky accounts

for the high capacity of the intelox saddles and Pall nngs These packing factors are glven ,

by followmg equations.

F,=C, (a, /)’And F, =C, (a, | &)

‘ Where Ci and Cz are spemﬁed for different. types of packmgs In terms of these

: packmg factors Numunams Ct al suggested a grapmcal correlation using

. °~“+V ) pc
a, U,

02 .
as ordmate and( f; £ } (Fy& 2y1s (P ) as abscissa.

P

* Watson and McNeese ' studied the hydrodynamics of counter-current flow of
high density difference fluids such as mercury and water. They suggested a correlation
based on the assumption of constant superfacial slip velocity. But this correlation does not
apply over a wide i'ange of ﬂuid properties. In a later developmentthﬁey cov’efed the wide
- range of fluid properties (but covering only Raschig rings as thé ‘packing material).
Equation (58) represents the correlatxon, as suggested by the authors |

. [VGS +{0. 844A 0298 4, - 0.084 —0078} VCOVS] ‘

‘ —(58)
- A 0.269 d‘ 0.494. _0.5 :

=238 o P oi.’os4
(4

. where dp=packing size., other symbolé'havé conventional mea:r,iing already cited.

‘. 3.2.5 Mass transfer studies in packed column:-

For the estﬁnation of height of the packed column required for the desired

separation, an understanding of the mechanisms of mass transfer is essential. Many

attempts have been made to understand the mechanism of mass transfer. This also helps in

predicting the mass transfer rates accurately. Among many factors whiéh govern the rate of -

‘mass transfer are,. haydrodyﬁamics of the phases in contact, interfacial area, packing
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characteristic and physicoch‘emical properties of the system. The equations (59-a) and (59-

b) given below take into account these factors.

| Gayler and Pratt 17 have proposed the equation (59-a) and (59-b) in which part (a)

relates the area based dispersed phase mass transfer coefficient in terms of a characteristic

Reynolds number R,

Phase velocities, fractional viodage and hold up of the dispersed phase. Part (b) of

the equation (59) is a similar correlation for the continuous phase mass transfer coefficient

where m + 0.45 - 0.2 d,

o 15 _ '
Koo X' G 4x107 R, [1 o LX) ] (99
v, v, (1-X)
1+ m . ‘ 1.5 .
Kaoe X 7" 53107 R, % x [14-TeX) | oemee (59 b)
Va S |
where,

R_,=characteristic Reynold number based on dispersed phase-ﬂo‘w rate -
R = characteristic 'Reynold number based on continuoﬁs phase flow rate -
Kd=Individual mass transfer coefficient based on dispersed phase flow rate.
Kc= Individual mass transfer coefficient continuous phase

& =fractional voidage of column
X=fractional hold up

Laddha and Smith '*® 'expressed their results, on maes transfer studies in terms of

the height of transfer units. They found that (HTU), is constant with the ﬂow rates of the

phases, in the range of flow rates covered by them.

Similar investigations were made by Gayler and ‘Pratt '®

graphical correlations showing influence of flow velocities ‘on 't‘he‘ mass transfer

coefficients.

wheb presented the -
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Equation (60) was developed by Simth and Beckman '** which correlated height of

transfer units of continuous phase to that of dispersed phase.

HTU) +C; (Vo / Vo) S (60)
(HTU).- height of transfer units of continuous phase

Krishnan, et al ’20, extended the theoretical analysis of Handlos and Baron m’ '

Kroning and Brink '?? and proposed the equations (61) and (62). These equations are for

individual phase volumetric mass transfer coefficient in terms of packing characteristics,

hold up of the dispersed phase phase follow rates and physical properties (Schmidt’s

number) of the systems. The correlations proposed by Krishnan, et al * show 15% average

deviations. The values of constant a are reported.

a . 0.5 Vo‘s N q -1
Kea=aX(Q-X)| 2P| |147005— |01 4| oot A I5))
3.
_ £gA, 4 N, A, g

) -05
Kda=d X(l-—X)(q/g’g)'“(&) .(___Z_}-os
Ag

N>

- 1l

' 05 ) \OS5
1+700{V; ] | 1+(’—]Y£9-4) ~| @
7 Sce

where,

o' =air

N, sed

see

continuous phase e
Kc a=thass transfer coefficient based on continuous phase
Kd a=mass transfer coefficient based on dispersed phase

y =interfacial tension,

€ = Schmidt numbér based on dispersed phase/ Schmidt number based on
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The estimation of overall mass transfer coefficient was first undertaken by Gayler

and Pratt ', They compared the value of the overall mass transfer coefficients obtained

experimentally with the values estimated from the calculation of individual phase mass
transfer coefficient and adding fhem in the usual manner, to estimate the overall
coefficient. Equation (59) was used for calculating individual phase mass transfer
coefﬁciehts. They found that experimental values of the overall mass transfer coefficients
are 50% to 200% greater than those predicted from individual coefficients. Since the

deviations were large, no correlations for overall coefficients were suggested.

Laddha, et al ' proposed, the equation (63) for the prediction of volumetric overall
mass transfer coefficient based on the dispersed phase. They also tested the data of Leibson
and Becjkman *°, which showed good agreement with equation (63).

-85
Kod a=0.014 X (1-X) [ a; ) (fs—} 05 o
&g A,
7 -0.5 ﬂc oud ' (63)
A, g) (u, 8)(mu, + 4y

Kod a=Overall mass transfer coefficient based on dispersed phase

Koc a=Overall mass transfer coefficient based on continuous phase
- pd= Density based on dispersed phase

pc= Density based on continuous phase .

A p=Density difference

M, =Viscocity based on dispersed phase

#. =Viscocity based on continuous phase

124 obtained the area based overall mass transfer

' Gopalfao and Ramémurty
coefficient, Koc [equation(24)] in terms of dispersed phase flow rate and characteristic
droplet diameter dg,. They found that Koc was independent of the continuous phase flow

rates.

Kbc — n ' ‘b
[d&_VOJ—C[Vd] | (§4)



Koc = Individual mass transfer coefficient based on continuous phase

des=characteristic droplet diameter.

3.2.6 Estimation of interfacial area in packed columns:
Pratt, et al ' studied the droplet behaviour and found out that for the packings
above critical size, the interfacial area per unit volume a is given by: .

6 ¢ X
T d

LvS

(65)
Where d,, is given by :
0.5
d,? A
8w 2, 8 (3[14,700 (_p_’_c__f_‘_c_):l
4 _ V.
In a later modification of their own correlation Gayler and Pratt

126

suggested the following correlation.
6 X 6V ,
a = = .

7 7 0y (66)
s cs 0 3
Where dis given by : |
d.?A ‘ A 30475
fu 20 & "g=1.42[ p? }
Y H. 8 )

and
' \ 0.5 y

d, =097 } (”XJ
A, g ) vV,

Where dys0 is independent of column diameter and packing size. The characteristic

&

velocity Vo can be obtained from the hold-up as discussed earlier.

127

In an entirely novel approach Puranik and Sharma applied the theory of

‘extraction with fast-Pseudo-first order reaction’ to this problem. They found out that when
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= > 10 . where,

Pk
D=Diffusivity of solute.

K=pseudo first order reaction rate.constant.

E=solubility of solute in the phase in which it is transfered

KL.=mass transfer coefficient in the phase in which reaction is taking plai:é.

then the specific rate of extraction becomes independent of hydrodynamic factors.

R,
a =
 (EXDK )°?

67)

* Where (R a) is the specific rate of extraction.
D=Diffusivity of solute.
~ K=pseudo first order reaction rate.constant.

E=solubility of solute in the phase_‘in which it is transfered. _

In a recent developmént 128 it was shown that with kinetics of coalescence and
breakage of droplets, it is possible to calculate the interfacial area of contact. Billet and
mackowiak '?° studied the new types of columns called packed tube columns. Here the
diameter of the packings is slightly less than the diameter of the column itself. Thus, the
packings are regularly stacked in the tube column. Main advantage with such type of
columns is that, systems with extreme differences of physical properties can successfully
be separated, again throughput from such columns are high cdmpared to packed column.
- Regularly stacked packing reduce axial mixing and thus higher efficiencies could be
obtained. | |

Bi}let and Mackowiak'*® proposed following correlations for the flooding .
velocities. , |

F* cp = 0.402 ' (X)%? - (68)

Where flooding factor is given by



' . 0.1 303
Ffep=Ve| Lo |[ 3 ]o's x [Vd Z V‘) (,uc ]
: A » )4 g? vy Hy

and flow parameter X is given by

()

For the hold up of the dispersed phase they propbsed following correlation **

X = (_gl} We 0.5 (69)

g
Where we is the modified Weber number given by
We = ( Pq de } 0.5

A, g7
where,
pd= Density based on dispersed phase
A p=Density difference ’
Vd=Superfacial velocity of dispersed phase.
g=gravitational constant

y =interfacial tension,

The performance of Sulger static mixers as packings has been investigated recently.
" . The graphical correlations are proposed in terms of (HTU) against total column
capacity. Throughput and separation capacity of the packings are claimed to be well so as

to use them in commercial scale separations.

For a packing size greater than the critical size of packing, the characteristic drop
106

4

diameter below the loading point is given by the following equation: -

’ A 0.5 i :
dp=0.92 | -Z g ... (70)
Apg ud

If the droplets are assumed to be of uniform size and spherical in shape, then the

value of ‘a’ would be given by the following equation:~



_6sx (T
adp _ (71)

* Equations (70) and (71) give
‘ 6Ud

a= - (12)

1
a 2
0.92f ——— 0
[AP-g]U, .

Where dp = droplet size. cms.
Uo= characteristié droplet velocity, cxh/sec. '
X =.ﬁ'actional holdup of the dispersed phase.
e = fractional voidage of packing.
o = interfacial tension of the system, dyno/ cm?
Ap=(pc-paorpd-pc | ,
= density difference between the two phases, gm/cm®.

a= interfacial area per unit volume of contactor,

3.2.‘7’ Determination of( N.T.U.)o.d. and (N.T.U.)o,c; :
It is well known that N.T.U.)oc. and N.T.U.)o 4. could be calculated with the help

of equations-(73) and (74) if the slope of the equilibrium line is not a constant. 4%13!
(N.T.U.)o.c. =[dHp (73)
Hg -Ha
(N.T.U.)o.d. . =JdHB . (74)
Hg;-H’B*

Where (N.-T.U)oc and ( N.T.U)o.d. . = Number of,transfer units based on

continuous and dispersed phases respectively.

Hp = Concentration of solute in the extract phase expressed as gm. of solute per
gm. of solvent in the extract phase.
H’g = Concentration of solute in raffinate phase, expressed as gm. of soluté per gm.

- of non-solute in the raffinate phase.



- H*gand H’s* = equations-(73) and (74) could be evaluated graphically. Knowing.
the total effectwe hezght of packing, the overall helght of transfer unit could also be.~

evaluated.

The values of N.T.U.o4. and N.T.U.oc. obtained graphically from the values of

N.T.U.qc obtained.

328 Determmatlon of HTUoc and HTUod & HTUc and HTUd

Overall Height of Transfer unit is determmed by following equations:

HTUoc=118.5/NTUoc | 75(a)
where
HTUoc=Z/NTUoc , '
HTUod=118.5/NTUod 75(b)

" . where ,
HTUod=Z/NTUod

Over all height of transfer unit continuous phase side (HTUoc) and helght of
transfer unit continuous side (HTUc) are related by the following equations.

HTU)oc=(HTU)c+(H'l"U)d(dHc/de)avg.Gc/Gd 75©

where HTU)oc= Over all height of transfer unit continuous side, cm

HTU)c= height of transfer unit continuous sidé, cxﬁ

HTU)d= height of transfer unit dispersed side, cm

Gce=mass flow rate of continuous phase., gm/cm?. min

Gd=mass flow rate of dispersed phase., gm/cm®, min

(dHc/dHD) = average slope of equilibrium curve

Overall height of transfer unit disersed side (HTU)od and height of transfer unit
continuous side (HTU)d are related by following equation:- ' ”

HTU)od=(HTU)d+HTU)c(dH/dHc)ave.. Gd/Ge 75(d)

where HTU)od= Over all height of transfer unit dispersed side, cm
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HTU)d= height of transfer unit dispersed side, cm

Remaining symbols have the same meaning as in equation -75(c} B

3.2.9 Determination of Koc.a and »Kod.a‘ and individual mass

transfer coefficients (Kdd, Koc):

. Over all Mass transfer coefficient is determined by following equations. '*!

Koc.a=Vcavg/HTUoc ' 76(a)
where
Koc.a = (Vcavg*Z)/ (NTUoc)

' Koo = overall mass transfer coefficient based on continuous phase, ’

Kod.a =Vdavg/HTUod ' 76(b).
where '

Kod.a =(Vdavg*Z)/ (NTUod)

Kod .a = overall volumetric mass transfer coefficient based on dispersed

phase,

Individual Mass transfer coefficient is determined by following equations:
Koc =(Koc.a)/ a . o 76(c)
where |

* Koc.~[Veavg*Z/(NTUoc)] / &

Koc.=Individual Mass transfer coefficient based on continuous phase,

Kod =(Kod.a)/ a _ 76(d)
where ’
Kod.=[Vdavg*Z/(N TUod)]/ a

 Kod.=Individual Mass transfer coefficient based on dispersed phase
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