
CHAPTER II

EFFECTIVE, INTERACTIONS IN NUCLEI 

!• Introduction

4 really interesting problem in shell model is 

to determine the nature of the effective two-body inter­

action in nuclei. A,s we mentioned in chapter I, it is 

possible to evaluate nuclear properties using a free 

nucleon-nucleon interaction such as Gammel-Thaler poten­

tial and the Brueckner-Bethe-Goldstone formalism; however, 

such calculations are rather complicated. Thus there 

exists a case for a serious attempt to obtain a relatively 

simple effective nuclear interaction for use in shell 

model calculations to predict nuclear properties with a 

fair degree of accuracy. This may be done by a detailed 

systematic study of the matrix elements of the effective 

interaction in states of two nucleons in various confi- > 

gurations. In this chapter we outline a. method which we 

believe should be very useful for such a study and apply 

it to some simple calculations.

It is well known that the remarkable successes of 

the spherical shell model in predicting many of the 

nuclear properties and particularly the energy level 

schemes, have been obtained for nuclei near the closed 

shells, i.e. for nuclei with one, two or three nucleons 

(or holes) outside a closed shell. For simplicity, and 

to ensure that the results are dependable, we consider 

only nuclei with two nucleons outside a closed shell.
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We further restrict ourselves to consideration of only 
T = 1 of two nucleons. The work described here can be 
extended also to T = 0 states in a similar way. However, 
experimental information on T = 0 states is not in an 
equally satisfactory state. The energy levels of three- 
nucleon systems (closed shell + 3) can easily be written 
down in terms of the matrix elements of the effective 
interaction in two nucleon states, with the use of 
fractional parentage coefficients. We discuss an example 
in the next chapter. A, simultaneous analysis of related 
two- and three-nucleon systems would provide information 
on the role of three-body forces or change of effective 
interaction, if any, with change in the number of extra- 
core nucleons.

A standard technique for evaluating the matrix
elements of a given two-body potential1 is to expand it

24)in Legender polynomials

V^ Vk(h'h)l1-15
k

and to express the matrix element in terms of Slater 
integrals,

CabcoO
(1.2)

The effect of the potential is then entirely given in terms
of the Slater integrals R • - The spin-angle integrationsK

T We consider only local potentials, V -%i)m
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are easily carried out in a general way using the tensor- 
algebraic techniques developed by Racah. Thus the energy 
levels of nuclei in p-shell can be expressed in terms of 
only two radial integrals FQ and Fg, and in s-d shell 
by seven radial integrals J. Given an arbitrary local 
potential interaction, one may evaluate all the Slater 
integrals required in the calculation. However, for 
non-local potential this method becomes very cumbersome. 
There is however an alternate method which is much more 
flexible, more elegant and can reveal much better the 
detailed nature of the nuclear interaction. Me shall 
show that it is also much easier to apply in actual 
calculations.

It may be remarked that in the analysis of the 
nucleon-nucleon scattering data, it is found convenient 
to analyse the da'ta first in terms of the scattering 
phase shifts in states of different spin, isotopic-spin 
and relative orbital angular momentum £/# These phase 

shifts can then be discussed, in terms of different poten­
tial models. Such an approach may well be useful in 
nuclear spectroscopy. In this case, one can analyse the 
available data on nuclear energy level spectra to obtain 
the matrix elements of the interaction in states of two 
nucleons with different spin, isotopic-spin and relative 
orbital angular momentum. One may then analyse these 
matrix elements of the potential in different states of 
two nucleons, and the possible configuration dependence
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of the potential, locality or velocity dependence 
(i.e. dependence on £ ) of the interaction etc. In 

the next section we describe in detail the procedure 

to be followed for such an analysis.

2. Method of Analysis

We shall consider only simple light nuclei such as 
6 18 50 54

Li , 0 and Ti (Fe ). The single particle potential 

due to the core consisting of closed shells is taken to 

be

V = \/c + a(ts) + a(£-s)

- to-f a,(f-6) (2.1)

and the value of the parameter a is suitably fixed.

The single particle energy levels appropriate for the 

nucleus under consideration are taken from experimental 

data on closed shell plus one nucleon system. The single 

particle wavefunetions are chosen to be harmonic oscillator 
wavef unctions^ ^.

(2.2)
mLynJ,

where ^ ^ I 7'yyi/> is the usual Clebsh-Gordan
m*coefficient and yc is the spin wavefunction. The-5

radial part is given as

'Y
mtin
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~T>st £+1 . £-4^

>^fn!fc2i+i)!fjz
fvmm J

eTCVt1) C2-3>
'TU-Ufy

where

'Kitll
x (2.4)

Associated Laguerre polynomial.

2.The empirical parameter /%^=i/v appearing in the wave- 

function is so adjusted that the r.m.s. radius calculated 

with these wavefunctions,

is the same as that given by electron scattering experi­

ments, or in absence of this data, by the simple expres­
sion x M fm-.

The lowest few levels of a nucleus may be des­

cribed in terms of an appropriate configuration space, 

in which, according to the usual practice, justified 

by the results of the Brueckner theory, only the lowest 

few energetically "almost degenerate" configurations 

are included. We can write the two-nucleon wavefunction

(2.5)
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| JM^>= 1(11,1,
(2.6)

m/m-L
and the energy as

£3.= £
(2.7)

The degeneracies in the above spectrum are removed by the
introduction of the effective two-body interaction V_„.

Id
The Hamiltonian matrix in the assumed configuration space 
is constructed for each value of J,

and is diagonalised explicitely to obtain the eigenvalues 
and eigenfunctions of the lowest few states of interest.

In the above equation (2,8) the two-nucleon wave- 
functions are written in 0-3 coupling formalism. The first 
step is 'Chen to convert them to L-S foupling, by a suitable

1 We do not write down the isotopic-spin part explicitely 
since T = 1 is assumed in all cases. Again, although / 
explicit antisymmetrisation of the above wavefunction 
is not displayed, it is taken account of in all calcu­
lations. See final equation (2.12).
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transformation,

J (71, l,£,) $I • ■?

(%, ifelj)L(£i£z)0 : J M^> (2.9)

25)
where A. - represents LS-jj transformation coefficient

In the next step the space part of the wavefunetion 

is expanded in terms of centre of mass and relative orbital 

angular momentum states of the two particles. This trans­

formation has recently been widely used in nuclear spectros-
„ . 26,27,28,29)copy calculations 5 ’ 9 .

lfr,i,nA)L) JCNA7l0l\

1 NAnl /
NATll

(2.10)

where the coefficients H are tabulated by

Brody and Moshinsky'.30) NATtl

Finally, we recouple the angular momenta, so that 

the two-nucleon spin state and the relative orbital 

angular momentum state are coupled together to give 

total angular momentum X. .

NAnt
3 00 I (NAn2)L,a,£,)g : TMJ NAUt 1

Z
i ixf ^2.
3 Cl*) UCAZTSyL^) )NA(nl^)^:JM)>

i n Ant 1 / •

(2*11)

HAni
X.
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Here X/ (abed; ef) is the normalised Racah coefficient.

Now combining above equations, it is possible to 
xcrite the matrix element of the Hamiltonian in equation 
(2.8), in terms of the matrix elements of ¥lg in two 
nucleon states of total spin S, and relative orbital 
angular momentum JL .

<C71 (V i!, $') Xy _
Thus

a a' i +c-t)p-t-L &e-11 c-i) / x
L PUS1 

NATllTtl1 
7t „ / X, i>| ■Jl \ . / *■! \ -TO ' '

A (i, sj. i a I v 4 u Jj tw 13 ,cy> xl /t J \L.' 0'=r/ NMU N,A,lt
i[ i! }, \

(2

U L.V) X
(nlr S) X I V)2 j ca’,0') x\

where a and a; for equivalent particles 

for inequivalent particles.

.12)

The factors in the first line of the right side of the 
above equation take care of explicit antisymmetrisation 
of the wavefunctions.
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It is possible to simplify the above expression in 

some approximation. For example, if one considers only

and the matrix element is independent of the value of X • 

In that case the sum over X can be carried out directly 

and one obtains,

low if we study only two-nucleon states with 

isotopic-spin T = 1, the matrix elements of the inter­

action need be considered only in singlet even (S = 0, 

i = even) and triplet odd (S = 1, L ~ odd) states. 

Further, if we make an additional approximation of 

considering only singlet even interactions (Serber-type 

force), we obtain

C A / /central interactions V , we obtain £ = X , S = S

(2.13)

tJATll NfA7t't

X
•> (2.14)
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If we further consider only interactions in singlet 

s-states ( Jl = 0 ), the above expression becomes even more 

simple.

We note that tables of A- and B-e©efficients are 
25 30 )available * , and the radial ma.trix elements can be

written down once and for all as a function of A- ^o/Ae 

for a given potential shape, so that the evaluation of 

any matrix element is quite simple. The expression for 

the radial matrix elements <^7l l j VJ3L j in terms of
Tt are given in table 1. Table 2 gives the values of 

these matrix elements that we shall need in subsequent 

calculations. For this evaluation we assume the poten- 

tial to have Gaussian shape exjajj- (ft/tz0) J ? and "the 
matrix elements are listed as functions of A , in units 

of the depth of the potential, VQ. We note that 
II + Figure 1 also shows a plot of

the matrix elements <^rti | V(2Jui^in units of I0, as a 

function of A . Here it my be remarked that when we

take the limiting case, A—> 0, I0s tends to some

finite value, so that I ^ 0, but some finite constant

and all other are zero. It can be seen from

table 1 that in such a limiting case Ilg = 1.5 IQS ,

l2s

A-

l-876 *03 > *33 ------------ OS

<*0 , we get in the limit,

2.187 I etc. Similarly, for

= Jos for a11 •

A. further advantage of this formalism is that we can consider 
the matrix elements of in states of different X and S

as arbitrary parameters, and provided sufficient experi­

mental data is available, we can determine them empirically,'



<eJt|V...| <*©/ I.~, are alorte-i Reiss’: -a
As io/%^.
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Table 1

The expressions for the matrix elements I
£+3/ '

in terms of I « = (/C/l + ^j ^ , where A = ko (k.^

<7ii lvnlnty 5
The expressions in terms of •

<os | V12 j os) *0
<op j j op'. 11

<°d / j od> *2
<of j V-L3 1 of> *3

<°S | V12 | °S> I4

<°hlM oh\ *5

O03

•H
I6

Vs 1 V12 | ls) 1.51 q-31^2.512
<2s | Vja j 2s> 1.875X0-7,5I-j+16.2512-17.512+7.871^

<3s | V12 |. 3s^> 2.1S75I0-13.12501x+45.9375I2-96.25IS 
+122.062514-86.625015+26.81251Q

{lp j | lp) 2.5I1-5I2+3.5I3

<4p) ¥12| 2p) 4.3751x-17,5X2+33.25X3-31.50I4+12.375Xg
J 7x2 1 3.50I2-7I3+4.5I4
1 via 1 2i> 7.875Ig-31. 50l3+56.25I4-49.50I6+17.875I6

<lf | v12j lf> 4.5I3-9.0I4+5a5I5
<ig j y12 j ig)

5.5I4-11.0Is+6.5I6
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Table 2

The matrix elements = <(ti£ / Y(1 /ni^for the

Gaussian potential zx jo ) for different values

Of \ = Jfcc/0^.

\x

x%t\ 0.5 0*8 1.0 1.2

xos 0.0895 0.2437 0.3536 0.4535

xls 0.0896 0.1730 0.2210 0.2725

X2S 0.0809 0.1377 0.1739 0,2127

X3s 0.0736 0*1229 0.1528 0.1803

xop 0.0179 0.0951 0.1768 0.2676

j I:LP 0.0292 0.1030 0.1547 0.2052

; x2p 0.0342 0.0966 0.1361 0.1743

Xo& 0®0036 0.0371 0.0884 0.1580

: I2h 0.0083 0.0540 0.0994 0.1481

X2d 0.0128 0.0632 0.1008 0.1367

Xo£ 0.0007 0.0145 0.0442 0.0932

Xlf 0.0020 0.0261 0.0605 0.1032

Xog 0.0001 0.0057 0.0221 0.0550

xlg 0.0005 0.0130 0.0363 0.0698

IOH 0.0000 0.0022 ' 0.0110 0.0325

xoi 0.0000

. __

0.0009 0.0055 0.0192
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without having to assume anything about the nature of 
the potential.' Unfortunately, in general, not enough 

experimental data is available, and one has to make some 
assumptions on the nature of the potential. In the next 

section we shall treat in some detail the extraction of 

the matrix elements from available data on various nuclei.

3. Pairing Energies

We would now describe, some results on the nature 
of the energy levels to be expected on the basis of a 
very simple assumption viz., consider singlet s-state 

interactions only.

We consider two equivalent nucleons Ouj). The 

energy of a state of spin J of this configuration is 
then, for singlet s-state (S = 0, 1= 0) interactions 

only,

'4 A
K i J
0 7/

g Or) |vf5J'vw^>
N^no (3.i)

How if we consider the states with J = 0, then we 
can study the behaviour of pairing energies E AAA 

for s-interactions only in different configurations. For 
such a case the expression for the energy of the state 

is particularly simple,

3.^+1
4.fei+i) y g^coj <ua ivlz/ , ^N0710

Nfv

(3.2)
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Thus for a given £ , the dependence on j is only
pgiven by the factor (2j+l). The values of B /2£+l 

required in the above formula are given in' table 3. The 
final results would depend upon the behaviour of the 
matrix elements with n, and this in turn would depend 
upon the range of the potential or the parameter Ac. '
Let Io= <y?i> | V(i|o&)> j etc. Then we put
Xi = = ^2^0 etc* and write tne expressions
for 2E’0/(2;j-KL)I0 knowing the values of B* 2/2£-KL from

= 1 for (os)2
- 0.166( 14 X-^) for (,op)2
= 0.033(1+2%) + O.HIXl for (od)2 (3.3)
= 0.007(1+2%) + 0.060(Xj+^) for (of)2
= 0.0015(1+}%) + 0.019(1%+}%)

2+ 0.040X2 for (og)

We also give a plot of 2E0/(2j+l)I0 for different oscillator 
orbits £ , and different choice of behaviour of I with n 

in figure 2. The results are given in table 4. The general 
trend is quite clear, via., SQ increases with 3 for the 
given £ , and Sq/23+1 decreases with £ .

The energy levels (with T = 1) of so ire simple
2 2 2 2 2 configuration (p3/2> 5 (d3/2^ > Cd6/2} > (f5/25 and ^7/2^

are evaluated for singlet s-state interactions only using
equation (2.14). Figure 3 shows the separation of levels
J = 0 and J = 2 as a function of A » and figure 4 shows

table 3, as 

2£0
(23+1)1”
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Table 3■

2The table gives the values of B /2 £ -M for different 

configuration showing the Z dependence of SQ in equation (3.2).

Configu­
ration

N n B
2

B
B2

2 £+ 1

(os) 0

i ! i I 1 1 1 o i !!II
O 

1

• 
1

r-i 
!

1 
1

1 
1i 1*0 1.0

o 1 0 0.70? 0.5 0.166
(op r

0 1 -0.707 0.5 0.166

0 2 0.408 0.166 0.033

(Od f 2 0 0.408 0.166 0.033

1 1 -0.745 0*555 0.111

0 3 0.224 0.050 0.007

2 3 0 —0.224 0.050 0.007
(ofr

1 2 -0.592 0 » 350 0.050

2 1 0.592 0.350 0.050

0 4 0.119 0.014 0.0015

4 0 -0.119 0.014 0.0015
(og)2 1 3 0.434 0.171 0.019

3 1 —0.414 0.171 0.019

1 2 2 0.600 0.360 0.040
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T a Lie 4

The values of 2E0/(2;j+l)I0 for different confi­

gurations corresponding to different nature of. interactions.

No. Parameters
2 2 2 2 2 

(os) (opT (od) (of) (og)

a
Long range 

force
Xn=l for all n

1 0.332 0.177 0.114 0.121

b Hypothetical
xif°for al1 a

1 0.166 0.033 0.007 0.0015

c

<5-fn.
= 1.50

X, = 1.875
= 2.00 

\ = 2.10

1 0.415 0.261 0.190 0.146

d

A= 0.8
Xx = 0.71
2g = 0®57
Xg = 0. oO
% = 0*40

1 0.284 0.131 0.075 0.048

e

— 1.0
Xx = 0.63 

%2 = 0.49
X3 = 0.43
X4 = 0.40

1 0.271 0.119 0.066 0.042





16

12 -

14 -

10

CM

w 8

Ui

6

4

2

0.5
j--------------------- 1_____________ i---------------------1---------------------1__

0.8 1.0

A
i n ,0

:* ^ J v.q *rj -'ir-,,





: 37 :

the splitting of the seniority 2 levels J ^ 0 relative 

to the J = 0, 2 separation varying with 7i .

4. Analysis of closed she 11-^2 nucleon configurations.

In this section we use the formalism outlined in 

section 2 to study the nature of the effective inter­

action which would correctly predict the energy levels
6 13 SO

of some simple configurations in nuclei Li » 0 and li

Our purpose is to see if a single set of interaction

parameters can explain energy levels in all these nuclei,

or if there is any evidence for configuration-dependence

of the interaction. This analysis can be further extended
90to cover heavier nuclei such as Zr or two-nucleon 

configuration in the vicinity of A. = 208. Since the 

present investigation reported here is tentative and 

designed primarily to see if the methodology of section 2 

can be successfully applied, our programme for the 

present has not been ambitious. It is however hoped to 

undertake a thorough systematic analysis of a large 

number of two nupleon configurations in near future.

Although in principle we can consider all the 

matrix elements : X | in a Hamiltonian

matrix as independent variables to be determined empiri­

cally from an analysis of the experimental data, we shall 

find that in general there is not enough data to do this. 

¥e therefore make some simple assumptions.
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Firstly, we consider only central two-body inter­

actions. secondly, we neglect the contributions to the 

energy of the matrix elements in states with L ^ 3. This 
seems reasonable in view of the combined effects of the 
Pauli principle (which gives rise to a finite healing 
distance) and the centrifugal barrier. One can also see 

from figure 1 that at a reasonable value of range para- . 
meter /\ , the matrix elements of higher states are quite 

small. We note that if the non-central forces are 
included in the analysis, the coupling of the £ = 1 and 
£ = 3 states may play an important role.

We may then consider the strength and range of the 
potential in each of the states £ = 0, 2 (S = 0) and 

L = 1 (S = 1) as independent parameters. (Note that 
for a definite range of the interaction the matrix elements 

^Ylji | for different n but same £ are all
related). Even this gives too many arbitrary parameters 
for the data available at present, as we shall see. There­
fore we shall consider two types of potentials} (a) we 

assume the even state interaction to be operative only 
in £ = 0 state, and no interaction in £= 2 state. This 

make's the interaction‘rather strongly non-local, (b) More 

conventionally, we shall consider the same potential to 
be operative in £ = 0 and £ = 2 states. We shall allow 

the odd and even state interaction to have different 
range and strengths. In most of the usual shell model 
calculations the same range is assumed for interactions 

in all states.
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The observed level schemes'^ of Li^, O18 and 
50Ti are shorn in the figure 5. Spins and parities of

6the lowest six states of Li are well known. These states
O fare attributed to the (p) configuration of the two extra­

core nucleons, and have been analysed by a number of 
authors^’4°»32?33) derive information on the nature

of the nuclear forces. Our discussion shall be mainly
32)in the framework of the analysis of Pinkston and Brennan

2The energy levels of the (p) configuration in the inter­
mediate coupling shell model scheme are described by the 
spin-orbit interaction parameter a, and the matrix 
elements of V12 in states ^S, ^D-, SP(T=1) and
3S, %, 1,P<T=Q) of the two nucleons; here S, P, J> refer 

to L = 0, 1, 2 in our notation. The Hamiltonian matrices 
can be atleast partially inverted to obtain some of the 
parameters directly in terms of the observed energies.
The value of the parameter a_ is in this way determined 
to be a = -1.55 MeV. It is also found that the major 
components of the lowest six states are 'singlet and triplet 
even states, and their energies are relatively insensitive 
to the matrix elements in the p-states. With reasonable 
assumptions, Pinkston and Brennan find

= -3-S5 MeV
<*Vl Val1])) -- MaY

<3P] V,J3P> » O MeV.
(4.1)
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These values can be made more precise, when the 
p-states which are expected to occur at 8-10 KeY are 
identified. In terms of states of relative orbital 
angular momenta’!’ matrix elements in and states 

can immediately be written down

(4.2)

From the known values of these two matrix elements on 
the left hand side, and with the assumption of V12 to 
be a Gaussian shape potential it is possible to determine 
the parameters A and the depth VQ of this potential 
in singlet even states. If we assume the effective 
interaction to be operative only in s-states ( L - 0) 
we obtain

<°4 I - “4-Z4 MeV
<ii | V,a/i4> =■ ~ 3 AG MeV

V0 = -Z4 MeV 
A = o-68.

t The analysis of Pinkston and Brennan has already 
yielded matrix elements in L-S coupling representa­
tion, hence we do not need the A-coeff icient in 
this case.



: 41 :

On the otherhand, if we assume that the same interaction 

operates in i - 0, 2 states, we find

<o<5 / V|j 10-5^> = -4.0 MeV

(od. I V|j> |oct> = - 0.2.0 MeV
<iM V(1|ii>-- -3-1° MeV (4

and
V0 = —3^ MeV
71= 0.T7.

*
The range of the potential can be obtained by 

calculating the value of £ . For harmonic oscillator

wavefunction, the root mean square radius is given by

<(al) - (x-iffTn3- , {4>

where the last step is obtained from the electron 

scattering data34^. Thus Ap = 2.5 fm_,and for /L = 0.68 

and 0.57 the range A0 has the values 1.7 fm and 1.4 fm 

respectively.

In the above analysis the p-state matrix element 

was assumed to be aero following Pinkston and Brennan.

We wish to emphasise that the knowledge of the odd-state 

interactions in light nuclei is very very inadequate, 

particularly since the energies of the lowest few levels 

(against which our nuclear force parameters can be tested) 

are not affected to any 'large extent by these odd-state 

interactions. We have already listed in table 1 of 

chapter I many different exchange interactions used in
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light nuclei. We inote that the range of the interaction 

in all cases is assumed to be same for odd- and even-state 

interactions.

One of the aims of our analysis is to obtain a

better knowledge of p-state interactions. It is clear
6empirically that at least for Li the p-state matrix

element is small. Taking the potential strength of
9) ]n)

Soper or Meshkov and Ufford , and the same range for 

odd and even forces, we find

~ -o-r M^v.

This is consistent with the zero value of Pinkston and 

Brennan, and inserting this value in the Hamiltonian 

matrices, we can easily show that the singlet even 

energies are not essentially affected.

IS 50
How let us consider the nuclei 0 and Ti . The 

lowest few levels will be attributed to the configurations 

of the last two nucleons in the unfilled subshells. In 

the spirit of the Brueckner theory we include for confi­

guration mixing only approximately degenerate orbits.

We therefore restrict ourselves to configurations which

lie within 3-4 Me? of the ground state configuration.
ISThus for 0 , we only consider the states

2(dg/g} J — 0, 2,' 4 ^5/2si/2^ ^ ~~ und

^sl/2^ S ~ 0}
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50and for Ti

2(f?/2) J - 0,2,4,6 (f?/2P3/2^ J = 2, 4 and

(p3/2^ ^ = 0j2«

The energy separation of the single particle levels d5/2

and s-jyg is tai5:en as 0.88 JfeV and that of fand Pg^g 

to he 1.95 MeV. Hamiltonian matrices are now constructed 

using equation (2.13).

Let us first consider effective interactions to be

operative in s-state only. Hamiltonian matrices are

diagonalised for VQ = -25, -30, -35 and *?40 MeV and

ranging from 0.5 to 1.2. In table 5 we give the matrix
18elements in units of VQ for 0 and in table 6, those of 

50Ti . One can take a fixed value of VQ and multiply the 

matrix elements given in tables 5 and 6 and add the appro­

priate single particle energy and carry out the explicit 

diagonalisation for each value of A • We give the exact 
calculations for two values of VQ = -25 and -40 MeV as 

shown in figures 6, 7, 8 and 9.

18Me see that for 0 , the qualitative features of

the level spectrum can be easily obtained. For each 
value of Yq and a corresponding value of A ( A = 0.95 

for VQ = -25 MeV, and, A = 0.65 for VQ = -40 MeV), we 

can obtain a first excited state 2'at about 2 MeV, and a 
group of states^ with J = 4,0* and 2* at 2.8-3.5 MeV.

. 1* The notation here is that the unstarred and starred 
values refer to the lowest.and the first excited 
states of given J.
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Table 5

IBThe matrix elements in units of VQ for 0 for 
different values of 7l = hjki (singlet s-state inter­

actions only).

T

Configu­
ration. \x 0.5 0.8 1.0 1.2

0 0.0469 0.0958 0.1264 0.1575
^d5/2ld5/2/r 2 0.0118 0.0259 0.0348 0.0436

4 0.0067 0.01S3 0.0265 0.0340

/ 2 | 2 \ 
\S1/21Sl/2/ 0 0.0380 0.0843 0.1160 0.1463

<^d5/2Sl/2

|d5/28!/^
2 0.0164 0.0440 0.0638 0.0816

</d5/2|d5/2sV5?2 0.0100 0.0252 0.0358 0.0455

^d5/2lsi/%> 0 0.0160 0.0384 0.0548 0.0699
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Table 6

50The matrix elements in units of V0 for Ti 
for different values of /t (singlet s-state interactions 
only).

Configu- . 0.5 0.8 1.0 X *2
ration. \J\ ■

0 0.0388 0.0726 0.0934 0.1151
<f7/2lf7/2> 2 0.0098 0.0190 0.0246 0.0305

4 0.0058 0.0121 0.0160 0.0200
6 0.0040 0.0109 0.0158 0.0203

/ 2 1 2 \ 0 0.0290 0.0650 0.0895 0.1123
^P3/2lP3/2/ 2 0.0074 0.0175 0.0245 0.0311

^f7/2P3/2 2 0 *0154: 0.0352 0.0482 0.0608
1 f7/2P3/2)> 4 0.0060 0.0162 0.0236 0.0302

<\f7/2|pa/2^ 0
2

0.0156
0.0035

0.0333
0.0078

0.0451
0.0109

0.0563
0.0138

<4/2 2 0.0082 ' 0 .0180 0.0242 0.0303
|f7/2p3/2)> 4 0.0045 0.0099 0.0132 0.0165

<4/2
|f7/2P3/s)> 2 0.0031 0.0107 0.0165 0 #02X4

[1

/
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However this triad of states is somewhat low compared to
60the experimental results. On the other hand for Ti , 

the agreement between theory and experiment is quite poor.
If the first excited state is correctly fitted ( at 
VQ = -25 MeV, 0.85 or VQ - -40 MeV, A= 0.57)
the states 4, 6 occur about 1 MeV too low (at 1.75 MeV) •
We next note that for VQ = -25 MeV, the values of Pi 
obtained above Pi = 0.95 (0xa) and 0.85 (Ti ) give for 
the range of the potential ft0- 1.7 and 2.0 fm res-

i

pectively, values whieh are in fair agreement with the
6range obtained for Li , see equation (4.3). Thus out of 

many possible sets of parameters which give almost similar 
results for singlet s-state interactions we choose for 
further investigation parameters corresponding to VQ= -25 MeV.

It is now of. interest to investigate the effect of
triplet p-state interactions. We give in tables 7 and 8,

the matrix elements in triplet p-state in units of V^,
the strength of the potential, for 0X and Ti respectively.

The results of the calculations show that the excitation
18energy of the states J = 2 and 2* for 0 and the state 

50J = 2 for Ti are not significantly affected by the 
/ 18p-state forces. However, for 0 the states J = 4 and 0* 
are pushed up by attractive interactions and are depressed 
by repulsive interactions. This clearly argues in favour 
of attractive p-state forces, and show that by inclusion 
of suitable interactions one can obtain agreement with the 
experiments. In figure 6, we also show the energy levels
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Table 7

.18The matrix elements in units of for 0 for

different values of 7i (triplet p-state interactions only)

Configu­
ration. vA 0*5 0.8 1 oO 1*2

0 0.0094 0.0396 0.0663 0.0946
/ 2
N 5/2 2 0.0071 0.0367 0.0674 0 .1012

4 0.0009 0.0048 0.0088 0.0134

/_2 s2 \ r\\Sl/2 1/2/

<^l/2d5/2 2 0.0054 0.0252 0.0446 0.0658

|Sl/2d5/2)> 3 0.0067 0.0315 0.0558 0.0833

/d2
V5/2 2 mm ■■ •a

|Sl/2dl5/2)

---
---

---
-1

cn
 co \ C

O

2 \ Sl/2? 0 - - -

f
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Table 8

The matrix elements, in units of for Ti for 

different values of (triplet p-state interactions only).

50
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18 1calculated for 0 with p-state parameters adjusted to 

obtain the best fit. Again it is found that these para­

meters cannot be uniquely fixed with the given data, and 
several different values of 7-^ and ^il are possible 

(such as 7± = -37 Me?, \= 0.9 fm and ?1 = -3.7 Me?,

/£t= 2.2 fm). Here, the s-state parameters are so chosen 

as to give the best fit for the 1=2 and 2* states which 

are not affected much by the p-state forces (?Q = -25 MeV, 
k0- 1,8 fm) and the p-state parameters are so chosen as 

to keep J = 0* state always at 3.62 Me?.

50In case of Ti one finds that with suitable attract­

ive p-state forces, one can raise the J = 4, 6 states and 

also increase their separation. In this case we also find 

that if the range of the triplet p-interaction is large 

(corresponding to "K y 0.5) the J = 6 state is depressed 

below the J = 4 state. This result leads us to effectively 

shorter range for p-state forces. In figure 8 we show one 
set of parameters (7^ = -155 Me?, A = 0.5) for p-states 

which give a good fit to the experimental data.

We can now summarise the results. It is possible to 

choose a singlet s-stabe interaction which has the same para­
meters in Li®, 0"*"® and Ti®® nuclei. Its parameters seem to 

be reasonable. On the other hand p-stabe interaction para­

meters appear to change systematically as we go from A = 6
50to A = 50. For Ti the interaction appears to be quite 

strong with a rather short range (?x = -155 Me?, #±a 1.2 fm).
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18For 0 , the parameters are not uniquely fixed, but if we

take the same range viz., 1.2 fa the strength ?-|_

definitely appears to be weaker, perhaps by a factor of

5. For comparison, the matrix element
18 50

in 0 would have a value of & -0.7 Me?, whereas in Ti
it has ,the value £3 -2.8 Me?. It Was concluded that in 

6Li , although the p-states are not yet observed *
<°H Vis,|of>>^ O-ST Me?.

Next, we consider the results of. the alternative

assumption according to which the same interaction is
operating in both the even states L = 0 and £=2.

In the same way as above, the Hamiltonian matrices were
diagonalised for ?Q = -25, -30, -35 and -40 Me? and %
ranging from 0.5 to 1.2. In table 9, we give the matrix
elements in units of ?Q for and those for li^® in

table 10. Here also we give the exact calculations for

only two values of ? viz., -25 and -40 Me?. The energy

levels calculated on this basis for even state interactions

only are shown by dotted lines in the figures S - 9. It

will be noticed the changes in the excitation energies are

most marked for the states with J =0*, 2 and 2*, which

are now depressed. Is we have previously remarked, the

p-state interaction do not affect the J = 2 state much,

and hence we choose the even state parameters to obtain a

good fit for this state. (Here also, it may he noted that 
18in 0 the p-state parameters are so chosenas to give 

J = 0* state at 3.62 Me?). This leads us to choose ?Q= -40 Me?,
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Table 9
( Sfvs‘

( -. m <y'/I'; S \ «ii <.v H ! tVA
U •*•'"' f ;

13
) re //
m

The matrix elements, in units of JQ for 0 for 

different values of X (singlet s- and d-state interactions)

Configu­
ration.

V J \ 0.5 0.3 1.0 1,2

0 0.0471 0.0933 0.1323 0 .1680
^d5/2ld5/2) 2 0.0132 0.0394 C) .0659 0.0980

4 0.0069 0 ®0202 0.0309 0 .0419

(ai/s\al/s> 0 0.0400 0.1049 0.1651 0.2341

<(d5/2si/2

|d5/2sl/2/> 2 0.0136 0.0624 0.1026 0 *1456

<df/2|Sl/8>
0 0.0153 0.0313 0.0373 0.0395

/d2
\ 5/2
I Sl/2d5/2> 2 0.0100 0.0225 0.0269 0.0270
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Table 10

50The matrix elements in units of VQ for Ti for 

different values of A (singlet s- and d-state interactions)

Configu­
ration.

\a

j\ 0.5 0.3 X ©o 1.2

0 0.0395 0.0778 0.1041 0.1326

<ff7/2lf7/2/ 2 0.0122 0.0373 0.0618 0.0907

4 0.0064 ‘ 0.0173 0.0280 0.0410

6 0.0041 0.0119 0 .0132 0.0245

<v2lv2> 0 0.0309 0 .0792 0.1187 0.1599

2 0.0086 0.0256 0.0408 0.0576

<\f7/2p3/2 2 0.0182 0.0530 0.0820 0 .1132
lf7/2p3/2> 4 0.0064 0 .0192 0.0302 0.0414

0 0.0145 0.0247 0.0274 0.0275<f7/2|P3/2>
2 0.0033 0.0062 0.0075 0.0082

/ 2 ^7/2 2 0.0081 0.0147 0.0159 0.0147
|f7/2P3/2\ 4 0,0045 0.0093 0.0114 0.0127

*•**• *• » -* — — — *•

^P3/2

|f7/2P3/2)> 2 0.0038 0.0034 0 .0195 0 .0238
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X * 0.70 for Ti50 and ?Q = -40 Me?, ?t = 0.65 for O18.

(We remark that for ?Q = -25 Me? and A> 0.8 in 0 , the 1

wavefunction of the J = 2 state gives a dominant component

of configuration) . The corresponding ranges in

the two nuclei would be 1.5 fm and 1.2 fm. It may be

remembered that for Li , we had very similar parameters,

equation (4.4). The above choice of the parameters gives

rather low values for the excitation energies of the higher

states. This can be remedied to a large extent as in the

previous case by inclusion of p-state forces. Figures 7

and 9 also give the results obtained for the level spectra

with the inclusion of the p-state forces. Again a reasonably

good agreement between theory and experiment is obtained.
18For 0 the J = 2* state is predicted a little lower than

50its observed position. For Ti the p-state interaction

required has again a short range 1.2 fm and depth
18-85 Me?, whereas for 0 one can fit the data with several 

different p-state interactions, one of which would be 

?1 = -45 Me?, 4j_= 1.2 fm. Thus again the p-state force

appears to grow stronger as we go to heavier nuclei.

It should be kept in mind that there is yet some
50uncertainty about the energy level scheme of Ti : the 6

level is yet to be identified, although we have assumed it 

to be at 3.0 Me?. The identification of this level as well 

-as of the spins and parities of other excited states would 

certainly enable us to refine and improve the present 

analysis.
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How we add one remark on yet unobserved J = 3Tstate
13which is predicted from configuration in 0

This state is solely due to triplet p-state interactions
and the matrix elements in units ‘of are given in table 7.
Since it has not been possible to choose a unique set of
parameters for triplet p-state interactions, we give the
predicted position of this level for all sets of parameters
which give equally good fit for the remaining known energy 

13levels of 0 . The position of this level corresponding to
parameters given in figure 6 is at 4.7 Me? and corres­
ponding to those in figure 7 is at a/ 4.3 Me?. The experi­
mental evidence for the existence of this state will be 
able to throw some light on the nature of triplet odd-state 
interactions. It may be noted that J = 3“ level has been 
detected at <v 4.5 MeV• The existence of this level should 
be a point of interest.

5. Conclusions

In the previous sections we have' made an attempt to 
study systematically the parameters of the effective two-body 
nuclear interaction for a few configurations in terms of some 
simple models. It is hardly possible with the available data 
to decide in favour of a unique model for this effective 
••residual" interaction. We have considered only central forces, 
and neglected their contribution to the energy from states of 
relative orbital angular momenta £^3. This seems to us a 
good assumption. We find that the available energy level
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data on the configurations chosen for study here*, can 

be explained in terms of either

(i) a non-local even interaction which operates 
only in £ ■- 0 state with V0 « -25 Me7 and 

range <£0 = 1.8 - 2.0 fi and an odd-state 
interaction in i = 1 state which appears to 

change as we go to heavier nuclei or higher 

configurations, growing stronger and perhaps 

shorter ranged, or

(ii) an even state interaction with 70 = -40 MeT,

= 1.2 - 1*4 fm operating in both s- and 

d-states, and an interaction in p-state 

which again appears to increase in strength 

as one goes to higher shell model levels.

We also note that the interaction in the 

p-state, is definitely found to be attractive.

Much additional work remains to be done * The effect

of including tensor forces in the odd-states has to be

investigated. It is of interest to consider configurations

with three identical nucleons outside a closed shell and

compare the effective interactions in such configurations
18with our results above, e.g. in the pairs of nuclei 0 ,

19 50 51 1 a0 and Ti ,7 * Of these pairs, we make study of 04" ,
190 pair in the chapter III. Similar calculations may

also be carried out for heavier nuelei such as Wi^°, Zr",
„ 92 206Zr and even Fb etc.
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One may expect that in 'relative orbital angular 
momentum states "with £ 1, the effect of hard cores or

singularities in the realistic nucleon-nucleon inter­

actions would not be of any critical importance for shell 

model wavefunctions, and in such states the reaction 

matrix and the potential matrix should give rather similar 

results. Thus to a reasonable approximation the contri­

bution to the energy of a state from such states with 
i >1 in equation (2.12), may be calculated by using a 

simple potential which fits well the low energy nucleon- 

nucleon data. Then the matrix elements in the s-state 

may alone be considered as empirical parameters to be 

determined so as to give a good fit to the observed level 

spectrum. These matrix elements would then be the reaction 

matrix elements in singlet s-states for finite nuclei, and 

may be compared with similar matrix elements calculated 

from realistic potentials (local or non-local) that have 

been proposed by many authors. It would not be too 

difficult to evaluate the reaction matrix for singlet 

s-states even for finite nuclei.

Me wish to emphasise the approach and methodology 

of this chapter, which we hope will enable a more useful 

and flexible analysis to be made of the effective inter­

action when enough experimental data is available on both 

T = 1 and T = 0 states of two nucleon configurations.

ooo 0 ooo


