CHAPTER 1II
EFFECTIVE INIERACTIONS IN NUCLEI

1. Iatroduction

A really interesting problem in shell model is
to determire the nature of the effective two~body inter-
action in nuclei. As vwe mentioned in chapter I, it is
possible to evaluate muclear properties using a free
micleon=-nucleon interaction such as Gammel=-Thaler poten=-
tial and the Brueckner-Bethe-Goldstone formalism; however,
such calculations are rather complicated. Thus there
exists a case fgr a2 serious attemptlto obtain a relatively
simple effective nuclear igteraction for use in shell
model calculations to predict nuclear propertiés with a
fair degree of accuracy. This may be done by a detailed
systematic study of the matrix elements of the effective
interaction in states of two mucleons in various confi-
gurations. 1In this chapter we outline a method which we
believe should be very useful for -such a study and apply

it to some simple calculations.

It is well known that the remarkable successes of
the spherical shell model in predicting many of the
miclear properties and particularly the energy level
schemes, have been obtained for nuclei near the closed
shells, i.e. for nuclei with 5ne, two or three mucleons
(or holes) outside a clecsed shell, For simplicity, and
to ensure that the results are dependable, we consider

only\nuclei with two micleons outside s closed shell,



We further restrict ourselves to consideration of only

T = 1 of two mucleons., The work described here can be
extended also to T = 0 states in a similar way., However,
experimental information on T = 0 states is not in an
equally satisfactory state. The energy levels of three-
micleon systems (closed shell + 3) can easily be written
down in terms of the matrix elements of the effective |
interaction in two nucleon states, with the use of
fractional parentage coefficients, We discuss an example
in the next chapter. A simultaneous analysis of related
two~ and three-nucleon systems would provide information
on the role of three-body forces or chanée of effective
interaction, if any, with change in the mmber of extra-

core mucleons.

A gtandard technique for evaluating the ﬁatrix

elements of a given two-body potentiaif is to expard it
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in Legerder polynomials

\ (%,-%,) =)V () 1) B Ceos O12) (1.1)
k
- and to express The matrix element in terms of Slater
integrals,
(abcd) N
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The effect of the potential is then entirely given in terms

of the Slater integrals F@ ¢« * The spin-angle integrations

. — —
Ty consider only local potentials, V (&,~%,).



are easily carried out in a general way using the tensor-
algebraic techniques developed'by Racah, Thus the energy
levels of nuclei in p=-shell can be expressed in terms of
only two radial integrals Fg ard Ez, ard in s=-d shell
by seven radial inﬁegralsls). Given an arbitrary local
potential interaction, one may evaluate all the Slater
integrals requiréd in the calculation, ‘However, for
non=-local potential this method becomes very cunmbersone.
There is however an glternate method which is much more
flexible, more elegant apd can reveal much better the
detailed nature of the nuclear interaction., We shall
show that it is also much easier to apply in actual

calcéulations.

It may be remarked that in the analysis of the
micleon~rucleon scattering data, it is found convenient
to analyse the data first in terms of the scattering
phase shifts in states of different spin, isctopic-spin
and relative orbital angular momentum Rﬁ. These phase
shifts can then be discussed.in terms of different poten-
tial models. Such an approach may well be useful in
nuc;ear spectroscopy. In this case, one can analyse the
available data on nuclear energy level spectra to obtain
the matrix elements of the interaction in states of two
micleons with different spin, isctopic-spin and relative
orbital angular momentum, One may then analyse these
matrix elements of the potential in different states of

two nucleons, and the possible configuration dependence
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of the potential, locality or velocity dependence
(i.e. dependence on 2 ) of the interaction etc. In
the next section we describe in detail the procedure

to be followed for such an analysis,

2. Method of Analysis

We shall consider only simple light nuclei such as
.6 18 ' .50 54 .
iy 0 amd@ Ti (Fe ). The single particle potential
due to the core consisting of closed shells is taken to

be

—

V=Vt a(g) =tmw’ + Q(F.;)

. (2.1)
= hw¥s + a(7-3)

and the value of the parameter a is suitably fixed.

The single particle efxergy levels appropriate for the
rucleus under consideration are taken from experimental
data on closed shell plus one mnucleon system, The single
particle wavefunctions are chosen to be harmonic oscillator

24)

wavefunctions . g
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where (L .8 mny | 3m>  is the usual Clebsh-Gordan
m
coefficient and 366‘5 is the spin wavefunction, The

radial part RMC&) is given as
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where

w,:
(iv/z) ZJ(L) 5 (7‘) D 2.k
*n.H.H K/ @i+ 2k+1)!! 242 (2.4)

e

= Associated Laguerre polynomial.

5.
The empirical parameter )2L=1/1> appearing in the wave-
function is so adjusted that the r.m,s. radius calculated

with these wavefunctions,

D=y (n+3) 2y (2.5)

is the same as that given by electron scatiering experi-
ments, or in absence of this data, by the simple expres-
sion \/.53_.. %12 fm.

The lowest few levels of a mucleus may be des-
‘eribed in terms of an appropriate configuration space,
in which, according to the usual practice, jusfified
by the results of the Brueckner theory, only the lowest
few energetically "almost degenerate" configurations

are included., We can write the two-nucleon wavefunction’
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The degeneracies in the above spectrum are removed by the
introduction of the effective two=body interaction Vlz'
The Hamiltonian matrix in the assumed configuration space

is constructed for eacn'value of J,

08D H Cu,8,) ot M |y |l 80 (ugs 8003 T M> (2.8)

and is diagonalised explicitely to obtain the eigenvalues

and eigenfunctions of the lowest few states of interest,

In the above equation (2,8) the two~nucleon wave=-
functions are written in Jj-j coupling formalism, The first

step is then to convert them to L-8 foupling, by a suitable

Thh do not write down the isotopic-spin part explicitely
since T = 1 is assumed in all cases., Again, although !
explicit antisymmetrisation of the above wavefunction
is not displayed, it is taken account of in all calcu-
"lations. See final equation (2.12).



transformation,

l (n, 9-;'3;)3;1 (nzzzéz)?l ‘ J.M>
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where A - represents LS-]J] transformation coefficient .

In the next step the space part .of the wavefunction
is expanded in terms of centre of mass and relative orbital
angular momentum states of the two particles. Thig trans-
formation has recently been widely used in nuclear spectros-

copy calculat ionsze’ 27,28,29) .

n,4,n, '
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where the coefficients B (L) are tabulated by

Brody and MOShl[lSky30)o Nl

Finally, we recouple the angular momenta, so that
the two-nucleon spin staté and the relative orbital
angular momentum state are coupled together to givé

total angular momentum 2L

’C”l:ﬁ'%zﬁz)b (4,8)5: \TM>
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Here UJ (abcd; ef) is the normalised Racah coefficient.

Now combining above equatiocns, it is possible To
‘write the matrix element of the Hamiltonian in equation
(2.8), in terms of the matrix elements of Vo in two
nucleon states of total spin 8, and relative orbital

angular momentum Vi .

(L, 8)% [y, [ 0,80,
Thus
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1
where a and a = 5 for equivalent particles
1

for irequivalent particles.
Ve :
The factors in the first line of the right side of the
above equation take ca:cé of explicit antisymmetrisation

of the wavefunctions.



It is possible to simplify the above expression in

some approximation, For example, if one congiders only

1

central interactions Viz, we obtain £ = L',

S =

and the matrix element is independent of the value of X,

In that case the sum over X can be carried out directly

and one obtains,
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Now if we study only two-nucleon states with

X

isotopic-spin T = L, the matrix elements of the inter-

action need he considered only in singlet even (S = O,

A4 = even) and triplet odd (S = 1, L = odd) states,

Further, if we make an additional approximation of

considering only singlet even interactions (Serber-type

force), we obtain
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(2.14)



If we further consider only interactions in singlet
s-states ( 2= 0 ), the above expression becomes even more

simple.

¥We note that tables of A=~ and B-=coefficients are

25’30), and the radial metrix elements can be

available
written down onee and for all as a function of A= %o/%p
for a given potential shape, so that the evaluation of
any matrix clement is quite simple, T‘né expression for
the radial matrix elements (’nf_ ]\/‘2 | 'nﬁ> in fterms of
Iy are given in table 1. Table 2 gives the values of
these matrix elemsnts that we shell need in subsequent
cvalculations. For this evaluation we assume the poﬁen—
tial to have Gaussian shape exp[— (&/}zo)z] , and the
matrix elements are listéd as functions of A , in units
of the depth of the potential, V
Iy =(/rent )%
the matrix elements <%L]Vliln£>in units of Ig, as 2

0° We note that

» Figure 1 also shows a plot of

funetion of f/\, o Here it may be remarked that when we
take the limiting case, A—> 0, I, tends to some
finite value, so that T4 # 0, but some finite constant
and all other Im‘(héo) are zero. It can be seen from
table 1 that in such a limiting case Ils =15 I

Iog = 18751 ., 1 = 2,187 I, ete. Similarly, for

3s

A—> o0 4 We get in the limit, Iop = Tos for a1l ni,

A further advantage of this formalism is that we can consider
the matrix elements of Vlz in states of different ﬁ and 8
as arbitrary parameters, and provided sufficient experi-

mental data is available, we can determine them empiricallyy

¥
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Table __3;

The expressions for the matrix elements <7LQ}\/,9_\%2.>
L+3
in terms of Ig = (73'/1'*7(.") % , where A = Ao [Ay

<MLV, [n0y

The expressions in terms of IL .

{os | V15 | os>
Cop | V12 op
<@d} Vi | a€>
<of j Vio [ oi‘>
{e | Tig| o8)
<oh } Vig l ok>
CYRITY oLy
<Ls-] Viz | ls>
<2sl Vig | 2s)

<33 | V1o | Ss>

CIRY lp>‘

<2p ) Vlzl 2p>

1,51 5-31#2.51,

1.8751="7451,+16,2515~17.514%7.87L,

24187515~ 13, 12501 1+45.937519-96.251 5
+122,062514-86.625015+26.81251 4

2,511~51+3, 51,
7487515=31, 5013’3‘56 «2614-49.501 5* i7. 87516
4: . 5I3""9 QOI {'5@ 515

4
5. 514;" 11’015"‘6.516




Taple 2

The mtrix elements I, . = (%H\/m[ng>for the
Gaussian potential exfo (wﬂé/ﬁ(j) for different values
Of h = &O/}ZL'

045 0.8 1.0 1.2
Iog 0.0895  0.2437  0.3538  0.4535
I 0.0896  0.1730 0.2210  0.2725
Iog 0.0809  0.1377  0.1739  0,2127
I, 0.0736  0.1220  0.1518  0,1803
Top 0.0179  0,0851  0.1768  0,2676
| Iy, 0.0292  0,1030  0.,1847  0.2052
I, 0.03¢2  0,0966  0.1361  0,1743
Tog 0.0036  0.0371  0,088¢  0,1580
Iig 0.0083  0.0540  0.0994  0,1481
Iog 0.0128  0,0632  0,1008  0.1367
Tof 00007 0,0145  0.0442 0,0932
Ipe 0,0020  0,0261  0.0605  0,1032
Iog 0.0001  0,0057  0.0221L  0,0550
Ii, 0,0005  0,0130  0.0363  0.0608
Ion 0.0000  0,0022 ~ 0,010  0,0325
Io4 0,0000 0.0009 . 0.,0055 0,0192
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without having to assume anythiag about the nature of
the potential. Unfortunately, in general, not enough
experiumwental data is available, and one has to make some
assumptioas on the nature of the potential. In The next
section we shall treat in some detail the extraction of

the matrix elements from available dats on various nuclei.

3. Pairine Tpergies

e would now describe. some results on the nsture
of the energy levels to be expected on the bhasis of a
very simple agsumption viz., consider singlet s-state

interactions onlye.

"3

We consider two equivalent nucleons (MALF). The
energy of a state of spia J of this coniiguration is
then, Tor singlet s=-state (8 = 0, L= 0) interactions

only,

| . - LY 3
E[cm;;f: 3’] Z S AL R COPCTIVA
N'Vi T 0T

NJI7L.0 (3.1)

liow if we consider the states with J = 0, then we
i
can study the behaviour of pairing energies E,[C}Jotl
for s~interactions oanly in different configur=ztions, For

such a case the expression for the energy of the statle

e

s particularly simple,

- : 3.
E I:(éf‘] . 2¥td B @ s Vg s (3.2)
0 L(eh+i) Nono .
N
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‘Thus for a given L , the dependence on j is only
given by the factor (2j+l). The values of 82/2,(’. +1
required in the above formula are given in table 3. The
final results would devend upon the behaviour of the
matrix elements with n, and this in turn would depend
upon the range of the poteatial or the paramster ;\.--/%o/z%g. ‘
Let T =<o8]V,[04) T ;=4op|Vj]op)> ete. Then we put
X = 1y/1,, % = 12/10 etc, and write the expressions
Tor ZE,/(2J+1)I, knowing the values of 52/2£+£!. from
table 3, as

4

2K
e 1 for (c>s‘)2
(2j+1)1,

i

2
= 0.166(1:':'321) for (op)

il

0.033(1+%y) + 0.111X, for (0d)” (3.3)
0.007(1+Xy) + 0.080(Xy+X,) for (of)”

= 0.0015(1+X,) + 0.019(X +X,)

+ 0,040X; for (0g)”

1t

We also give a plot of 2Eo/(2;j+l)Io for different oscillator
orbits & , and different choice of behaviour of 1, with n
in figure 2, The results are given in table 4, The general

trend is quite clear, viz,, B, increases with J for the

o
given { y and E /2J+1l decreases with L.

The energy levels (with T = 1) of some sinmple
2 2 2 2 2

are evaluatéd for singlet s-state interactions only using

configuration ( p3/2}

equation (2.14). Figure 3 shows the separation of levels

J=0and J =2 as a function of A, and Figure 4 shows



The table gives the values of B2/2 £ +1 for different

configuration showiag the £ deperdence of Ey, in equation (3.2).

] 2 BZ
Configu~- N n B B =%
ration 2L+ 1
(os) 0 0 1.0 1.0 1.0
1 0 0.707 0.5 0,166
(0p)2
0 1 -0,707 0.5 0.166
0 2 0.408 0,166 0.033
(0d )2 2 0 408 0.166  0.033
1 1 -0.745 0,555 0,111
0 3 0,224 0,050 0.007
3 3 0 -0, 224 0.050 0,007
(of)
1 2 "00592 03360 00050
2 1 0,592 0.350 04050
0 4 0.119 0.014 0.,0015
4 0 -0.119 0.014 0.0015
(og)2 1 3 Oe214 0,171 0,019
3 1 -0.414 0.171 0,019
’ 2 2 04600 0360 0,040
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Table 4

N

The values of 2R,/(2j+1)I, for different confi-

gurations corresponding to different nature of interactions.

2 2 2 2 2
No. Parameters (os) (op) (od) (of) (og)

Long range
a force 1 0,332 0,177 0.114 0,121
X,=1 for all n |

PO S . - T A T o O DO WD A o S O W s T At T gy SO S TR 5 R

Hypothetical 1 .1686 . 31 -007 0015
b 'an-oforalln 0 S 0,033 0,00 0.00

B 2 CL SUE B XU FAD THD UIH 4 S SN A rp ) S G g 00 N gy M VA CAP wah W g P AL S S e g W B

<S—:E‘n.
= 1,50

X

c L = 1.875 1 0,415 0.261 0.190 0.146
Xy = 2.00

x& —

ar S0 v O an O s o I S Y " DT R U OV Mo £HD i 10 U4 P S W - . U o D TS KT WA WD S LAR AUR VR K pah TR KAR GO WD SOR WS AR WA P T SO o

= 0,57 1 0.284¢ 0,131 0.075 0,048

ot 0 ST Y MK A e ks WS FAR S W s A o S T M A S M A D S XU S KR SN W SO T SR e S P s WS TID g A e M S S R S 00T gy e OB TNE e AT T S

X
e X, = 0,49 1 0.27L 0.119 0.066 0.042
43
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the splitting of the seniority 2 levels J# 0 relative

to the J = 0, 2 separation varying with A .

4, Analysis of closed shell+2 nucleon configurations

In this section we use the formalism outlined in
section 2 to study the nature of the effective inter-
action which would correctly predict the energy levels
of some simple configurations in nuclei Lie, O18 and Tiso.
our purpose is to see if a single set of interaction
parareters can explain energy levels in all these nuclei,
or if there is any evidence for configuration-dependence
of the interaction. This analysis can be further extended
to cover heavier nuclei such as ngo or two~-nucleon
configuration in the vieinity of A = 208. 8Since the
present investigation reported here is tentative and
designed primarily to see if the methodology of section 2
can be successfully applied, our programme for the
present has not been ambitious. It is however hoped to
undertake a thorough systematic analysis of a large

number of two nugcleon configurations in near future.

Although in principle we can consider all the
matrix elements (nl, S:x [V, 4L, 3 %) in a Hamiltonian
matrix as independent variables to be determipned empiri-
cally from an analysis of the experimental data, we shall
find that in general there is not enough data to do this.

We therefore make some sinmple assuniptions.
N £
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Firstly, we congider only central two-bod? inter-
actions, Secondly, We neglect the contributions to the
energy of the matrix eleménts in states with f.?—s. This
seems reasonable in view of the combined effects of the
Pauli principle (whicg gives rise to a finite healing
distance) and the centrifugal barrier. One can also see
from figure 1 that at a reasonable value of range para=-.
meter A s the matrix elements of higher states are quife
smll, We note that if the non-central forces are
included in the analysis, the coupling of the £ = 1and

L = 3 states may play an important role.

We may Then consider tne étrength and range of the

potential in each of the states ﬁ==0, 2 (8 =0) and

L=1(s = 1) as independent parameters. (iNote that

for a definite range of the interaction the matrix élements
i ’\42~171£:> for different n but same { are all
related)., Bven this gives too many arbitrary parameters
for the data available at present, as we shall see. There=-
fore we shall consider two types of potentials: (2) wé
_assume the eveﬁ state interaction to be operative only
in L=o0 state, and no interaction in A= 2 state. This
makes the interection 'rather strongly non—iogal. (b) Hore
conventionally, we snall consider the same potential to
be operative in £=02anmd £ =2 states. We shall allow
the odd and even state interaction to have different
range and strengths., In most of the usual shell model
calculations the same range is assumed for lateractions

in all states.
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The observed level schemesal) of Li, 018 and

Ti5o are snown in the figure 5. Spins and parities of

tne lowest six states of Li6 are well known, 7These states
are attributed to tne (p)2 configuration of the two extra-
core nucleons, and have been analysed by a number of
authorsg’lo’sz’SS) to derive information on the natﬁre

of the nuclear forces., Our discussion shall be mainly

in tne framework of the analysis of Pinkston ;nd Brennangg).
The energy levels of the (p)g configuration in the inter-
mediate coupling shell model scheme are described by the
spin-orpit intefaction parameter a, and the matrix
slements of V,, in the six states 1§, 1D, °P(I=1) and
35, 3, 1p(T=0) of tne two nucleons; here S, P, D refer
to L =0, 1, 2 in our notation. The Hamiltonian matrices
can be atleast partially inverted to obtain some of the
parameters directly in terms of the observed energies,

The value of the parameter a i1s in this way determined

to be & = -1;55 MeV, It is also found that the major
components of the lowest six states are rsinglet and triplet
even states, and their energies are relatively insensitive
to the matrix elements in the P-states. With reasonable

assumptions, Pinkston and Breanan find

<i‘§1\/;2 15> - -3.25 MeV
<(il)} \42' 11):) §"~jl. 12 MeY
<3P] \/19_ 3P> ~ O r\/lev

(4.1)
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These values can be mede more precise, when The
p-states which are expected to occur at ~ 8-10 keV are
identified. In terms of states of relative orbital
angular momentéf metrix elements in -8 and I states

can imnediately be written down

C35 i 15> = 4[5 1Valos> #<as Vi 1]

ol -tl@rmidr ] <

From the known values of these two matrix elements on
the left nand side, and witg the assumption of Vy5 to

be a Gaussian sﬁape potential it is possible to determine
the pérameters A and the depth Vb of this potential
in singlet even states. If we assume the effective

interaction to be operative only in s=-states ( £ = 0)

we obtain
(o8| Vi o8> = ~4.24 Mev
8|V l1sy = ~3.46 MeV

(4.3)

and

11

- 24 Mev
0-68.

Vo
A

{1

T The analysis of Pinkston and Brennan has already
yielded matrix elements in L-3 coupling representa-
tion, hence we do not need the A-coefficient in

this case,
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On tae otherhand, if we assume that the same interaction

operates in £ = 0, 2 states, we find

| 5] Vig[osy = -4.0 MeV
<Od‘!v])_’06£>: - 0.20 MeV
A8 [Ve|18y= -3-10 MeV
; Vo:-34 MeV
A= 057,

The range of the potential can be obtained by
calculating the value of 4 ik For harmonic oscillator

wavefunction, the root mean square radius is given by

l

<&1> :%zﬁg = (.i-’l)if’m«i

where the last step is obtained from the eleetron

scattering data>®)

and 0.57 the range %, has the values 1.7 fm and 1.4 fm

respectively.

In the above analysis tne p-state matrix element
was essumed to be zero following Pinkston and Brennan.
We wish to emphasise that the knowledge of the odd-state
interactions in light nuclei is very very inadequate,

particularly since the energies of the lovest few levels

-

. Thus %p= 2.5 fmand for A= 0.68

(4.4)

(4.5)

against which our nuclear force parameters can be tested)
g I

are not affected to any large extent by these odd-state
interactions. We have already listed in table 1 of

chapter I many different exchange interactions used in
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light nuclei., We note that the range of the interaction
in a2ll cases is assumed to be same for odd- ard even-gtzte

interactions.

One of the aims of our analysis is to obtain a
better knowledge of p-gtate inleractions. It is clear

6

empirically that at least for Li~ the p-state matrix

element is small, Taking the potential strength of

2)

Soper”’ or Meshkov and Uffordlo), and the same range for

odd and even forces, we find

loP N, |opy & -0-5 MeV.

This is consistent with The zero value of Pinkston and
Brennan, and inserting this value in the Hamiltonian
matrices, we can easily show that the singlet even

energies are not essentially affected.,

Now let us consider the nuclel O18 and Ti5o. The
lowest few levels will be atiributed to the configurstions
of the lagt two nucleons in the unfilled subshells. -In
the gpirit of the Brueckner theory we include for confi-
gurgtion mixing only approximately degeﬁerate_orbits.

We tnerefore restrict ourselves to configurations which
lie within 3-4 MeV of the ground state configuration.

18 . ,
Thus for ¢ , we only consider the states

4

2
(Agyg)” T =0, 272 (dg)08;,5) T = 2,3 and

i

2
(51/2) J =0, -
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5
and for Ti 0

2 peed 2m—— P
(fo,9) ; = 052,4,8 (f9D3/5) J =2, 4 and

i

2

The energy separation of the single particle levels d5/2

7/2 ¥4 Pg o
to be 1,95 MeV. Hamiltonian matrices are now constructed

and S1/9 is taken as 0,88 MeV and that of T

using equation (2.13).

Let us first consider effective interactions to be
operative in s-state only. Hamiltonian matrices are
diagonalised for V, = =25, =30, =35 and =40 MeV and
ranging from 0.5 to 1.2. In table 5 we give tThe matrix
elements in units of V, for 018 and in table 6, those of
Tiso. One can take a fixed value of V, and multiply the
matrix elements given in tables 5 and 6 and add the appro=-
priate single particle energy and carry out the explicit
diagoﬁalisation for each value of A . We give the exact
calculations for two values of Vo = =25 and =40 MeV as

shown in figures 6, 7, 8 and 9.

We see that for 018, the qualitative features of
the level spectrum can be easily obtained. For each
‘value of V, and a corresponding value of A (A= 0.95
for V, = =25 1V, and A = 0,65 for V, = =40 beV), we
can obtain a first excited state 2'at abéut 2 MeV, and a

group of statesT with J = 4,0% and 2% at 2.8-3.5 MeV.

. T’The notation here is that the unstarred and starred
values refer to the lowest.and the first excited
states of given J.
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Table 5
. . ' 18
The matrix elements in units of Vo for 07 for
different values of 71“&0/&2 (singlet s=~state inter-

actions only).

Configu~ Al 0.5 0.8 1.0 1.2
ration, J ' .

0 | 0,0469 0.0958 - 0.1264 0.1575
2 .2 . .

(a5 5ld5/00| 2 | 0.0138 0.0259 0.0348 | 0.0436

4 | 0,0067 0.0183 0.0265 0.0340

2 2 '
(s1salsygy| 0 | 0.0380 0.0843 0.1160 0.1463
{85/281/2

2 | 0.0164 0.0440 0.0638 0.0816
]d5/231/2>
T h—'—-ﬂm-“L“-“m~”““‘lﬂ——“-‘ﬂ“—ﬂ——f —————————————————————

<d2 ]sz o | 0.0160 0.0384 0.0548 0.0699
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Table 6

The matrix elements in units of V, for Ti’C

for different values of A (singlet s-state interactions

only) .
Configu= A 0.5 0.8 1.0 1.2
ration. J
0 0.0388 040726 040934 0.1151
(2 ‘fg 2> 2 040098 0.0190 0.0246  0.0305
77211/ 4 040058 0.0121 0.0160 0.0200
6 0.0040 0.0109 0.0158 00203
‘ > 0 0.0290 0.0650 0.0895 0.1123
/ 2l’s/2/ | 2 0.0074 0.0175 0.0245 0.0311
<f7 /2P3 /2 2 0.0154 ~0.0852 0.0482  0.0608
|£5 /005 /§> 4 0.0060 0.0162 0.0236 0.0302
2 | 2 0 0.0156 0.0333 0.,0451 0.0563
<f7/2 P3/2>
2 0.0035 0.0078 0.0109 0.0138
(3 82
£2 /9 0.0082 '0.0180 0.0242  0.0303
|£2/2P5 /2> 4 040045 0.0099 '0.0132 0.0165
o
(a2 -
i 2 0.0031  0.0107 0.0165 0.0214
| 7/2P3/2> )




R "R g
. [N N (AT = T [ _ﬂ A
L oo TrA Sl W CRs T oWdUll -y R .,r»;
Wt W - . _
i P e
5 ~ - . ¥ 4 5 1y =
w\ /o 1ol Y - K\ - rr«“_.» RS .,4.‘ - ‘%‘. ~r Cv w
A S O 2 I ¢ ] - RS O By Eml Y53
bA LB} FUOLDEGIEY U1 SUCLIObIoLU L 03 BYS o
G RA B Haey ; o S IIT I 15 Y 3 e
_ R HAoL BT UL ca PIUTBYGO Halle
Gy - WA LI F op BAST L Ve TATILS 1
ke 12 . - "o~ o e 0 it = Yol A . W
T B TEUCL AL wLYUT ohwil =R Pl =8 457 k ) T e .
DULH U srd BUL TSU0L L LY £ =5 16 19UTE Qiia vionbp 904 3USsudEd &Adl
. P T T 1 2% hl B =S TS LAMTS (4w - . . . -
24 STUO SUC PR ﬁ...QL_ Wl whall : ,. T w oL NOGT AT PO LA 10207
- M oy . . ooy P 2 & % RN ' " ¢
YA 40d Y deaenaded eades o Roijeun) T
4 ‘ B

(P) () @) (o)

3

AN NI

o<

N O«




NN .ot ..K\ MR o L, LW Bl
T 2 T T R, VUL L e peland
R R o S L o G B VR FIIC S Pl 4
H2U 0 ol D o wln LeAlD nNLNFNwwuﬂ UG o ow
Dl B CimaeT el TUdaUsdhed Sedefal
FACAAL JUT JUSEOI0GeS SdALND [N ol
O WD PUITedpae (SAF] Te0 | ASdley

(p) (2) (q) (o)

3

ABW NI

[
I
|

I




PN RN <f% S PR

.

vl bl

! VX A i Vo
N r k™ Mf ¢ PP.ﬁ(ﬂJ . P -
» = 1. YAV A 5 . AN 3 i.w. =i . Yo tyerd =
+ “ 9 '
R 14 U R S L d L e, WMwdoaaTe e 2S00 )y
[C% VRV I S 1 FUT L dh o riAw
PR e LI I v LR + MR Tt LR %
-

44444

B - kY
R L0 e

- . N . e
L R adaa {1 [ koo, RN
» o '

L . v ¥ .

-4 L:t .wr« # . .

t Vo FYEN . 4
WA e v Aeon X

| 72—
g—

3

N2 NI




E IN MeV

waetion oF

o ~ 4, 3
T P B
M -~ - - %.;
ISP OLTD

.-
- - o ‘\’
.
Lo - N T .3
.

~

TRNEE

1.2

‘,"?l Par ARt

neyrsetton,

3

pl

s

c, v
:

I A

Cod

,




s 46

However this triad of states is somevhat low compared to
the experimental results. On the other hand for Tiso,

the agreement between theory and experiment is quite poor.
If the first excited state is correctly fitted ( at

T, =25 MeV, A=0.85 or V, = -40 MeV, A= 0.57)

| the states 4, 6 occur about 1 MeV too low (at 1.75 MeV).
We next note that for V, = =25 MeV, the values of A
obtained above A = 0.95 (018) and 0.85 (r1°%) give for
the range of the potential £,= 1.7 and 2.0 fm res-
pectively, values which are in fair agr;ement with the
range obtained for Lis, see equation (4.3). Thus out of
many possible sets of pérameters which give almost similar
results for singlet s-~state interactioﬁs we choose for

further investigation parameters corresponding to V°= -25 MeV.

It is now of interest to investigate the effect of
triplet p-state interactions. We give in tables 7 and 8,
the matrix elements in triplet p-state in units of V.,

1
18 and Tiso respectively.

the strength of the potential, for O
The results of the calculations show that the excitation
energy of the states J =2 and 2¥ for 018 and the state
J =82 for Tiso are not significantly affected by the
lp-state forces. However, for 018 the states J = 4 and O*
are pushed up by attractive interactions and are depresséd
by repulsive interactions. This clearly argues in favour
of attractive p-state forces, and show that by inclusion

of suiteble interactions one can obtain agreement with the

experiments. In figure 6, we also show the energy levels



The matrix. elements in units of Vl for O

(2]
(2]

Table 7

18 for

different values of A (triplet p-state intersctions 'only)

Configuw A 0+5 0.8 1.0 1.2
ration. J
0.0094 0.0396 0.0663 0.0926
2 2
ALk /2> 040071  0.0367 0.0674 0.1012
4 | 0.0009 0.0048 0.0088 0,0134
2 .2
GV i "
él /s /2 »2 0.0054 0.0252 0.0446 0.0658
lsl /2d 5/2 3 0.0087 O .0:33:5 ) (3 0558  0.0833
2
<d5/ 2 2 - - - -
F1/8%5/2)
2 | 2
<d5/21 s3_/ 0 - = - -
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Table 8

0

The matrix elements, in units of V; for Tis for

different values of A (triplet p-state interactions only).

COIlfigu— Z 0H 0.8 1 0 1 2
ration. J )
0 0.01290 0,041l 0.0639 0.,0871
o 1.2 2 0.0123 0.0405 0.0832 0.0%64
<f |£ /2
7/21°7 4 0.0065 0.0264 0.0432 0.0606
6 0.0057 0.03068 0.0568 0.0861
< 2 l 2 0 O -0039 0 00143 0 e0229 0 00319
»° |p >
3/2!"3/2 0.0078 0.0285 0.0458 0.0639
(Eq/aP3s2 2 0.0060 0.0250 0.0424  0.0610
[£7/2p5 /2> 4 0.0034 0.0182 0.0330 0.0498
77212372 o - . _ .
<f2 2
7/2 - - - I -
[F2/2Pa/2> | 4 - - - -
2
<p3/2 o _ _ _ _
[Pa/2ts )
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calculated for 018 ﬁith p-state parameters adjusted to
obtain the best fit. Again it is found that these para=-
meters cannot be uniquely fixed with the given data, and
severagl different values of Vl and 5iiare possible
(such as V, = =37 MeV, ;= 0.9 fm and V; = =3,7 MeV,
k4= 2.2 fm). Here, the s-state parameters are so chosen
as to give the best fit for the J = 2 and 2* states which
are not affected much by the p-state forcesﬂ(vo = =25 MeV,
Ao= 1.8 fm) and the p-étate parameters are so chosen as

to keep J = O* state always at 3.62 MeV.

50 one finds that with suitable attracte

In case of Ti
ive p-state forces, one can raise the J = 4, 6 states and
also increase their separation. In this case we aléo find
that if the range of the triplet p-interaction is large
(ecorresponding to A > 0.5) the J = 6 state is depx;essed
below the J = 4 state. This result leads us to effectively
shorter range for p-state forces. In figure 8 we show one

set of parameters (V; = =155 MeV, A = 0.5) for p-states

which give a good fit to the experimental data.

We can now summarise the results. It is possible to
choose a singlet s-stabe interaction which has the same para-
meters in Li6, 018 and T150 nuclel. Its parameters seem to
be reasonable. On the other hand p-statbe inﬁeraction para-
meters appear to change systematically as we go from & = 6
to & = 50. PFor Tiso the interaction appears to be quite

strong with a rather short range (Vl = =155 MeV, /%iz 1.2 fm).
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[ 14
[ 1]

»

For 072, the parameters are not uniquely fixed, but if we

take the same range viz., £;=1.2 fa the strength 7y
definitely appears to be weaker, perhaps by a factor of
5. For comparison, the matrix element { op l\/w.fof’>
in 018 would have a value of = «0.7 MeV, whereas in Tiso
it has the value A «2.8 MeV. It mWas concluded that in

Lis, although the p-states are not yet observed,

Loplviglop> S 05 Mev.

Next, we consider the results of The alternative
assumption according to which the same interaction is
operating in both the even states £=0aa £=2.

In the same way as gbove, the Hamiltonian matrices were
diagonalised for V, = =25, =30, =35 and =40 MeV and A
ranging from 0.5 to 1.2. In table 9, we give the matrix
elements in units of Volfor 018 and those for Tiso in
table 10, Here also we give the exact calculations for
only two values of V, viz., =25 and =40 MeV. The energy
levels caleulated on this basis for even state interactions
only are shown by dotted lines in the figures 6 - 9. It
will be noticed the changes in the excitation energies are
most marked for the states with J = d*, 2 and 2%, which
are now depressed. As we have previoﬁsly remarked, the
p-state interaction do not affect the J = 2 state much,

and hence we choose the even stabte parameters to obtain a
good fit for this state. (Here also, it may be noted that

18
in 0~ the p-state parameters are so chosen as to give

J = O* state at 3.62 MeV). Thls leads us to choose V = =40 MeV,



The matrix elemenﬁs, in units of V, for O

different values of

s TN
T
N I
s 61 :
s R Ve
- AT ' 5 —
\ 470 s vng )
5 e o o~
Iable 9 %@( Y i 2b
K PR . R
L RPN R } i
N s N A ‘S': ¢
: S
for o

A (singlet s= and d-state interactions)

A
Config\e 0.5 0.3 1.0 1.2
ratione. J
0 0.0471  0.0983 0.1323 01680
2 2 T>
d » l » * [ ] b
<§5/2‘ 5/ 0.0132 0.0394 0.0859 0.0980
4 0.0069 0.0202 0.0309 0.0419
<32 1s2 0 040200 0.1049 0.1651 0.2341
1/2 1/2 L 4 L L 2 L 2
d ]
{85728 2
: 1/ 2 0.0186 0.0624 0.1026 0.1456
| 5/251/é> ‘ ,
<62 }sg ;> 0 0.0153 0.0313 0.0373  0.0395
5/21 1/ )
<
5/2 2 0.0100 0.0225 0.0269 00270
|51 /efl5/2)
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Table 10

The mabtrix elements in units of Vo for TiSO for

different values of A (singlet s- and d-state interactions)

Configu- A 0.5 0.3 1.0 1.2
ration. J
0 0.0395 0.0778 0.1041 0.1326
2 1.2 \ 2 0.0122 0.0373 0.0818 0.0907
AR ‘
4 0.0064 ' 0.0173 0.0280 0.0410
6 0.0041 0.0119 0.0182 0.0245

H T G T S S g S A TS W S W Fo A S PO S S T WIS WD TES Y I kUL U D SUE TR S IS SR G0 O g S K A S AT AN D U IS S W SV S e e A ST Y

s | 2 > 0 0.0309 0.0792 0.1187 0.1599
¢ _|p
3/ 2! 3/2 0.0086 040256 0.0408 0.0576

U T SO e S DL S0 KW T IR N G LI S QI ot A 0 L B T S G s D U S8 WA AP S0t G SR PN N LD KD R Ak IR R O A S P G aele o W TR KN I . DA S e O

{89 19952 2 | 0.0182 0.0530 0.0820 0.1132
f7sepapy | 4 | 0:0084 o.0lo2 0.0302 0.0414 |
<f2 2 0.0145 0.0247 0.0274 0.0275
2> '
7/ 2[ 3/2 2 0.0033 0.0062 0.0075 0.0082
2
<i‘7 P 2 0.0081  0.0147 0.0159 0.0147
]f7 /2Ps /2> 4 0,0045 0.0093 0.0114 0.0127
{Fs |
3/2 2 0.0038 0.0034 00,0195 0.,0238
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A = 0470 for Ti°° and Vy, = =40 MeV, A = 0.65 for o*8.

(We remark that for Vg, = =25 MeV and A> 0.8 in 0*®, the
wavefunction of the J = 2 state gives a dominant component
éf (31/2d5/2) configuration). The corresponding ranges in
the two nuclei would be 1.5 fm and 1.2 fm. It may be
remembered that for L16, we had very similar parameters,
equation (44). The above cholce of the parameters gives
rather low values for the excitation enérgies of the higher
étates. This can be remedied to a large extent as in the
previous case by inclusion of p-state forces. Figures 7
and 9 also give the results obbained for the level spectra
with the inclusion of the p-state forces. Again a reasonably
good agreement between theory and experiment is obtained.
For 0% the J = 2¢ state is predicted a little lower than

50

its observed posi%ion. For Ti the p-state interaction

required has again a short range %Z;= 1.2 fm and depth

-85 MeV, whereas for 018

one can fit the data with several
different p-state interactions, one of which would be |
Vy = -45 MeV, %, =1.2 fm. Thus agaian the p-state force

appears to grow stronger as we go to heavier nuclei.

It should be kept in mind that there is yet some
uncertainty about the energy level scheme of Tiso: the 6
level is yet to be identified, although we have assumed it
to be at 3.0 MeV. The identification of this level as well
.a8 of the spins and parities of other excited states would
certainly enable us to refine and improve the present

analysise.



s 54

Now we add one remark on yet unobserved J = éfstate
which is predicted from (Sl/éis/z) configuration in 018.
This state is solely due to triplet p-state interactions
and the matrix elements in units ‘of Vl are given in table 7.
Since 1t has not been possible to choose a unique set of
parameters for triplet p-state interactions, we give the
predicted position of this level for all sets of parameters
which give equally‘good fit for the remaining knowﬁ energy
levels of 018- The position of this level corresponding to
paraneters given in figure 6 is at v 4.7 MeV and corres=-
ponding to those in figure 7 is at ~ 4.3 MeV. The experie
mental evidence for the existence of this state will be
able to throw some light on the nature of triplet odd-state
interactions. It may be noted that J = 3" level has been
detected at ~ 4.5 MeV. The existence of this level should

be a point of interest.

5. Conclusions

In the previous‘sections we have made an attempt to
study systematically the parameters of the effective two-body
nuclear interaction for a few configurations in terms of some
simple models. It is hardly possible with the avallable data
to decide in favour of a unique model for this effective
"residual™ interaction. We have considered only central forces,
and neglected their coantribution to the energy from states of
relative orbital angular momenta £ > 3. This seems to us a

good assumption. We find that the avalilable energy level
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data on the configurations chosen for study here; can

be explained in terms of either -

(i) a non-local even interaction which operates
only in £ = 0 .state with Vg = =25 MeV and
range %,= 1.8 - 2.0 fm and an odd-state
interaction in L= 1 state which appears to
change as we go %o heavier nuclei or higher
configurations, growing stronger and perhaps
shorter ranged, or

(ii) an even state interaction with V, = =40 MeV,

fo=1.2 ~ 1.4 fm operating in both s- and '
d-sﬁatés, and an interaction in p-state
which again appears to increase in strength
as one goes to highgr shell model levels.
We also note that the interaction in the

p-state is defiunitely found to be attractive.

Much edditional work remains to be done. The effect
of including tensor forces in the odd-states has to be
investigated. It is of interest to considef'configurations
with three identical nucleons outside a closed shell and

compare the effective interactions in such configurations

with our results above, e.g. ia the pairs of nuclei 018,

19
0" ana 20, y5t

019 pair in the chapter III. Similar calculations may

also be carried out for heavier muclei such as Niso, 220

+« Of these pairs, we make study of 018,

H
2
ng and even Pb206 etc.



56

-0
*

One may expect that in\relatiqe orbital angular
momentum states with £ > 1, the effect of hard cores or
singularities in the realistic nucleon~-nucleon inter-
actions would not be of any critical importance for shell
model wavefunctions, and in such states the reactién
matrix and the potential matrix should give rather similar
results.' Thus to a reasonable apéroximation the contri-
bution to the energy of a state from such states with
L>1 in equation (2.12), may be calculated by using a
simple potential which fits well the low energy nucleon=-
nucleon data. Then the matrix elements in the s-state
may alone be considered as empirical parameters to be
determined so as to give a good fit to the observed level
spectrum. These matrix elements would then be the reaction
matrix elements in singlet s-states for finite muclei, and
may be compared with similar matrix elements calculated
from realistic potentials (local or non-local) that have
been proposed by many authors. It would not be too
difficult to evaluate the reaction matrix for singlet

s-states even for finite nuclei.

We wish to emphasise the approach and methodology
of this chapter, which we hope will enable a more useful
and flexible analysis to be made of the effective inter-
action when enough experimental data is avallable on both

T =1 and T = O states of two nucleon configurations.

000 0 000
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