


Chapter 1

INTRODUCTION AND
FUNDAMENTAL CONCEPTS

1.1 Fluid

Substances that flow when shear stress is applied are referred to be fluids. Gases

and liquids are both fluids.

1.2 Newtonian fluid

Newtonian fluids include substances like water, benzene, alcohol, & hexane, and

many more that correspond to Newton’s law of viscosity. Figure 1.1a illustrates the

linear relationship between the stress tensor and the rate of strain in a Newtonian

fluid. Gasoline, glycerin, air, water, and other Newtonian fluids are just a few

examples.

1.3 Non-Newtonian fluid

Non-Newtonian fluids, such as pastes, gels, polymer solutions, Carreau fluid, William

-son fluid, Micropolar fluid, etc., are those that oppose Newton’s law of viscosity.

Non-Newtonian Fluid is a fluid in which shear stress and rate of shear strain are not

linearly related as shown in figure 1.1b. Blood, grease, honey, shampoo, custard,

toothpaste, paint are few examples of non-Newtonian fluids.

1.4 Applications of Non-Newtonian fluid

The study of non-Newtonian fluids is very important since it has many engineering

and industrial applications. Such fluids are utilised specifically in the following
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(a) Newtonian fluid (b) Non-Newtonian fluid

Figure 1.1: Types of fluid

fields: prescription medications, physiology, material processing, fibre technology,

chemical and nuclear industries, oil reservoir engineering, and meals. Shampoos,

apple sauce, ketchup, blood at low shear rates, polymer solutions, paints, food

items, milk, coating of wires, grease, crystal development, and many more fluids are

examples of this type.

1.5 Steady and unsteady flow

A flow in which the various quantities like velocity, pressure and density at any point

do not change with time is said to be a steady flow. For steady flow, if u is the

velocity at a point then ∂u
∂t

= 0. A flow in which the parameter depends on time is

called unsteady flow.

1.6 Compressible and incompressible flow

It is usual to classify flows into two categories. Gases can be compressed, and changes

in temperature and pressure quickly affect their density. On the other hand, liquids

can technically be referred to as incompressible fluids because they are so difficult

to compress.

1.7 Laminar flow

Every liquid particle must follow a precise path for a flow to be classified as laminar,

viscous, or stream line flow. One particle’s route does not cross any other particle’s
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path.

1.8 Magnetohydrodynamics

The study of electrically conducting fluid flow in the presence of magnetic field is

known as magnetohydrodynamics (MHD).

1.9 Applications of Magnetohydrodynamics

This includes liquid metals like gallium, mercury, and sodium in addition to molten

iron. Petroleum, chemical, and metallurgical processing industries provide as the

best examples of the significance of MHD fluid flow over a deforming body. Ad-

ditional real-world applications include surface cooling in technology, wind-up roll

processes, and polymer film.

1.10 Magnetohydrodynamics Flow

Magnetohydrodynamics deals with the dynamics of fluids having nonnegligible elec-

trical conductivity which interact with a magnetic field. As a result, motion of an

electrically conducting fluid in the presence of a magnetic field, electric current is in-

duced in the fluid. An electrically conducting fluid moving in presence of a magnetic

field (transverse) which generate a force called the Lorentz force. This force has a

tendency to modify the initial motion of the conducting fluid. Moreover, the induced

currents generate their own magnetic field, which is added to the primitive magnetic

field. Thus there is an interlocking between the motion of the conductor and the

electromagnetic field. The study of MHD has significantly used both in nature and

in man-made devices such as cooling of nuclear reactors, metal-working processes,

MHD generators, MHD-based micro-coolers, MHD-based stirrer and MHD-based

micro-pumps and many more. One of the application of MHD can be seen in Figure

1.2.
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Figure 1.2: Application of MHD

1.11 Entropy

A measurement of molecular disorder or unpredictability is entropy. Finding ways

to regulate the usage of efficient energy is currently one of engineers’ and academics’

top priorities. The main goal in the field of thermal engineering is to maximise

device efficiency while minimising heat loss, friction, and dissipation during me-

chanical processes. Many energy-related issues, such as those involving thermal

energy, cooling of contemporary electronic systems, geothermal energy systems, and

solar power collectors, have drawn substantial interest to the research of entropy

generation minimization. The benchmark of the destruction of accessible work of a

considered structure as observed by Bejan [4, 5] is entropy generation analysis.

1.11.1 Local rate of entropy generation

S ′′′
gen =

κ

T 2
0

(∇T )2 + µ

T0
ϕ∗, (1.11.1)

where, T0 and ϕ
∗ are the absolute wall temperature and viscous dissipation, respec-

tively. The first term of right-hand side of the equation (1.11.1) defines irreversibility

due to heat transfer, whereas, the second term describes the entropy generation re-

lated with viscous dissipation.
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1.12 Williamson fluid

The Williamson fluid model is one type of non-Newtonian fluid that thins under

shear. Williamson examined the pseudoplastic materials flow, experimentally val-

idated the findings, and provided a model equation to describe the pseudoplastic

fluid flow. Consider the minimum and maximum viscosities (µ0 and µ∞) in the

Williamson fluid model.

1.12.1 Constitutive equation of Williamson fluid

Following Williamson fluid model [110] is defined as

S = −pI + τ (1.12.1)

τ =

[
µ∞ +

(µ0 − µ∞)

1− Γγ̇

]
A1, (1.12.2)

where

γ̇ =

√
π

2
; where π = trace(A2

1) (1.12.3)

for µ∞ = 0 and Γγ̇ < 1, thus the equation 1.12.2 converted as

τ =

[
µ0

1− Γγ̇

]
A1, (1.12.4)

using binomial expansion on equation 1.12.4, we get

τ = µ0 [1 + Γγ̇]A1, (1.12.5)

1.13 Carreau fluid

This kind of fluid is a generalised Newtonian fluid, meaning that its viscosity depends

on the rate of shear. The Carreau fluid behaves like a viscous Newtonian fluid at

low shear rates. Carreau fluid also behaves like a power-law fluid at intermediate

shear rates. Additionally, the Carreau fluid behaves like Newtonian fluid once again

along viscosity at high shear rates that are governed by power index n and infinite

viscosity shear rates.
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1.13.1 Carreau fluid model

For Carreau fluid model the constitutive equation is

S = −pI + τ (1.13.1)

τ =

[
µ∞ + (µ− µ∞)

{
1 + (Γγ̇)2

} pi−1

2

]
A1, (1.13.2)

where

γ̇ =

√
π

2
, (1.13.3)

Here π = trace (A2
1). We regard the equation as being Eq. (1.13.2) for the case

µ∞ = 0, therefore,

τ =

[
µ
{
1 + (Γγ̇)2

} pi−1

2

]
A1, (1.13.4)

Using binomial expansion, Eq. (1.13.4) becomes

τ = µ

(
1 + Γ2

(
pi − 1

2

)
γ̇2
)
A1, (1.13.5)

The fluid behavior can be characterized by the power-law index pi. For pi < 1,

pi > 1 and pi = 1, fluid is called shear thinning, shear thickening and Newtonian

respectively.

1.14 Micropolar fluid

Fluids having microstructure are known as micropolar fluids. They belong to a

group of fluids known as polar fluids because they have non-symmetric stress tensors.

Physically, micropolar fluids may imply fluids that disregard the deformation of the

fluid’s particles and suspend hard, randomly oriented particles in a viscous medium.

While Newtonian Navier-Stokes equations cannot adequately describe the properties

of fluid with suspended particles, the study of micropolar fluid has recently drawn

the attention of many academics.

1.14.1 Constitutive equations of micropolar fluid

The constitutive equations for micropolar fluids with stress tensor τij and couple

stress tensor Cij are given as Lukaszewicz [35]

τij = (−P + λvk,k) δij + µ (vi,j + vj,i) + µr (vj,i − vi,j)− 2µrϵmijGm, (1.14.1)

7



Chapter1

and

Cij = c0Gk,kδij + cd (Gi,j +Gj,i) + ca (Gj,i −Gi,j) , (1.14.2)

where λ and µ are the usual viscosity coefficients, µr is the dynamic microrotation

viscosity, and c0, ca, cb are constants, called coefficients of angular viscosities.

The symmetric part of the stress tensor τij in equation (1.14.1) is given by

τ
(S)
ij = (−P + λvk,k) δij + µ (vi,j + vj,i) , (1.14.3)

Using the stress tensor given by (1.14.1) or (1.14.3) and couple stress (1.14.2) as

well as an extra equation known as the angular momentum equation, which is given

by, local conservation rules of mass, linear and angular momentum, and energy for

polar fluids were found.

ρj∗
DG

Dt
= ∇⃗ · C⃗ij + ϵijkτjk, (1.14.4)

where j∗ is the microinertia coefficient.

1.15 Heat Transfer

Heat transfer is transfer of energy from higher temperature region to lower temper-

ature region, which is because of temperature difference. The basic driving force

for heat transfer is temperature variance. This transfer of heat continues till both

the regions attains same temperature. Heat transfer issues are involved in different

industrial technologies like power engineering, thermal transport etc.

Essentially, there are three types of Heat transfer

1.15.1 Conduction

It refers to the transfer of heat due to a temperature gradient and by the inter

molecular interactions in a stationary medium. In this model of heat transfer, heat

flows from a region of higher temperature to a region of lower termperature by

kinetic motion or by direct impact of the molecules irrespective of whether the body

is at rest or in motion. It takes place in solids, liquids and gases.

1.15.2 Radiation

Transfer of energy through electromagnetic waves is called radiation. It is the only

form of heat transfer that can occur in the absence of an intervening medium.
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Radiation which is emitted by a volume in fluid is due to the thermal agitation of

its composing molecules. Transfer of heat by radiation becomes important when the

temperature differences are high. It may be noted that radiation also depends on

the nature of the fluid.

1.15.3 Convection

It is the transfer of energy between a surface and a moving fluid which are at different

temperatures. It depends on the bulk movement of the fluid and therefore occurs in

liquids and gases.

Out of these three modes, in fluids, the heat transfer through convection is the most

predominant one. This can be categorized into three ways

Natural (Free) convection

Natural convection is the process of transferring heat energy through fluid circulation

brought on by buoyancy changes brought on by temperature variations. Natural

convection occurs when fluid near a heat source absorbs heat, loses density, and

rises. The fluid then moves to be replaced by the cooler fluid around it. Convection

current is created when the process of heating this cooler fluid continues. Natural

convection is driven by buoyancy, which results from variations in fluid density.

Examples of natural convection include sea wind creation, the rising plume of hot

air from a fire.

Forced convection

Transfer of heat which occurs due to movement of fluid from forces other than

buoyancy, i.e., due to forces, such as a fan or a pump or a moving boundary is

known as forced convection. It is encountered when designing or analyzing heat

exchangers, pipe flow, air conditioning apparatus etc.

Mixed convection

Mixed convection refers to heat transport in fluids that involves both buoyancy and

external forces. It is used in a variety of industrial and technical operations, includ-

ing the cooling of nuclear reactors during emergency shutdown, the exposure of solar

central receivers to wind, the cooling of electronic equipment by fans, and the place-

ment of heat exchangers in low-velocity environments. Also, it is widely accepted

that the dimensionless ratio of the Grashof number to the Reynolds number serves

as the controlling variable for laminar boundary layer free-forced convective flow.
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This dimensionless quantity in mixed convection situations denotes the proportion

of buoyancy forces to inertial forces within the boundary layer.

1.16 Mass Transfer

Mass transfer is the tendency of movement of molecules from one location having

high molecule concentration to another location having lower molecule concentra-

tion. Mass transfer is one of the most vital characteristics of chemical engineering.

The force behind mass transfer is concentration gradient. The mass transfer de-

pends on the diffusion of molecules one phase to another phase and also depends on

properties like vapour pressure, concentration etc.

1.17 Convective flows

A cold body warms up when it comes into contact with a hot body, and the hot

body cools down. The heated body’s internal energy is reduced during this process,

whereas the internal energy of the cool body is increased. As a result, energy moves

from the heated body to the cool body. We observe that no mechanical work is

performed during this energy transfer (neglect any change in volume of the body).

This is as a result of the absence of any displacements. A heated body can transfer

energy to a cold body without the use of mechanical means. Heat is the term used

to describe energy that is transmitted from one body to another without the need

of any mechanical effort. As a result, heat is a type of energy. Every time there is

a temperature difference, energy is in motion. After being transferred, it becomes

the receiving body’s internal energy. It should be obvious that only when energy is

being transmitted does the word ”heat” have any real meaning.

1.18 Thermal Conductivity and temperature gra-

dient

The term “heat current” refers to the flow of heat through any cross-section in time

▽t if a quantity of heat ▽Q is present. At steady state, it is discovered that the

heat current is inversely proportional to the length x and is proportional to the

cross-sectional area A and the temperature differential (T1 − T2) between the ends.

Thus
▽Q
▽t

= κ
A(T1 − T2)

x
(1.18.1)
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where κ, often known as the material’s “thermal conductivity,” is a constant for

the slab’s composition.

The equation can only be used to describe a thin layer of material that is per-

pendicular to the heat flow if the area of cross-section is not uniform or if the steady

state conditions are not attached. If A is the cross-sectional area at a given location,

dx is a thin layer that runs perpendicular to the direction of heat flow, and dT is the

temperature differential across the layer, the heat current through this cross-section

is

▽Q
▽t

= −κAdT
dx

(1.18.2)

The term “temperature gradient” refers to the value dT
dx
. The minus sign denotes a

negative dT
dx

along the direction of heat flow. The motion of the fluid is affected by

so many factors. The boundaries of the fluid affect the flow. The boundaries of the

fluid flow can be stationary boundaries, fluctuating boundaries, moving boundaries,

oscillatory boundaries and so on.

1.19 Governing equations

The laws of conservation of mass, momentum, energy, and mass flux are observed

in fluid flows.

1.19.1 Conservation of mass (Equation of continuity)

According to this equation, the excess of mass that flows in over the amount that

flows out must match the increase in fluid mass at the surface during any given

period of time. This results in the equation of continuity, which can be stated as

follows when represented using vector notations:

∂ρ

∂t
+∇ ·

(
ρV⃗
)
= 0 (1.19.1)

If a fluid’s density does not change with pressure, it is said to be incompressible.

The continuity equation has the following form when this happens

∇ · V⃗ = 0 (1.19.2)
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1.19.2 Conservation of Momentum (Equation of Motion)

The second law of motion, which states that the sum of all forces acting on a fluid

mass confined in an arbitrary volume fixed in space is equal to the time rate of

change in linear momentum, yields the Navier-Stokes equations of motion, which

govern the flow behaviour. When represented in vector notation, this law which

generates the equation of motion can be written as follows:

ρ
DV⃗

Dt
= ρfi −∇p+ µ∇2V⃗ (1.19.3)

where D
Dt

= ∂
∂t

+
(
V⃗ · ∇

)
is called the material derivative, ∇2 is the Laplacian

operator, and fi is the external body forces acting on the enclosed volume.

1.19.3 Conservation of Energy(Equation of Energy)

According to this law, the rate of increase of fluid energy in the volume V is equal to

the opposite of the energy’s outward flux, plus any energy produced by the body’s

work, surface forces, thermal conduction, and any other heat sources that may be

present.

This law, which results in the equation of energy can be represented as follows

for an incompressible fluid when written in vector notation:

ρCp
DT

Dt
= κ∇2T +

∂Q

∂t
+ ϕ (1.19.4)

where ϕ is the heat generated due to friction forces and is usually known as dissi-

pation function.

1.19.4 Conservation of Mass Flux (Equation of Concentra-

tion)

When it comes to the conservation of mass, a fluid with a density of ρ that is clearly

composed may well have been a blend of two or more fluids. Every component in the

mixture is treated according to the mass conservation principle. Mass transfer is the

name of this process. In the absence of constituent generation, the law’s statement

is as follows:
DC

Dt
= −∇ · J (1.19.5)

In the same way that the local temperature gradient drives the conduction heat

flux, the concentration gradient ∇C drives the diffusion flux vector J . This idea
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was introduced by the German Physiologist Fick. It is responsible for the analytical

developments of the fluid of mass transfer in the same way that Fourier’s idea on

heat conduction in the thermal boundary layer.

Fick’s law of mass diffusion is

J = −DM∇C (1.19.6)

A transport property called mass diffusivity, or DM (units m2s−1), has a numerical

value that is often dependent on the mixture’s pressure, temperature, and composi-

tion. Substituting J = −DM∇C in the mass conservation statements yields

DC

Dt
= DM∇2C (1.19.7)

1.20 Joule heating

Thermal energy is created when a current flows through an electrical conductor.

This effect is called the Joule heating. This thermal energy increases the conductor

material temperature. The heating effect was first studied by famous scientist James

Prescott Joule.

1.21 Viscous dissipation

Viscosity of the fluid converts some kinetic energy into thermal energy during the

motion of fluid particles. It is caused due to viscosity and as process is irreversible,

this is called viscous dissipation.

1.22 Dufour effect

Energy flux because of change in concentration of mass is called Dufour effect. In

many flow problems potential of chemical differs, and this drive the flow of heat,

this process is called Dufour process. This process is reciprocal phenomenon of Soret

effect. The name is Dufour is named after Swiss physicist L. Dufour.

1.23 Soret effect

When heat and mass transfer in a moving fluid occurs together, there is strong

connection between potentials and fluxes. It is observed that temperature difference
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creates mass fluxes which represents the thermal-diffusion effect or Soret effect. This

name Soret is named after the scientist Charles Soret. Thermal diffusion disrupts

the mixture arrangement’s equality, due to which concentration is improved and

temperature is reduced.

1.24 Chemical reaction

A chemical reaction is an interaction between one or more substances that results

in a chemical change and the production of one or more products that are distinct

from the reactants. The molecular diffusion of a species in such flows may occur

uniformly throughout a given phase and is known as homogenous reaction or it may

take place in a restricted region or within the boundary of a phase and is known as

heterogeneous reaction. Homogeneous reactions include those that occur between

gases, liquids, or solids. A reaction between a gas and a liquid, a gas and a solid or

a liquid and a solid is heterogeneous.

1.25 Forces acting on the fluid

A fluid element is under the influence of surface forces or body forces. The forces

acting at a distance on a fluid particle are known as body forces. Similar to this,

surface forces are the forces brought about by a particle coming into direct touch

with other liquid particles or solid walls or plates. In addition to other forces like

viscosity, pressure, gravity, and inertia forces, some of the body forces taken into

account in MHD problems include the electric force and the magnetic force.

1.25.1 Buoyancy

If a body is floating in a fluid and at rest, it will be in equilibrium in a vertical plane,

hence the sum of the forces acting on it must be equal to the sum of the forces acting

on it downward. Whether the body is submerged in a liquid or a gas, this is true.

Gravity will exert a downward force on the body, and the fluid in which the body

is floating will exert an upward force as a result. The buoyancy is the term for the

resulting upward pressure.

1.25.2 Boussinesq approximation

The Boussinesq approximation [27, 58] is of great significance in problems concerning

free convection and mixed convection flows. It is well known established fact that
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free convection as well as mixed convection flows occur due to changes in the fluid

density resulting from temperature gradients. In case of thermal boundary layers,

the Boussinesq approximation emphasizes that:

ρ∞ − ρ = ρβT (T − T∞) (1.25.1)

Here, βT is the coefficient of volume expansion for heat transfer and ρ∞ is the free

stream density. This is a thermodynamic property which provides a measure of the

amount by which the density varies in response to a change in fluid temperature at

a constant pressure. Similarly, for concentration boundary layers, the Boussinesq

approximation state that:

ρ∞ − ρ = ρβC (C − C∞) (1.25.2)

where, βC is the coefficient of volume expansion for mass transfer. When both

thermal and Solutal expressions (heat and mass transfer) are taken into account

in free convection boundary layers, the Boussinesq approximation is modified to

include the thermal and Solutal buoyancy forces as:

ρ∞ = ρ [1 + βT (T − T∞) + βC (C − C∞)] . (1.25.3)

1.26 Dimensionless Parameters

We can better understand the physical significance of a given phenomena by using

dimensionless parameters. Simple equations can be turned dimensionless by us-

ing certain dependent or independent characteristic values. The following provides

clarification on a few of the dimensionless parameters used in the thesis.

1.26.1 Reynolds Number

Reynolds number is the ratio of inertial forces to viscous forces. The importance

of Reynolds number in the dynamics of viscous fluids demonstrated by the British

Scientist Osborne Reynolds in 1883. It is denoted by Re and mathematically given

by

Re =
(ρU2/L)

(µU/L2)
=
UL

ν
(1.26.1)

where U is and characteristic velocity and L is characteristic length respectively.
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1.26.2 Eckert number

The non-dimensional parameter Ec is defined as

Ec =
U2

Cp (Tw − T∞)
(1.26.2)

In compressible fluids, the Eckert number determines the relative increase in temper-

ature of the fluid due to adiabatic compression. It can also retain in incompressible

fluid, if the frictional heat is to be considered.

1.26.3 Prandtl Number

The ratio of the kinematic viscosity to the thermal diffusivity i.e.

Pr =
(µ/ρ)

(κ/ρCp)
=
µCp

κ
(1.26.3)

1.26.4 Magnetic parameter

The ratio of electromagnetic force to viscous force is used to define it. It assesses the

relative significance of drag forces caused by viscous forces and magnetic induction

in flow.

M =
σB2L2

νρ
(1.26.4)

1.26.5 Thermal Grashof Number

The ratio of the thermal buoyancy to viscous force acting on a fluid. It often arises

in the study of situations involving free convection

GrT =
gβTL

3 (Tw − T∞)

ν2
(1.26.5)

1.26.6 Solutal Grashof Number

The ratio of the mass buoyancy force to viscous force acting on a fluid. It often

arises in the study of situations involving free convection

GrC =
gβCL

3 (Cw − C∞)

ν2
. (1.26.6)
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1.26.7 Thermal Biot number

Higher values of the Thermal Biot number increase the thermal heat transfer coef-

ficient included therein. When the Thermal Biot number is zero, there is no heat

transfer at the surface, and as it tends to infinity, the case of the desired surface

temperature is recovered.

λ1 =
hft
κ

√
ν

a
. (1.26.7)

1.26.8 Solutal Biot number

The Solutal mass transfer coefficient, which increases with Solutal Biot number

value, is contained in the Solutal Biot number. There is no mass transfer at the

surface when the Solutal Biot number is zero, and the case of the prescribed surface

concentration is recovered when the Solutal Biot number tends to infinity.

λ2 =
hfc
DM

√
ν

a
. (1.26.8)

1.26.9 Soret Number

It is noticed that, mass fluxes can also be created by temperature gradients and this

embodies thermal diffusion (Soret) effect. Soret number is represented by

Sr =
DT

DM

1.26.10 Schmidt number

Schmidt number is a non-dimensional parameter defined as the ratio of momentum

and mass diffusivity

Sc =
µCp

DM

(1.26.9)

1.26.11 Suction parameter

Suction/Injection parameter is a dimensionless quantity, which is defined as

fw = − vw√
aν

(1.26.10)

hence, if the fluid is injected through the surface, vw will be positive; if the fluid is

extracted from the surface, vw will be negative.
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1.26.12 Heat generation/absorption coefficient

Heat generation/absorption coefficient β is defined as

β =
Q∗

aρCp

(1.26.11)

Here β represents heat generation, as β > 0 and heat absorption, as β < 0.

1.26.13 Radiation parameter

The inclusion of radiation terms is applied by using Rosseland approximation, ra-

diative heat flux, qr is given by

qr = −4σ∗

3k∗
∂T 4

∂y
, (1.26.12)

So, Radiation parameter Rd is defined as

Rd =
4σ∗T 3

∞
k∗κ

(1.26.13)

1.26.14 Slip parameter

First order velocity slip parameter γ is defined as

γ = l

√
a

ν
. (1.26.14)

1.26.15 Brinkman number

Brinkman number (Br) is a dimensionless number related to heat conduction from

a wall to a flowing viscous fluid. Brinkman number is defined as

Br = PrEc (1.26.15)

1.26.16 Bejan number

Bejen number Be is ratio of heat and mass transfer irreversibilities to the total

entropy generation.
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1.26.17 Temperature Ratio parameter

Temperature ratio parameter θw is ratio of the temperature on the surface to the

free stream temperature. It is defined as the mathematically as

θw =
Tw
T∞

. (1.26.16)

1.26.18 Skin friction factor

It occurs between solid and fluid surface through which motion of fluid becomes

slow. Skin friction coefficient can be defined as,

Cf =
τw
ρU2

w

. (1.26.17)

1.26.19 Nusselt number

Nusselt number represents the dimensionless temperature gradient at the surface.

It is the ratio of convective heat transfer coefficient to conductive heat transfer

coefficient.

Nu =
hL

κ
(1.26.18)

1.26.20 Sherwood number

Sherwood number represents dimensionless concentration gradient at the surface.

It is the ratio of convective mass transfer coefficient to conductive mass transfer

coefficient.

Sh =
hmL

DM

(1.26.19)

1.26.21 Chemical Reaction parameter

The non-dimensional chemical reaction parameter is defined as

Kc =
kcx

Uw

. (1.26.20)

1.26.22 Unsteadiness parameter

The unsteadiness parameter is expressed as the ratio of unsteadiness positive con-

stant and initial stretching rate. It occurs in the research of unsteady fluid flow.
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The unsteadiness parameter A is given by

A =
α

a
(1.26.21)

1.26.23 Material parameter

The dimensionless viscosity ratio K known as Material parameter is defined as

K =
k

µ
. (1.26.22)

1.27 Homotopy Analysis Method

Two continuous functions from one topological space to another are called homotopic

if one can be continuously deformed into the other, such a deformation is called a

homotopy between the two functions.

The basic idea of HAM method [120] is to produce a succession of approxi-

mate solutions that tend to exact solution of the problem. Presence of auxiliary

parameters and functions in approximate solution, results in production of a fam-

ily of approximate solutions, rather than a single solution produced by traditional

perturbation methods.

The general approach used by HAM is to solve non-linear equation,

N (u(t)) = 0, t > 0, (1.27.1)

where N is a nonlinear operator and u(t) is unknown function of independent vari-

able t.

1.27.1 Zero-order deformation equation

Let u0(t) denote an initial guess of exact solution of Equation (1.27.1), ℏ ̸= 0 an

auxiliary parameter, H (t) ̸= 0 auxiliary function and L an auxiliary linear operator

with property,

L (f(t)) = 0 when f(t) = 0. (1.27.2)

The auxiliary parameter ℏ, auxiliary function H(t), and auxiliary linear operator

L play important roles within HAM to adjust and control convergence region of

solution series. Liao [120] constructs, using q ∈ [0, 1] as an embedding parameter,

so-called zero-order deformation equation,
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(1− q)L [Φ(t; q)− u0(t)] = qℏH(t)N [Φ(t; q)] , (1.27.3)

where Φ(t; q) is solution which depends on ℏ, H(t), L, u0(t) and q. When q = 0,

zero-order deformation Equation (1.27.3) becomes,

Φ(t; 0) = u0(t), (1.27.4)

when q = 1, since ℏ ̸= 0 and H(t) ̸= 0, then Equation (1.27.3) reduces to,

N [Φ(t; 1)] = 0. (1.27.5)

So, Φ(t; 1) is exactly solution of nonlinear Equation (1.27.1). Expanding Φ(t; q) in

Taylor’s series with respect to q, we have

Φ(t; q) = u0(t) +
∞∑

m=1

qmum(t), (1.27.6)

where,

um(t) =
1

m!

∂mΦ(t; q)

∂qm

∣∣∣∣
q=0

. (1.27.7)

If power series (1.27.6) of Φ(t; q) converges at q = 1, then we get following series

solution,

u(t) = u0(t) +
∞∑

m=1

um(t), (1.27.8)

where terms um(t) can be determined by so-called high-order deformation equations

which are described below.

1.27.2 High-order deformation equation

Define vector

u⃗n = {u0(t), u1(t), u2(t), ..., un(t)} . (1.27.9)

Differentiating Equation (1.27.3) m times with respect to embedding parameter q,

then setting q = 0 and dividing them bym!, we have so-calledmth-order deformation

equation,

L [um(t)− χmum−1(t)] = ℏH(t)Rm (u⃗m, t) , (1.27.10)

where

χm =

{
0, m ≤ 1,

1, otherwise
(1.27.11)
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Rm ( ⃗um−1, t) =
1

(m− 1)!

∂m−1N [Φ(t; q)]

∂qm−1

∣∣∣∣
q=0

. (1.27.12)

For any given nonlinear operator N , term Rm ( ⃗um−1, t) can be easily expressed by

Equation (1.27.12). Thus, we can gain u1(t), u2(t)... by means of solving linear

high-order deformation Equation (1.27.10) one after other in order. mth-order ap-

proximation of u(t) is given by,

u(t) =
m∑
k=0

uk(t). (1.27.13)

Liao [120] points out that so-called generalized Taylor’s series provides a way to

control and adjust convergence region through an auxiliary parameter ℏ such that

homotopy analysis method is particularly suitable for problems with strong non-

linearity. Abbasbandy [111] gives meaning of auxiliary parameter ℏ, and hence

uncovers essence of generalized Taylor’s expansion as kernel of homotopy analysis

method.

1.27.3 Convergence analysis

One of chief aims of HAM method is to produce solutions that will converge in a

much larger region than solutions obtained with traditional perturbation methods.

Solutions obtained using this method depend on our choice of linear operator L,
auxiliary function H(t), initial approximation u0(t) and value of auxiliary parameter

ℏ.
Choice of base functions influence convergence of solution series significantly.

For example, solution may be expressed as a polynomial or as a sum of exponential

functions. It is expected that, base functions that more closely mimic behavior

of actual solution should provide much better results than base functions whose

behavior differs greatly from behavior of actual solution. Choice of a linear operator,

auxiliary function, and initial approximation often determines base functions present

in solution. Having selected a linear operator, auxiliary function, and an initial

approximation, deformation equations can be developed and solved in series solution.

Solution obtained in this way, still contains auxiliary parameter ℏ. This solution

should be valid for a range of values of ℏ. In order to determine optimum value of

ℏ, ℏ curves of solution are plotted. These curves are obtained by plotting partial

sums um(t) or their first few derivatives evaluated at a particular value of t against

parameter ℏ . As long as equation (1.27.1) with given initial or boundary conditions

has a unique solution, partial sums and their derivatives will converge to correct
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solution for all values of ℏ for which solution converges. Which means that ℏ curves

will be essentially horizontal over range of ℏ for which solution converges. As long

as, ℏ is chosen in this horizontal region, solution must converge to actual solution

of equation (1.27.1).

1.28 Review of relevent literature

The study of MHD flow of Newtonian fluid and Non-Newtonian fluid is important

phenomena in science and technology fields. In this thesis, study of two dimensional

MHD flow of different types of Newtonian fluid and Non-Newtonian fluids likes, Car-

reau fluid, Micropolar fluid and Hybrid Williamson fluid with heat and mass transfer

are discussed. The governing equations are convert in system of Non-linear partial

differential equations. So, HAM has been applied for solving governing equations.

All the problems (related to the thesis) are briefly reviewed here.

Fluid dynamics is main branch of science which is used to solve many natu-

ral phenomena such as flying of birds, swimming of fishes and the development of

weather conditions to be studied technically [54]. The study of charge particle in

motion, the forces created by electric and magnetic field, and the relationship be-

tween them give rise to the subject Electrodynamics. The collective effects of these

three significant branches of science namely, Fluid dynamics, Thermodynamics and

electrodynamics give rise to the topic Magneto-fluid dynamics (MFD) which in the

form of definition read as The science of motion of electrically conducting fluid in

the presence of a magnetic field. The study of Magnetohydrodynemics (MHD) flow

of Non-Newtonian fluid has various application in science and engineering fields.

The set of equations that describe MHD are a combination of the Navier Stokes and

Maxwell’s equations. Research works in the magneto hydrodynamics have been ad-

vanced significantly during the last few decades in natural sciences and engineering

disciplines after the pioneer work of Hartmann [49] in liquid metal duct flows under

the strong external magnetic field. Recently, the study of MHD flow done by Kumar

and Gupta [97], Borrelli et al. [6] and Kataria et al. [44].

The diverse applications of non-Newtonian fluids in engineering and manufac-

turing processes have recently drawn researchers’ attention. These fluids have the

characteristic that the connection between stress and deformation rate is nonlin-

ear. Molten polymers, pulps, and Chyme are examples of this type of fluid. Owing

to the fact that it has numerous industrial uses, such as the extrusion of polymer

sheets, emulsion-coated sheets like photographic films, melts and solutions of high

molecular weight polymers, etc. Williamson [110] initially introduced Williamson

23



Chapter1

fluid model in his groundbreaking study on the flow of pseudo-plastic materials. He

created a model equation to describe the movement of pseudo-plastic fluids, and an

experiment to test this theory.

Carreau fluid model is another category of non-Newtonian fluids. Such a model

has applications in manufacturing processes such as aqueous, and melts. The shear

thickening and shear thinning properties of many non-Newtonian fluids are also

described by this model. Many scholars have dedicated their effort to explore the

properties of such models due to the wide range of applications of the Carreau model

in technological processes. The behavior of polymer suspensions in many flow is-

sues is compatible with the Carreau fluid. It is an example of a pure viscous fluid

whose viscosity varies with the rate of deformation. The fluid viscosity is based on

the shear rate in a model created by Carreau et al. [102]. Carreau fluid flow with

convective condition addressed by Madhu et al. [78]. Fluids having microstruc-

ture and an asymmetrical stress tensor are known as micropolar fluids. In terms

of physical representation, they are fluids made up of randomly oriented particles

suspended in a viscous medium. These fluids are used to study the movement of

colloidal suspensions, brain fluid, lubricants, and liquid crystals. Eringen [9, 10] cre-

ated the hypothesis of micropolar fluids. Chaudhary and Jha [106] examined MHD

Micropolar fluid flow past a vertical plate.

Numerous researchers have acknowledged the importance of studying magneto-

hydrodynamic (MHD) Natural Convection Flow with Synchronized Heat and Mass

Transfer Due to a Stretching Sheet due to its frequent occurrence in Geophysical

and Energy Transfer Problems, which include both Polymer and Metal Sheets. The

effect of a uniform transverse magnetic field on the natural convection flow of an

electrically conducting fluid past a vertical plate have been discussed by Raptis and

Singh [18]. Hossain [70] investigated MHD natural convection fluid flow in the pres-

ence of viscous dissipation and Joule heating effects. Öztop et al. [46] scrutinized

a numerical analysis on Natural convection flow of entropy optimized MHD fluid

with local heat source. Due to the widespread use of magnetohydrodynamic (MHD)

flow mixed convection heat transfer of fluid within the boundary layer in indus-

trial technology and geothermal applications, as well as the MHD power production

systems, this technology is of great interest. Selimefendigil and Öztop [33] studied

numerical study of mixed convection of non-Newtonian power law fluids under the

influence of an inclined magnetic field. Chamkha [7] examined effects of chemical

reaction in MHD mixed convective flow along a vertical stretching sheet. Later,

Akinshilo [3] found mixed convective heat transfer analysis of MHD fluid flow con-

sidering radiation effect through vertical porous medium. Also, Cho [25] discovered
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effect of inclined magnetic field on MHD Mixed convection heat transfer and entropy

generation of Cu-water fluid.

Ohmic heating is another name for joule heating. It is a process through which

heat is generated when an electric current flows through a conductor. Electric

stoves, electric heaters, incandescent light bulbs, electric fuses, electronic cigarettes,

thermistors, food processing, and many more industrial and technological activities

employ joule heating in various ways. The viscosity of the fluid will absorb energy

from the motion of the fluid and convert it into internal energy of the fluid in a

viscous fluid flow. It entails warming the fluid. Dissipation, often known as viscous

dissipation, is the term used to describe this largely irreversible process. Several

applications, including those where considerable temperature increases are seen in

polymer manufacturing flows like injection moulding or extrusion at high rates, are

of interest for viscous dissipation. Swain et al. [24] examined Viscous dissipation

and joule heating effects on MHD flow past a stretching sheet. Daniel et al. [140]

scrutinized double stratification effects on unsteady MHD mixed convection flow

of fluid with viscous dissipation and Joule heating effects. Characteristics of Joule

heating and viscous dissipation on three-dimensional flow of Oldroyd B nanofluid

with thermal radiation have been studied by Kumar et al. [55]. Das et al. [116]

explored effects of Joule heating and viscous dissipation on MHD mixed convective

slip flow over an inclined porous plate.

MHD flow past a heated surface have applications in manufacturing processes

such as the cooling of the metallic plate, nuclear reactor, extrusion of polymers etc.

Ali et al. [131] studied effects of thermal radiation and heat generation/absorption in

fluid flow regime. Rehman et al. [59] discussed effects of heat generation/absorption

on Carreau fluid flow in a thermally stratified medium. Reddy et al. [103] explored

radiation and heat generation/absorption on MHD nanofluid flow with heat and

mass transfer over an inclined vertical porous plate. Patel et al. [38] discovered

MHD Micropolar Nanofluid flow over a Stretching/Shrinking Sheet. Jena et al.

[119] studied effect of chemical reaction and heat source/sink on MHD viscoelastic

fluid flow over a vertical stretching sheet. Daniel et al. [139] examined the effects of

thermal radiation on MHD nanofluid flow over nonlinear stretching sheet. Ramzan

et al. [83] found effects of radiative and joule heating effects on the MHD micropolar

fluid flow with partial slip and convective boundary condition. Soomro et al. [32]

examined effetcs of velocity slip on MHD mixed convection Williamson nanofluid

flow along a vertical surface. Kayalvizhi et al. [73] explored effects velocity slip on

heat and mass fluxes of MHD flow over a stretching sheet. Ibrahim [137] examined

MHD fluid flow past a stretching sheet with convective boundary condition. Nayak
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et al. [81] studied MHD nanofluid flow over an stretching sheet with convective

boundary conditions. Lin et al. [141] studied about the effects of suction or injection

on laminar boundary layer flow of power law fluids past a flat surface with magnetic

field. Sharma et al. [61] explored Soret and Dufour effetcs on MHD Flow Considering

chemical Reaction. Imtiaz et al. [72] scrutinized the flow of viscous fluid by a curved

stretching surface with Soret and Dufour effects.

Numerous logical strategies like differential transformation method, least square

method, HAM are seen in the writing for tackling the physical and designing issues.

For a portion of the previously mentioned issues, mathematical methods have been

created to acquire the precise answer for quite a long time. In any case, because

of certain limitations, researchers have thought about scientific methodologies as

another option. Among the most popular techniques in this area, which is broadly

applied in science and designing, is bother procedure. It should be noticed that

bother procedure can’t be applied to emphatically nonlinear issues, as it unequivo-

cally relies on small/large parameters. There have been developed approaches like

Adomian deterioration strategy and variational emphasis technique that do not rely

on small/large parameters. The significant hindrance of these techniques is that they

can’t guarantee the assembly of series arrangement. Then again, HAM proposed by

Liao [121] is an overall insightful way to deal with getting series solution for un-

equivocally nonlinear conditions, which can give us a basic method for guaranteeing

the assembly of arrangement series.

26


	Declaration
	Certificate-1
	Certificate-2
	Dedication
	Acknowledgement
	Preface
	INTRODUCTION AND FUNDAMENTAL CONCEPTS 
	Fluid
	Newtonian fluid
	Non-Newtonian fluid
	Applications of Non-Newtonian fluid
	Steady and unsteady flow
	Compressible and incompressible flow
	Laminar flow
	Magnetohydrodynamics
	Applications of Magnetohydrodynamics
	Magnetohydrodynamics Flow
	Entropy
	Local rate of entropy generation

	Williamson fluid
	Constitutive equation of Williamson fluid

	Carreau fluid
	Carreau fluid model

	Micropolar fluid
	Constitutive equations of micropolar fluid

	Heat Transfer
	Conduction
	Radiation
	Convection

	Mass Transfer
	Convective flows
	Thermal Conductivity and temperature gradient
	Governing equations
	Conservation of mass (Equation of continuity) 
	Conservation of Momentum (Equation of Motion)
	Conservation of Energy(Equation of Energy)
	Conservation of Mass Flux (Equation of Concentration)

	Joule heating
	Viscous dissipation
	Dufour effect
	Soret effect
	Chemical reaction
	Forces acting on the fluid
	Buoyancy
	Boussinesq approximation

	Dimensionless Parameters
	Reynolds Number
	Eckert number
	Prandtl Number
	Magnetic parameter
	Thermal Grashof Number
	Solutal Grashof Number
	Thermal Biot number
	Solutal Biot number
	Soret Number 
	Schmidt number
	Suction parameter
	Heat generation/absorption coefficient
	Radiation parameter
	Slip parameter
	Brinkman number
	Bejan number
	Temperature Ratio parameter
	Skin friction factor
	Nusselt number
	Sherwood number
	Chemical Reaction parameter
	Unsteadiness parameter
	Material parameter

	Homotopy Analysis Method
	Zero-order deformation equation
	High-order deformation equation
	Convergence analysis

	Review of relevent literature

	Entropy optimized MHD fluid flow over a vertical stretching sheet
	Introduction of the Problem
	Novelty of the chapter
	Mathematical Formulation of the Problem
	Solution by Homotopy Analysis Method 
	Zero-th order deformation
	i-th order deformation 
	Convergence Analysis

	Result and Discussion
	Conclusion

	Effect of nonlinear radiation on MHD fluid flow considering mass transfer
	Introduction of the Problem
	Novelty of the Chapter
	Mathematical Formulation of the Problem
	Solution by Homotopy Analysis Method
	Convergence Analysis

	Result and Discussion
	Conclusion

	Soret and Dufour impact on MHD Williamson fluid flow with varying viscosity
	Introduction of the Problem
	Novelty of the Chapter
	Mathematical Formulation of the Problem
	Solution by Homotopy Analysis Method
	Convergence Analysis

	Result and Discussion
	Conclusion

	MHD Carreau fluid flow over nonlinear stretching sheet
	Introduction of the Problem
	Novelty of the Chapter
	Mathematical Formulation of the Problem
	Solution by Homotopy Analysis Method
	Zero-th order deformation
	i-th order deformation

	Convergence Analysis
	Result and discussion
	Conclusion

	Unsteady MHD flow of a Micropolar fluid over a stretching sheet
	Introduction of the Problem
	Novelty of the Chapter
	Mathematical Formulation of the Problem
	Solution by Homotopy Analysis Method
	Convergence Analysis

	Result and Discussion
	Conclusion

	 Entropy optimized unsteady MHD Williamson fluid flow considering viscous dissipation effects
	Introduction of the Problem
	Novelty of the Chapter
	Mathematical Formulation of the Problem
	Solution by Homotopy Analysis Method
	Zero-th order deformation
	i-th order equation
	Convergence Analysis

	Result and Discussion
	Conclusion

	EMHD fluid flow with slip effects
	Introduction of the Problem
	Novelty of the Problem
	Mathematical Formulation of the Problem
	Solution by Homotopy Analysis Method 
	Zero-th order deformation
	i-th order deformation

	Convergence Analysis
	Result and Discussion
	Conclusion
	Conclusion of the Thesis
	Future Works
	Published/Accepted Research Articles
	Communicated Research work
	Presented Research Work in Conferences

	Bibliography

