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CHAPTER-3

THEORETICAL CONSIDERATIONS

3.0.0 VARIOUS ASPECTS CONSIDERED UNDER HEADING 

“THEORETICAL CONSIDERATIONS”

Theoretical considerations for quaternary phase equilibrium data which can be 

converted to equivalent Ternary phase equilibrium data using concept of dual solvent- 

( solvent + anti solvent) - have been outlined with respect to following:-

(i) . Mutual solubility data and Tie - line data inclusive of plait point.

(ii) . Distribution curves diagrams and selectivity diagrams.

(iii) . Tie line data correlations.

(iv) . Quaternary tie line data correlations based concept of equivalent ternary 

phase equilibrium data.

(v) . Unifac model, uniquac model and NRTL equations.

Theoretical considerations for liquid - liquid extraction in a packed column have 

been also outlined with respect to following -

(i) . Hold up of dispersed phase

(ii) . % aromatics extracted and % purity of extract.
. ; ___ l

(iii) . Mass transfer aspects like NTU, HTU, Kodxa and Kocxa inclusive of

determing these values.

All relevant necessary equations have been outlined in this chapter and these 

equations have been used subsequently while preparing data processing tables.
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3.1.0 Theoretical considerations for Phase equilibrium data: 

3.1.1Ternary phase liquid equilibrium:
Representation of ternary phase equilibrium data, estimation of plait point and 

construction ofDistributuion diagramshave been outlined in following paragraphs.

(i) Distribution curves:

131The equilibrium data can also be represented by a distribution curve obtained by 

plotting the equilibrium composition of the solute in the solvent-rich phase against the 

equilibrium composition of the solute in the diluents-rich phase, as shown in Fig.l The 

slope of the equilibrium distribution curve thus obtained gives the value of the distribution 

coefficient, m, at any location on the curve.

(ii) Other method of Representing Equilibrium Data:

The other method of representing equilibrium data is by Right angle Triangular
131Diagram as shown in Fig. 2

Fractions of solvent in both phases are plotted against the concentration of solute in 

both phases, on solvent- free basis. In the method shown in Fig. 1 concentration of solute 

in the conjugate phases at equilibrium is plotted on solute-free parameters: this method is 

often used for systems in which the solvent and diluents are completely immiscible.

i t ;
(iii) Estimation of plait point

131Plait point in the ternary systems indicates the maximum concentration of the 

solute in the raffinate phases that can possibly be handled in any extraction system . 

Various methods are available for the estimation of this plait point. The conjugate curve 

method Fig. 3 is used for the determination of the plait point composition.



Fig...l The slope of the equilibrium distribution curve

Fig. 2 Right angle Triangular Diagram
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Fig. 3 The determination of the plait point composition

3.1.2 Various methods for the Tie line Equilibrium data 

correlation:

Hie following are the four important methods available in the literature for 

correlating Tie line data:

1) Hand’s method

2) Campbell‘s method

3) Bachman’s method

4) Othmer and Tobias method

The relavant four correlations interms of mathematical equations are as under:
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(i) Hand’s correlation:
Hand’s method132 uses a double log arithmetic co-ordinate plot 

The data obtained could be correlated satisfactory by this method. Thus 

an equation of type may be given by: - 

[ (Xxe) / (XSE + Xwe) ] = (K) [ Xar / Xa-r] " (1)
Where,

Xae = wt.frac. of aromatic in Extract.

Xse - wt.frac. of solvent in Extract phase.

Xwe - wtffac. of water in Extract phase.

Xar = wtfrac. of aromatic in raffinate.

Xa-r = wt.frac. of aliphatic in raffinate.

K,n = Constants in Hand’s correlation.

Thus if one plots a graph of log XAr / Xa-r vs. log XAe/Xse + Xwe 

is expected to result in a straight line having intercept (log K) and slope (n).

(ii) CampbeII‘s correlation:
Campbell has shown that a straight-line correlation results, when the concentrations 

of the solute in the conjugate phases are plotted on log-scale.
Campbell133 has given the following equation 

C,=kc(c2)nc (2)

Where,

Ci = Weight fraction of solute in extract.

C2 = Weight fraction of solute in raffinate.

Kc’ nc = Constants in Campbell’s correlation.

* * *

(iii) Bachman’s correlation:

Bachman’s method 134 indicates that an equation of the following form is quite 

representative: -

ai=nB(ai/b2) + kB) (3)

Where,



ai = Weight fraction of solvent in extract. 

b2 = Weight fraction of non-solute in raffinate, 

ks • "b = Constants in Batechman’s correlation.

(iv)Othmer and Tobias correlation:
Othmer and Tobias135 equation as under:

(l-al)/a,=ko.T.[((l-b2)/b2)]no.T. Where, (4)

ai = Weight fraction of solvent in extract. 

b2 = Weight fraction of non-solute in raffinate.

• ko.T, noT. = Constants in Othmer and Tobias correlation. •

3.1.3Quaternary Tie line data correlation base on Ternary data 

Correlation:

(i) Moulton and Chang’s approach :
Moulton and Chang13 have suggested a method of predicting the quaternary 

mutual solubility data from the basic ternary mutual solubility data. Quaternary system 

consisted of Ethyl alcohol -benzene-iso-valerate -water and corresponding two basic 

ternaries were-Ethyl alcohol -benzene-water andc Ethyl alcohol -Ethyl isovalerate-water 

The quaternary system Ethyl alcohol - benzene- iso- valerate - water has been studied on 

the basis of water in ethyl alcohol free ternary, equiratio ternary composition for the same 

water composition are found from die mutual solubility curves of two basic ternaries i.e. 

Ethyl- alcohol- benzene- water and Ethyl alcohol - Ethyl isovalerate - water, the 

difference between the ethyl alcohol and water composition.
i 4

It is than divided in the ratio of Benzene to ethyl isovalerate in original quaternary 

composition and is added to .or subtracted from the corresponding equiratio values of Ethyl 

alcohol and water respectively. Remaining is then divided in benzene to Ethyl isovalerate 

ratio which completes the predicted quaternary composition. The predicted values are in 

good agreement with the original quaternary data.



(ii) Prince’s Approach:
Prince136has given a generalized correlation for the double binary system i.e. 

system having pairs of particularly miscible liquids in the following formal.

XAD/ XDD = [ XAH/ (klXBH +k2 XCH ) ]nl—1(nl ~n2) (5)

For the system A,B,C,D, where B-D and C-D are partially miscible pairs of 

liquids.H denotes the d poor phase and m the ratio

m= XCH / [XCH + XBH]

where XCH is the wt. fraction of C in H phase.m and n2 are the slopes of the basic 

ternaries in hand’s plot. ki and k2 are intercept for the same in the hand’s plot.

(iii) Hand’s approach applied to quaternary data-L-L extraction of 

aromatics:
According to Hand’s correlation137, for the temary-benzene-Dmso-Water one can 

writs the following correlation:-

[ (XDE) / (XBE ) ] = (K,) [XDr / Xwr ]

Where,

Xde = wt.frac. Of Dmf/ Dmso(solute) in Extract, phase.

Xbe = wt.frac. Of Benzene(solvent) in Extract phase.

.Xdr = wt.frac. Of DmfiDmso(solute) in raffinate, phase.

Xwr = wtfrac. Of water (non solute) in raffinate, phase.

Superimposing second temary-Hexane- Dmf/Dmso-water, one can also write an 

equation similar to equation (1) follows:-
[ (XDE) / (X*BE) ] = (Ki) [XDR / Xwr ]nl----- (3 *2)

Where X*be = XHE / (Ki/K2)+Xbe

Thus if one plots a graph of

An=(nl+-n2)andlogXDE/(KiXBE+K.2XHE) Vs. nllog(XDR/XBE)-



Where nl=(ni-MR. A n) ni and n2 are the values of constants in the case of two 

basic ternaries namely-Benzene-Dmso-Water and Hexane-Dmso-water. Further

Mr =( Xhr / Xbr+ Xhr )— (3.4) and An=nj-n2 ( since in the present case water acts 

as an anti-solvent,-ve sign has been used for n2)

m=M/100=Wt.ester/(Wt ester+Wt.Benzene)

Thus, a plot of (nr Mr . A n) log XDR / Xwr Vs. log XDe /(Kl XBe +K2 Xhe> is 

expected to be a straight line.

(iv)Modified Hand’s equation applied to quaternary data:

Though the systems under consideration are quaternary in nature, if one considers a 

solvent as a dual solvent consisting of solvent + antisolvent, then all the systems under 

consideration can be reduced to ternary system. Data can be represented in terms Xbe, Xhe, 

and Xse for Extract phase and Xbr, Xhr and X$R for raffinate phase for a fixed 

concentration of antisolvent.

It has been observed that the values of equilibrium compositions in Extract phase 

and raffinate phase could be correlated in file form of an equation of type given by

[(XxE)/(XsE+XwE)]=(K)[XAR/XA>R]n (7)

Where,

Xae = wt.frac. of aromatic in Extract.
i i i

Xse = wtfrac. of solvent in Extract phase.

Xwe = wtfrac. of water in Extract phase.

Xar = wtfrac. of aromatic in raffinate.

Xa>r = wt.fiac. of aliphatic in raffinate.

Thus if one plots a graph of

log [XAR / XA.R] vs. log [ (XAE)/(Xse + Xwe)]



is expected to result in a straight line having intercept (logK) and slope (n).

Thus quaternary L-L equilibrium data has been converted to pseudo ternary 

equilibrium data by treating solvent as dual solvent being Dmf/Dmso.+anti solvent water.

3.1.4 UNIFAC (UNIFAC FUNCTIONAL GROUP ACTIVITY 

COEFFICIENT) MODEL:

This is a group contribution method for prediction of activity coefficient in non

electrolyte liquid mixtures. The basic idea is that whereas there are thousands of chemical 

compounds of interest in chemical technology, the number of functional groups which 

consistute these compounds is much smaller. Therefore if we assume that a physical 

property of a fluid is the sum of contribution made by the molecule's functional groups, we 

obtain a possible technique for correlating the properties of a very large number of 

fluids.In the UNIFAC method, originally presented by Fredenslund A. and Prausnitz J.M. 
(1975) 138the combinatorial part of the UNIQUAC model i.e. eq (8) is used directly

N
In y,c = In (0\ / x,-) + z/2* q; In (0j / 0,) +1, - 0; / xj £ (Xj lj)---------------------- (8)

j = l

Parameters r* and q* are calculated as the sum of the group volume and area 
parameters Ric and Qk{13)6ri = £ Ok (,)Rk and qi = £t>kWQk

Where Ok w is the number of groups of type k in molecule i.

The residual part of the UNIQUAC equation is replaced by the solution-of-groups 

concept, and is given by eq (9)
In Y* = £ok w [ In Tk - In Fk‘]-----------(9) where Fk is the group residual

activity coefficient and rfl is the residual activity coefficient of group k in a reference 

solution containing only molecules of type i. The term TkW is necessary to attain the 

normalization that activity coefficient y becomes unity as Xi -- 1. The activity coefficient 

for group k in molecule I depends on the molecule I in which k is situated..

The group activity coefficient Tk is found from eq (10)



N N N

lnrk=Qk[l-ln( £ GmTU)-! (9ra Tkm / £ { 0n })]—(10)

m = 1 m = 1 n=l The above also holds for In
Tkw in the above eq (10) 0m is the area fraction of group

m, and the sums are over all different groups and is given by

Gm = Qm Xm / £(Qm Xm)-----Where Xm is the mole fraction of groups m in the

mixture. Group interaction parameter is given by

Tmn = exp - [(Um„ - Unn) / RT] = exp - (amn / D--------------------(3.10)

where Umn is the measure of the energy interaction between groups m and n. Also 

amn and anm (two parameters per binary mixture of groups) are the parameters which must 

be evaluated from experimental phase equilibrium data. The functional groups considered 
and the R and Q values are given by Frendslund A. and Prausnitz J. M. 138 . A 

comprehensive list of the interactions parameters are given by prausnitz et. Al.139 .The 

interaction parameters between the groups can be done by regression of either VLE or LLE 

data. The details of which are given in chapter 2 on literature surveys.

,1403.1.5 NRTL Method
The activity coefficient equations are as follows

In 7i= X2 X21 G21 + %n G12

X, + X2 G21 (X2 + Xj G,2 f .. 11. (i)

In 72=XVX12 G,2 2 + X12 G12

X2 + Xi G12

-\

(X,+X2G21r .11. (ii)

Where Gi2 = exp (-ocl2?ii2) ...12(i)

G21 = exp (-oci2X2i) — 12(ii)

The infinite dilution activity coefficient are related to the constants as follows 

lnyr=Xi2 + Xi2Gi2 ...13(i)

ln72°° = X12+ X21G21 — 13(H)



Renon - and Prausnits11 indicate that for non-electrolyte organic and non 

electrolyte mixtures oc12 = 0.3 and for non electrolyte organic water system oci2 = 0.3, for 

system under consideration have the value of oc!2 = 0.30.

3.1.6 THE NONRANDOM TWO-LIQUID EQUATION (NRTL):
The basic idea used in the derivations of the Wilson4 s equation is also used by 

Renon141 in his derivation of the NRTL equation: however, Renon's equation unlike 

Wilson's is applicable to partially miscible as well ass completely miscible systems, which 

is a major improvement.

To define the local composition, Scoott's 142 two liquid theory of binary mixtures is 

used. If attention is focused on a central molecules of type 1. the probability of finding a 

molecule of type 2, relative to finding a molecule of type 1 about this central molecule is 

expressed in terms of the overall mole fractions and the Boltzmann factors

x2i = x2 exp (-ai2 g2i/ RT)--------------------(14)

xn xi exp (-al2 gn/ RT)--------------------------- (15)

And the probability of finding a molecule of type 1 about a central molecule of type 

2 is given by

xJ2 = xi exp (-ai2 gi2/ RT)------------------------------------------- (16)

x2i = x2 exp (-ai2 g22/ RT)------------------------------------------ (17)

Where ai2 is a constant characteristic of the nonrandom ness of the mixture 

Xy is the local mole fraction of molecule I in the immediate neighbourhood of 

molecule j ‘ ‘

Gy is the energy of interaction between an i-j pair of molecules 

The local mole fractions are related by

x2i + x n = 1------------------------------------------------------ ( 18)

xi2 + x22 = l-------------------------------------------- --------- (19)

Comparison of the assumptions in this theory with that of the quasichemical theory 

shows that ai2 is the substitute of 1/z where z is the lattice coordination number details of
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which are given by Renon H. and Prausnitz J.M.11. Since z is in the order of 6 to 12, an is 

of the order of 0.1 to 0.3 (independent of temperature)

From eq (16) and (18), we obtain for the local mole fraction . 

x2i = x2 exp (-an (g2i - gn )/ RT) / xi + x2 exp (-an (g2t — gn )/ RT) --(20) and 

similarly form eq (3.24) and (3.26)

X]2 = xi exp (-ai2 (gi2 - g22)/ RT) / xj+x2exp(-ai2(gi2-g22)/RT)-(21)
7

The above eq (20) and (21) are introduced into the two liquid theory of scott which 

assumes that there are two types- of cells in a binary mixtures one for molecule 1 and one 

for molecule 2 For cells containing molecules 1 at their center the residual gibbs energy 

(i.e. compared with ideal gas at the same pressure, temperature and composition) is the 

sum of all the residual gibbs energies for two body interactions experienced by the centre 

molecule 1 and is given by
g(1) = xngii+x2ig2i----------------------------------------------(22)

If we consider pure liquid 1, x n = 1 and x 2i - 0, in this case the residual gibbs 

energy is given by
g^ \>ure = g 11------------------------------------------------- (23)

Similarly for a cell containing molecule 2 at its center

g ® = x n g i2 + x 22 g 22-------------------------------------------(24)
g(2)pure = g22------------------------------------------------- (25)

The molar excess Gibbs energy for a binary solution is the sum of two changes in 

residual gibbs energy first that of transferring Xi molecules from a cell of the pure liquid 1 
into a cell 1 of the solution, (g(,) - g(1)pure) xi and that of transferring x2 molecules from a

i i *

cell of pure liquid 2 into a cell 2 of solution, (g(2) - g{2)pure) x2. Therefore

gE = X] (g(I) - g(I)pure) + X2 (g(2) - g(2)pure)-------------------------------------- (26)

After appropriate substitution in equation-26, one arrives at final equation-(27).



gE = Xl X21 (§21 - gll) + x2 X12 (§12 - §22)-------- -------------------------- -(27)

Further,the following notation is introduced.

T21 = (gn - g22) / RT and G2, = exp (- a T2I)----------- ---------- (28)

Ti2 = (g2i-gn)/RT and Gi2 = exp(-a Ti2)------------------- (29)
Notng that gi2 = gn. the equation for gE becomes
gE / RT - xi x2 (T21 G21 / Xi + x2 G21 + T12 G12 / x2 + xi G12 )------- (30)

The activity coefficients for the NRTL equations are found by diffrenciation of the 
above eq (3.36), the results of which are given below

In y.i = x22 ( T2i G22, / (xi + x2.G2,)2 + T,2 G,2 / (x2 + x, G,2)2 )------ (31)

In yj = xj2 ( T12 G2i2 / (x2 + xi G12)2 + T21 G21 / (xi + x2 G21)2)-------(32)

For multicomponent mixtures the NRTL equation are readily generalized to 
solutions containing any number of components. In multicomponent mixture the excess 
gibbs energy is given by equation-(33)

N E TjjGjjXj

gE/RT = Xxjj = 1 ----------------------------- (33)

i=l XGkiXfc

k= 1

where N is no of components and

Tji= (gji - gii) / RT Gji = exp(-ajiTji)

The activity coefficients obtained after diffrenciation are

N N
E Tjj Gji Xj E xi T|j G|j

j = l N xj Gij ' 1=1
InYi = --------------------+ E --------- ------  (Iji------------------ )(34)

E Gfcj Xfc j “ 1 E G]g Xjc E Gkj Xk

k=l k =1 k =1
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The value of the nonrandomness parameter a is chosen depending on the type of 

system under consideration.

Type 1 includes those systems where deviations from ideality are not large, 

although they may be positive or negative. Type la systems includes most mixtures of 

nonpolar substances such as hydrocarbons and carbon tetrachloride but mixtures of 

hydrocarbons and paraffins are excluded. Type lb systems includes some mixtures of 

nonpolar and polar nonassociated liquids while type lc systems includes some mixtures of 

polar liquids with negative excess Gibbs energy. The recommended value of a is 0.3

Type 2 systems include mixture of saturated hydrocarbons with polar 

nonassociated liquids, the recommended value of a a is 0.2.

Type 3 systems include mixture of saturated hydrocarbons and the homolog 

perfluorocarbons, the recommended value of a is 0.4.

Type 4 systems include mixtures of strongly self-associating substances like 

alcohol with a nonpolar substance like an hydrocarbon or carbon tetrachloride, the 

recommended value of a is 0.40 to 0.55.

Type 5 is represented by two systems of polar substances (acetonitrile and 

nitromethane) with carbon tetrachloride, the recommended value of a is 0.47.

Type 6 is represented by two systems of water plus a polar, nonassociated 

substance ( acetone and dioxane), the recommended value of a is 0.3.

Type 7 is represented by two systems of water plus a polar, selfassociated 

substance (butylglycol and pyridine), the recommened value of a is 0.47.



3.1.7 UNIVERSAL QUASI CHEMICAL THEORY (UNIQUAC)

It is postulated that liquids can be represented by a three dimensional lattice of 

equispaced lattice sites. The volume in the immediate vicinity of a site is called a cell Each 

molecule of the liquid is considered to be divided into attached segments such that each 

segment occupies one cell. The number of cells is equal to the total number of segments 

(the assumption is that all cells are occupied i.e. there are no holes).

The partition function is given by Z = Z Z ceii

Where Z lattice refers to the situation where the center of every segment and the 

lattice sites coincide and Z cell provides for the contribution to z which are caused by the 

motion of segments about this central position and is assumed independent of composition. 

For a binary mixture containing Ni molecules of component 1 and N2 molecules of 

component 2 the Helmholtz energy of mixing is given by AA = -kT In Z lattice (Ni, N2) / Z

lattice (Ni, O) Z lattice (O, N2)

Where k is the Boltzmann’s constant and z is the configurational partition function. 

The molar excess Gibbs free energy is given by

gE = aE = AA / (ni + n2) - RT (xi In xj + X2 In X2) (35)

Where R is the gas constant, x is the mole fraction and n is the number of 

moles.Following Guggenheim the lattice partition function is given by 

Z ,attice = I w (0) exp [-Uo (9) / kT]

Where w is the combinational factor (number of ways in which the molecules can 

be arranged in space), and U0 is the potential energy of the lattice (it closely resembles the
i * i . "

energy of isothermal vaporization from the liquid to the ideal gas state). Here w and U0 

depend on the molecular configuration of the mixture designated by the variable 0 which 

are permitted within the constraints of overall stichiometry.

A molecule of component 1 is represented by a set of bonded segments occupying 

ri lattice points. All segments are of nearly identical size but they differ in external contact



area.For exmple in normal pentane the two methyl groups have a higher contact area than 

the two methylene groups, in neo-pentane the central carbon atom has no external contact 

area. For a molecule of component 1, the number of external nearest neighbours is given 

by zqi, where z is the co-ordination number of the lattice and qi is the parameter 

proportional to the molecules external surface. Similarly for a molecule of type 2, the 

structural parameters are tz and q2.Now attention is focused on the composition of a region 

in the immediate vicinity of a molecular 1. The local area fraction 02i is the fraction of 

external sites around molecule 1 which are occupied by segments of molecule 2. similarly 

0n, 022 and 02i are defined.0u + 02i = 1 0i2 + ©22= 1 The following relation exits between 

q, z and r‘/4(r-q) = r- IThe definition of the structural parameters r and q is as follows 

r i = V Wi / V ws And q j - A Wi / A ws Where V Wi and A wi are the van der walls volume 

and surface of a segment of type i and V ws and A ws are the van der walls volume and 

surface of a standard segment. The choice of standard segment is arbitary e.g. methylene is 

the standard segment in a polymethylene chain. The volume and surface of the standard 

sphere is given by V ws = 4/3 R3WS andA ws = 4 R2wsWe obtain

R ws = 10.95 xlO5 cm / mole, V ws = 15.17 cm3 / mole and A Ws= 2.5 x 109 cm2 / 

mole.The derivation of the expression for the lattice energy u is given by Abrams D. and 

Prausnitz J. M.. (1975)143 as also the derivation for the combinatorial factor. The final 

results obtained are for a multicomponent mixturegE = gE (combinatorial) + gE (residual) 

gE(comb)/RT = £xiln(0i/xi) + z/2HqiXiln(0i/0i)) (36)

and

gE(res)/RT = -Iqixilna:{0jTji}) (37)

where Tji = exp {- [ ujj - u« ] / RT}

and the activity coefficient for component i becomes

lnyi = ln(0i/xi) + z/2qiln(0i/0i) + li-0i/xi2:(xjlj)-qilnZ(0jTji) + qi-qi 

Z(0jTij/S(0kTkj)) (38)

where lj = z/2 (q - qj) - ( rj - 1) (39)

and where the average area fraction 0 and the average segment fraction 0 are 

defined by



0 = qs Xj / E (qj xj) 0 = r,- x; / E (rj Xj) (40)

A simple derivation based on the two-liquid theory for the UNIQUAC model is

theory is used to derive the UNIQUAC equation. The essential step in Maurer's derivation 

is the adoption of Wilson's assumption that local composition can be related to overall 

compositions through Boltzmann's factors.

For describing the excess properties of alcohols in unassociated active components, 

an associated solution theory based on the UNIQUAC equation is developed by Nagata I. 
and Kawamura Y.I45, Nagata I.I46,147 etc.

3.2.0 Theoretical considerations for Liquid-Liquid extraction in 

packed column

3.2.1 Holdup of the dispersed phase:

The initial investigations of the hold-up in packed columns are that of Appeal and 
Elgin 98. However, no attempt was made to give any theoretical explanation of the curves 

obtained.

The following equation was proposed by Gayler and Pratt" based on the theoretical 

reasoning. This equation correlates hold-up below flooding point with phase flow rates and

a characteristic velocity Va characterizing, the packing and liquid-liquid system employed. 

No correlation was suggested for the evaluation of V0.

given by Maurer !44, which avoids the inconsistencies which arise when a lattice one-fluid

Vd where (41)

Vd=dispersed phase superfacial velocity.

Vc=continuous phase superfacial velocity

Y=fractional free surface area of column used by continuous phase

V, ^characteristic velocity
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Equation (42) was obtained by the same investigatorsi00,I33where Va can be 

obtained as the slope of the straight line plot of

( xF# +

Vs. X(l-X)

-e FoX(l-X) (42)
W-X,

Gayler and Pratt22 have proposed the following correlation for 43(a) the estimation 

of the‘characteristic velocity’.

y* Vo ..... p ' A p y3' 0.5

Po
*6.6 - . 

( 2 ^ - I a, Me
-0.4

r * ^
r {■Me-Md ) [sApy^ ^ at dT j

0.26 —- 43(a)

where,

y=interfacial tension,

Hc =viscosi of continuous phase and dispersed phase respectively.

s fractional voidage of column 

a, ^surface area of packing per unit volume 

.dr=tower diameter.

Hie value of V o can also be obtained by Laaddha’s correlation149 given by 

following equation 43 (b):.

43(b)

where

C has the value of 4.9 and 6 for Raschig ring and Berl saddles, respectively. 

a, ^surface area of packing per unit volume

pc=Density of continuous phase 

pd= Density of dispersed phase 

s =fractional voidage of column

A p =pe- pd=Differewnce of Density of continuous phase and Density of dispersed

50
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Sitaramayya and Laddha 101 tried to replace the characteristic velocity T^4petp^

of the packing characteristic, and physical property of the system. Equations for

which are proposed by Laddha showed 10.97% average deviation. Equation 44 (a) is then a 

generalized

correlation for the hold-up below flooding velocity.

~va . X ce2 a, p c

l

1

h____
1

g £ 3 A P _ = 0.683 x (l - X ) -44 (a)

where,

X=ffactional hold up of dispersed phase 

pc=Density of continuous phase 

g=gravitational constant.
Equation 44 (b) was proposed by Johnson and Lavemg 102 where A’, B’ and n are 

constants.

~ x
= A'

1--------

s;

l__

X
y 1 5L v d J L*V'5 J 1 - X

1 3
+ B' --44(b)

For very high density difference systems like mercury and water, Watson and 
McNeese 1,6 attempted to correlate the hold-up of dispersed phase by equation (45) in 

terms of a ‘slip velocity’.

(45)

For Raschig rings and cylindrical packings a reliable correlation for prediction of 

slip velocity is available.

Burdett, et at103 deviced a new technique for measurement of static and dynamic 

hold-up. But the restriction of similar refractive index of liquids and packing is so stringent 

that the usefulness of the method for general purpose is doubtful.



3.2.2 Holdup of the dispersed phase at flooding.

Gayler and Pratt100 suggested equation (46) for estimation of hold-up at flooding.

_ c p dl - c d g s 3 LA J
0 .25

--(46)

Venkatraman and Laddha150 modified die above equation by changing the exponent 

to 0.11 and the proportionality constant by 0.753 instead of 0.25 and 0.62, respectively as 

suggested by Gayler and Pratt. The equation suggested by Venkatraman and Laddha is as 

follows:

where

Cd=constant of dispersed phase.

Vd=dispersed phase superficial velocity 

a, ^surface area of packing per unit volume

pd= Density of dispersed phase 

e ^fractional voidage of column

A p =pc- pd=Difference of Density of continuous phase and Density of dispersed

phase

g=gravitational constant.

0.753
( T, 2 >

r- -| o.n ‘
Vd at Pd

{ s £" J -A P .
-(47)

The average deviation shown is 15.7% and the maximum deviation is ± 36%.

In a subsequent modification Chandra Shekharan and Laddha 104 obtained the 

equation (48) where C and n are constants.

-(48)

I.................

0ii
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1fl

f T/ 2v d a, P a
l M ) LA p JJ

The values of these constants for various types and size of packing are also reported 

by the authors.



In all the above equations an attempt was made to replace V o or characteristic 

velocity term by the variables, characterizing packing and the system properties.

Also, these equations are obtained under the conditions of no mass transfer between 

the contacted phases. This transfer of solute between phases has the strong influence on 

hold-up and flooding. This happens due to increase in local turbulence and changes in 

surface tension values.

3.2.3 Holdup of the dispersed phase under solute transfer 

conditions:

Gayler and Pratt 105 correlated their data with equation (42). Degaleesan and 

Laddha30obtained the following transfer from continuous to dispersed phase (c-d), and for 

solute transfer from dispersed phase to the continuous phase (d-c). Equations (49) and (50) 

give the estimation of hold-up of the dispersed phase,

-.+ A'

1-X 

X

K at Pc 
gs 3 Ap

-iO.S

= 0.637 X(l-X>

^ + — 
V, l-X

V'\ Pc 
gs3 Ap

0.5

=0.82X(l-X)

(49)

(50)

A p =pc- pd=Differewnce of Density of continuous phase and Density of dispersed

phase

3.2.4 Correlations for maximum through put:
i L <■ •

In the succeeding paragraphs, the correlations available for the flooding velocities 

of dispersed and continuous phases are discussed.

Blanding and Elgin,07presented their results as the plot of square root of continuous 

phase flow rates against that of the dispersed phase.



Equation (51) was proposed hy Breckenfeld and Wilke 108 in terms of packing 

characteristic and physical properties (especially the surface tension) of the system. Data of 

Elgin and of Wilke show 5% average deviation and maximum deviation of about 20%.

.o,4 3980
Ape2 (l+L°’J

(51)

where,

Vc=velocity of continuous phase. 

a, =surface area of packing per unit volume 

L=ratio of dispersed phase to continuous phase velocity. 

pc =viseosity of continuous phase

Row, Koffolt and Withrow109 represented their data in the form of flooding curves 

graphically.

Bailard and Piret uodefined the flooding in more precise way and presented an 

entirely different correlation (52) when dispersed phase does not wet the packing. A 

separate correlation (not obtained) would be necessary if dispersed phase preferentially 

wets packing.

f ,0.465 ^ 1 fc N02

0.55 g^1Slyj

mrr{pT\*T ,
J

=1.70+
fvTfp^3

P)

where

c=surface tension 

Vs=slip velocity, 

p =density

Equation (53) is a more simple one to handle than equation (52), but is similar to it. 

Extensive variation in column sixe (up to 150 mm dia) and packing size and type was 

done. Dell and Pratt35 who proposed the correlation also took into account the data of 

previous investigators. Values of constant C2 are available for different packing types and 

sizes.
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Crawford and Wilke36 first time used large packings and columns [ (12.5 mm to 

37.5 mm) carbon Raschig rings and 300 mm dia column)] under the specified conditions, 

the flooding data were correlated by equations (54). The above correlations are similar to 
those proposed by Breckenfeld and Wilke108. Comparison of the two correlations shows 

that for geometrically similar systems similar conditions of hydrodynamics prevails.

(Vc°-5 + Vdu-3)z =0.5x2.

(Vc0S+Vda5)2 =

147000 1.33 2
AP

.0ri3 0.33
y pc at pc J

for pc

198000 ij
AP E

v/8«V-2
for pc

<*tPc

'ku+KuY

<*lPc

< 50 and

>50 (54)

Treybal152 modified the equation of Hoffing and Lockhart38 and expressed Vc as a 

function of packing characteristic and physical properties of the systems [equation (55)]. 

Constant C of the equation can be evaluated by the equations given by Treybal. These 

equations give average deviations of nearly 10% in flooding velocities.

CA^jat/ 1.838

Vc =
j0.275 >0.1 0.125 ,0.125

pa pa pc pc

r N 0.625

o,„
(55)

\^ua J

cr=surface tension 

crcr=critical surface tension 

s ^fractional voidage of column

Gayler and Pratt100 proposed graphical correlations for flooding velocities in the 

form of Y against Z plots where

Y = V a [ 1 - exp (-7.2 dt)]and Z =_ Ap gS

M r;

Vt=terminal velocity. 

b p =Difference of Density



^=interfacial tension,

In the above equation, 5=0.38 dv-0.92 (yf Apg )0'5.

For the calculation of limiting flow rate they have selected transition point (below 

which hold - up varies linearly with dispersed phase superfacial velocity) as the criterion 

of flooding.

Sakiadis and Johnson114modified the correlation proposed by Dell and Pratt111 

[equation (53)] by adding a viscosity term to it and modified the constant C2 by accounting 

for packing characteristic, fractional voids and surface tension effect. Equation (56) was 

given as the, flooding correlation, where constant C’p can be evaluated by empirical 

equations.(56-a) and (56-b)

1 + 0.835
f „ \0-252±
\PcJ

(yr \°-5

=c
rc*

ge )
\f ^ Ei //c0.25 X 0.25

-0.25

-(56)

0 87 e00068
C„ —»■--——— for Raschig rings .(56-a)'r ^0.043 ^0.16

1 2 e°-n
And C„ —^—rrr~ for Berlsaddles (56-b)P „ 0.035 1/6

a, y

It is claimed that the relation, that is, equation (56), is useful even for gas-liquid 

systems.

Venkatraman and Laddha150based on Dell and Pratt1 nanalysis, applied dimensional 

analysis to this problem and obtained equation (57) where constants C and n are reported 

for different packing types. Average deviations in the range of 3% to 8% are claimed for 

different packings. It seems that introduction of the modified Weber group (atey)(pcVc2) 

converges the data of various investigators.

f .0.25

1 + 0.835
kPc

0.5

r/a,
ge3

\ 0.25 10.25

K^p J
C a, *r A K2

-(57)

Numunaitis, et al115 suggested that the group (at/e) which appears in the Crowford 

and Wilke correlation is not the representative of the capacities of the packings, other than



Raschig rings. They replaced this group by a packing factor which empirieakky accounts 

for the high capacity of the intelox saddles and Pall rings. These packing factors are given 

by following equations.

Fp =C, (a, / ff)3And F =C2 (a, / s)1.37

Where Ct and Cz are specified for different types of packings. In terms of these 

packing factors, Numunaitis. Ct al suggested a graphical correlation using

(Fcos+vc°y P,
- as ordinate and

a, pc
( \ B
\^p j

>.0.2

as abscissa.

Watson and McNeese 116 studied the hydrodynamics of counter-current flow of 

high density difference fluids such as mercury and water. They suggested a correlation 

based on the assumption of constant superfacial slip velocity. But this correlation does not 
apply over a wide range of fluid properties. In a later development96tliey covered the wide 

range of fluid properties (but covering only Raschig rings as the packing material). 

Equation (58) represents the correlation, as suggested by the authors. :

!}Fc0-5]

-(58)

[Vc0'5 + {0.844 A _0298 juc

23.8
f A 0.269 » 0.494 ^0.5
V ap £

A 0.084

where dp=packing size., other symbols have conventional meaning already cited.

3.2.5 Mass transfer studies in packed column:-

For the estimation of height of the packed column required for the desired 

separation, an understanding of the mechanisms of mass transfer is essential. Many 

attempts have been made to understand the mechanism of mass transfer. This also helps in 

predicting the mass transfer rates accurately. Among many factors which govern the rate of 

mass transfer are, haydrodynamics of the phases in contact, interfacial area, packing



characteristic and physicochemical properties of the system. The equations (59-a) and (59- 

fa) given below take into account these factors.

Gayler and Pratt117 have proposed the equation (59-a) and (59-b) in which part (a) 

relates the area based dispersed phase mass transfer coefficient in terms of a characteristic 

Reynolds number Rc

Phase velocities, fractional viodage and hold up of the dispersed phase. Part (b) of 

the equation (59) is a similar correlation for the continuous phase mass transfer coefficient 

where m + 0.45 - 0.2 dv

..,6.4,10-* * « 1 4*
{Vc X) *11.5

v„ (1 - *)J
(59 a)

Kde X \ + m
■= 5.3 x 10 5 Rcd05 x 1 +

(Vc X )
Vd (1-JT)

1.5
(59 b)

where,

Rcd characteristic Reynold number based on dispersed phase flow rate 

Rcc = characteristic Reynold number based on continuous phase flow rate 

Kd=Individual mass transfer coefficient based on dispersed phase flow rate 

Kc= Individual mass transfer coefficient continuous phase 

s =ff actional voidage of column 

X=fractional hold up

Laddha and Smith 118 expressed their results, on mass transfer studies in terms of 

the height of transfer units. They found that (HTU)a is constant with the flow rates of the 

phases, in the range of flow rates covered by them.
4 4-4

Similar investigations were made by Gayler and Pratt 105 who presented the 

graphical correlations showing influence of flow velocities on the mass transfer 

coefficients.



Equation (60) was developed by Simth and Beckman119 which correlated height of 

transfer units of continuous phase to that of dispersed phase.

(HTU)c + C2(Vc/Vd)n (60)

(HTU)C= height of transfer units of continuous phase

Krishnan, et al 12°, extended the theoretical analysis of Handlos and Baron m, 
Kroning and Brink 122 and proposed the equations (61) and (62). These equations are for 

individual phase volumetric mass transfer coefficient in terms of packing characteristics, 

hold up of the dispersed phase phase follow rates and physical properties (Schmidt’s 

number) of the systems. The correlations, proposed by Krishnan, et al46 show 15% average 

deviations. The values of constant a are reported.

Kca=aX(l-X) a, Pc 
s3gAi

Y*V y0.5\
1 + 700—

pj \
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y
1 + N, \o

scd

NVJ v see y £
(61)

Kda=dX(\-X)(qh?g).-05
f X05 

Pc

\^PJ

( \
-05

1+700
f>a5l

Tc

-i ",, r*-) 0.5

l r j 1 AT
V 'see J

-1

(62)

where, 

a' =air

= Schmidt number based on dispersed phase/ Schmidt number based on
■

continuous phase

Kc a- mass transfer coefficient based on continuous phase 

Kd a=mass transfer coefficient based on dispersed phase 

y=interfacial tension,



The estimation of overall mass transfer coefficient was first undertaken by Gayler 
and PrattI05. They compared the value of the overall mass transfer coefficients obtained 

experimentally with the values estimated from the calculation of individual phase mass 

transfer coefficient and adding them in the usual manner, to estimate the overall 

coefficient. Equation (59) was used for calculating individual phase mass transfer 

coefficients. They found that experimental values of the overall mass transfer coefficients 

are 50% to 200% greater than those predicted from individual coefficients. Since the 

deviations were large, no correlations for overall coefficients were suggested.

Laddha, et al123 proposed, the equation (63) for the prediction of volumetric overall 

mass transfer coefficient based on the dispersed phase. They also tested the data of Leibson 
and Becjkman50, which showed good agreement with equation (63).

Koda = 0.014 X(l-X)
(a, ) -0.5 (p)

* c

Ws)
-0.5

r -0.5
( \ 

Me Md
Ap sj

SMp s) (m Md +Md,
(63)

Kod a=Overall mass transfer coefficient based on dispersed phase

Koc a=Overall mass transfer coefficient based on continuous phase

pd= Density based on dispersed phase

pc= Density based on continuous phase

A p=Density difference

Hd =Viscocity based on dispersed phase

fic =Viscocity based on continuous phase

4 * J24 4
Gopalrao and Ramamurfy obtained the area based overall mass transfer 

coefficient, Koc [equation(24)] in terms of dispersed phase flow rate and characteristic 

droplet diameter dsv. They found that Koc was independent of the continuous phase flow 

rates.

K^oJ
= C[F/] (64)
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Koc = Individual mass transfer coefficient based on continuous phase 

dcs=characteristic droplet diameter.

3.2.6 Estimation of interfacial area in packed columns:
Pratt, et al 125 studied the droplet behaviour and found out that for the packings 

above critical size, the interfacial area per unit volume a is given by:

6 s X
a -(65)

VS

Where dvs is given by:

d vs & p S
0.5

1 + 700
f Vo Me )]

r l r J_
In a later modification of their own correlation Gayler and Pratt 126 

suggested the following correlation.

6 s X 6 V ,
a = d Vu cs r 0

Where d<.s is given by

dj A g
1.42

f&P rJ VU”'
\ S j

and

dm = 0.92
\ 0.5

s\ P ® /

V6 g X
V ^

-(66)

Where dvso is independent of column diameter and packing size. The characteristic 

velocity Vo can be obtainecl from the hold-up as discussed earlier.

In an entirely novel approach Puranik and Sharma 127 applied the theory of 

‘extraction with fast-Pseudo-first order reaction’ to this problem. They found out that when
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—•= >10 where,
K L 2

D^Diffusivity of solute.

K=pseudo first order reaction rate.constant.

E=solubility of solute in the phase in which it is transfered

KL.=mass transfer coefficient in the phase in which reaction is taking place.

then the specific rate of extraction becomes independent of hydrodynamic factors.

Thus,

a (E )( DK )° 5 (67)

Where (R a) is the specific rate of extraction. 

D=Diffiisivity of solute.

K=pseudo first order reaction rate.constant.

E=solubility of solute in the phase in which it is transfered

In a recent development128 it was shown that with kinetics of coalescence and 

breakage of droplets, it is possible to calculate the interfacial area of contact. Billet and 
mackowiak 129 studied the new types of columns called packed tube columns. Here the 

diameter of the packings is slightly less than the diameter of the column itself. Thus, the 

packings are regularly stacked in the tube column. Main advantage with such type of 

columns is that, systems with extreme differences of physical properties can successfully 

be separated, again throughput from such columns are high compared to packed column. 

Regularly stacked packing reduce axial mixing and thus higher efficiencies could be 

obtained.

Billet and Mackowiak130 proposed following correlations for the flooding 

velocities.
F* cfl“ 0.402 e112 (X)0,5 (68)

Where flooding factor is given by

6



F*cfl = Vc I'M i r,

v, + K ]
0.! ( \ Me
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and flow parameter X is given by
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X
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For the hold up of the dispersed phase they proposed following correlation154

X 3

V 8 )
We 0.5 (69)

Where we is the modified Weber number given by

We = P„ vd

g r
0.5

where,

pd= Density based on dispersed phase 

A p=Density difference 

Vd=Superfacial velocity of dispersed phase. 

g=gravitational constant 

Y=interfacial tension,

The performance of Sulger static mixers as packings has been investigated recently. 

The graphical correlations are proposed in terms of (HTU) against total column 

capacity. Throughput and separation capacity of the packings are claimed to be well so as 

to use them in commercial scale separations.

For a packing size greater than the critical size of packing, the characteristic drop
4 *

diameter below the loading point is given by the following equation: - 106

dp = 0.92
f cr Y-5 (U''*1
UreJ l Ud ) ... (70)

If the droplets are assumed to be of uniform size and spherical in shape, then the 

value of ‘a’ would be given by the following equation:-



6ex

dp
Equations (70) and (71) give

6Ud

0.92
( a ^

AP.g.
Uo

... (71)

-(72)

Where dp = droplet size. cms.

Uo = characteristic droplet velocity, cm/sec. 

x = fractional holdup of the dispersed phase, 

e = fractional voidage of packing, 
o = interfacial tension of the system, dyno/ cm2 

A p = (p c - p d) or p d - p c 
= density difference between the two phases, gm/cm3. 

a= interfacial area per unit volume of contactor,

3.2.7 Determination of( N.T.U.)o.d. and (N.T.U.)o c :
It is well known that N.T.U.)o.c, and N.T.U,)o.d. could be calculated with the help 

of equations-(73) and (74) if the slope of the equilibrium line is not a constant.40,131 

(N.T.U.)o.c. 4dHn (73)
TJ * TT
Wb "tlBl

(N.T.U.)o.d. .=JdHB • (74)

Hbi-H’B*

.Where (N.T.U.)o.c. and ( ^.T.U.)o.d. . = Number of .transfer units based on 

continuous and dispersed phases respectively.

Hb = Concentration of solute in the extract phase expressed as gm. of solute per 

gm. of solvent in the extract phase.

H’b = Concentration of solute in raffinate phase, expressed as gm. of solute per gm. 

of non-solute in the raffinate phase.

e



H*b and H’b* = equations-(73) and (74) could be evaluated graphically. Knowing 

the total effective height of packing, the overall height of transfer unit could also be 

evaluated.

The values of N.T.U.o.d. and N.T.U-o.c. obtained graphically from the values of 

N.T.U.o.c. obtained.

3.2.8 Determination of HTUoc and HTUod & HTUc and HTUd
Overall Height of Transfer unit is determined by following equations:

HTUoc-118.5/NTUoc 75(a)

where

HTUoc=Z/NTUoc

HTUod=l 18.5/NTUod 75(b)

where

. HTUod=Z/NTUod

Over all height of transfer unit continuous phase side (HTUoc) and height of 

transfer unit continuous side (HTUc) are related by the following equations. 

HTU)oc=(HTU)c+(HTU)d(dHc/dHd)avg.Gc/Gd 75©

where HTU)oc= Over all height of transfer unit continuous side, cm 

HTU)c= height of transfer unit continuous side, cm 

HTU)d= height of transfer unit dispersed side, cm 
Gc=mass flow rate of continuous phase., gm/cm2. min 

Gd=mass flow rate of dispersed phase., gm/cm2. min 

(dHc/dHD) = average slope of equilibrium curve

Overall height of transfer unit disersed side (HTU)od and height of transfer unit 

continuous side (HTU)d are related by following equation:-

HTU)od=(HTU)d+(HTU)c(dHd/dHc)avg..Gd/Gc 75(d)

where HTU)od= Over all height of transfer unit dispersed side, cm



HTU)d= height of transfer unit dispersed side, cm 

Remaining symbols have the same meaning as in equation -75(c)

3.2.9 Determination of Koc.a and Kod.a and individual mass 

transfer coefficients (Kod, Koc):

Over all Mass transfer coefficient is determined by following equations.131

Koc.a=Vcavg/HTUoc 76(a)

where

Koc.a = (Vcavg*Z)/ (NTUoc)

Koc.a = overall mass transfer coefficient based on continuous phase,

Kod.a =Vdavg/HTUod 76(b)

where

Kod.a =(Vdavg*Z)/ (NTUod)

Kod -a = overall volumetric mass transfer coefficient based on dispersed

phase,

Individual Mass transfer coefficient is determined by following equations:

Koc =(Koc.a) / a 

where

76(c)

Koc =[Vcavg*Z/(NTUoc)] / a

Koc.=Individual Mass transfer coefficient based on continuous phase,

Kod =(Kod.a) / a 

where

76(d)

Kod.=[Vdavg*Z/(NTUod)] / a

Kod=Individual Mass transfer coefficient based on dispersed phase


