


Chapter 5

MHD Carreau fluid flow over
nonlinear stretching sheet

Mathematically, the non-Newtonian behaviour of blood in narrow arteries is exam-

ined by treating the blood as a Carreau fluid. Stretching a sheet facilitates heat and

mass transfer, which has numerous applications in the polymer sector, including

lamination, spinning fibres, and other processes.

5.1 Introduction of the Problem

Because of the distinct properties, nature contains a plethora of non-Newtonian

substances. The majority of the fluids are non-Newtonian in nature, means The

resistance of a non-Newtonian fluid varies with the rate of shear strain. Carreau et

al. [102] developed a model where fluid viscosity is dependent on the shear rate.

Madhu et al. [78] addressed MHD Carreau fluid flow with heat transfer. Nazir et

al. [134] explores the transport phenomenon of temperature dependent diffusion

coefficients in Carreau fluid.

Extrusion, glass blowing, hot rolling, the production of plastic and rubber sheets,

the growth of crystals, continuous cooling, and fibre spinning are just a few manu-

facturing processes that largely rely on the understanding of flow and heat transmis-

sion caused by a stretching sheet. Siddheshwar et al. [104, 105] studied a stretching

sheet problem involving different types of MHD fluid flow. Aslani et al. [53] explored

MHD micropolar fluid flow with radiation. Mabood et al. [30] analyzed nonlinear

radiation effects on MHD fluid flow. Hussain et al. [71] found the significance of

nonlinear radiation and convective boundary conditions on MHD Casson fluid flow.

Nonlinear radiation effect on Williamson fluid flow is evaluated by Bibi et al. [65].

Gireesha et al. [21, 22] scrutinized nonlinear radiation impact on various fluid flow

with heat transfer. Gupta et al. [118] analyzed nonlinear radiation impact on 2D
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Williamson fluid flow. Ullah et al. [19] explained non-linear thermal radiation im-

pact on Carreau fluid flow. Mahabaleshwar et al. [133] scrutinized impact of slip

condition on liquid flow. Ajibade and Umar [1] studied viscous dissipation impact

on an incompressible viscous fluid flow with varying viscosity. Radiation impact on

flow of Carreau liquid with varying viscosity is analyzed by Sultan et al. [31]. Dada

and Onwubuoya [67] investigated thermal conductivity and varying viscosity impact

on Williamson fluid flow. Idowu et al. [11] explored effect of variable viscosity on

MHD Natural convective heat and mass transfer flow of Casson fluid.

5.2 Novelty of the Chapter

Purpose of this chapter is to investigate analytic solution of Soret and Duour effects

on MHD Carreau fluid flow over stretching/Shrinking sheet considering variable

visocity. Solution of the problem is found by Homotopy analysis method.

5.3 Mathematical Formulation of the Problem

Consider 2D steady, incompressible MHD Carreau fluid flow over a shrinking or

stretching sheet is considered. Stretching/shrinking sheet is taken along x axis.

Magnetic field B = B0x
m−1

2 is implemented perpendicular to the surface, where

Uw(x) = a∗xm and Ue(x) = b∗xm. Non-linear thermal radiation, Soret and Dufour

effects are taken into account.

The basic equations of MHD are given by

∇ · V = 0, (5.3.1)

ρ
dV

dt
= ∇ · S + FL (5.3.2)(

dT

dt

)
=

1

ρCp

∇ · (κ∇T )− 1

ρCp

∇ · qr +∇ ·
(
DMKT

CpCs

∇C
)
, (5.3.3)

dC

dt
= ∇ · (DM∇C) +∇ ·

(
DMKT

Tm
∇T
)
, (5.3.4)

where FL is consisting the Lorentz force described as

FL = J × B (5.3.5)

and J = σ (E + V × B), now if we consider E = 0, then J = σ (V × B).
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Now, Continuity Eq. (5.3.1) simplified as:

∂u

∂x
+
∂v

∂y
= 0, (5.3.6)

Now, stress tensors are given as

τxx = 2µ∗∂u

∂x

(
1 + Γ2

(
pi − 1

2

)(
∂u

∂y

)2
)
, τyy = 2µ∗∂v

∂y

(
1 + Γ2

(
pi − 1

2

)(
∂u

∂y

)2
)
,

(5.3.7)

τyx = τxy = µ∗
(
∂u

∂y
+
∂v

∂x

)(
1 + Γ2

(
pi − 1

2

)(
∂u

∂y

)2
)
. (5.3.8)

then,

ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
= −∂P

∂x
+
∂τxy
∂y

+
∂τxx
∂x

− σB2u,

ρ

(
u
∂v

∂x
+ v

∂v

∂y

)
= −∂P

∂y
+
∂τyy
∂y

+
∂τyx
∂x

,

(5.3.9)

In polar coordiantes, Eq. (5.3.2) simplified as below,

u
∂u

∂x
+ v

∂u

∂y
=

1

ρ

∂

∂y

(
µ∗(T )

∂u

∂y

)
− 1

ρ

∂P

∂x
+ 3

µ∗(T )

ρ

(
pi − 1

2

)
Γ2

(
∂u

∂y

)2
∂2u

∂y2

+
1

ρ

(
pi − 1

2

)
Γ2∂µ

∗(T )

∂y

(
∂u

∂y

)3

− σB2

ρ
u, (5.3.10)

because the flow field is uniform at a suitably large distance from the edge surface,

so in the free stream u = Ue = b∗xm, then the Eq. (5.3.10) reduced to

1

ρ

∂P

∂x
= −Ue

dUe

dx
− σB2

ρ
Ue, (5.3.11)

eliminating ∂P
∂x

in Eq. (5.3.10) by using Eq. (5.3.11), we finally obtain

u
∂u

∂x
+v

∂u

∂y
= Ue

dUe

dx
+
σB2

ρ
Ue+

1

ρ

∂

∂y

(
µ∗(T )

∂u

∂y

)
+3

µ∗(T )

ρ

(
pi − 1

2

)
Γ2

(
∂u

∂y

)2
∂2u

∂y2

+
1

ρ

(
pi − 1

2

)
Γ2∂µ

∗(T )

∂y

(
∂u

∂y

)3

− σB2

ρ
u, (5.3.12)

90



Chapter5

reduced form of energy and concentration equations (5.3.3) and (5.3.4) are

u
∂T

∂x
+ v

∂T

∂y
+

1

ρCp

∂qr
∂y

− κ

ρCp

∂2T

∂y2
− DMKT

CpCs

∂2C

∂y2
= 0, (5.3.13)

u
∂C

∂x
+ v

∂C

∂y
− DMKT

Tm

∂2T

∂y2
−DM

∂2C

∂y2
= 0, (5.3.14)

Now, continuity equation is

∂u

∂x
+
∂v

∂y
= 0, (5.3.15)

Momentum equation is

u
∂u

∂x
+ v

∂u

∂y
− Ue

dUe

dx
− 1

ρ

∂

∂y

(
µ∗(T )

∂u

∂y

)
− 3

µ∗(T )

ρ

(
pi − 1

2

)
Γ2

(
∂u

∂y

)2
∂2u

∂y2

− 1

ρ

(
pi − 1

2

)
Γ2∂µ

∗(T )

∂y

(
∂u

∂y

)3

− σB2

ρ
(Ue − u) = 0, (5.3.16)

Energy equation is

u
∂T

∂x
+ v

∂T

∂y
+

1

ρCp

∂qr
∂y

− κ

ρCp

∂2T

∂y2
− DMKT

CpCs

∂2C

∂y2
= 0, (5.3.17)

Concentration equation is

u
∂C

∂x
+ v

∂C

∂y
− DMKT

Tm

∂2T

∂y2
−DM

∂2C

∂y2
= 0, (5.3.18)

to the boundary conditions

u = Uw (x) , v = vw (x) , C = Cw,
∂T

∂y
= −q0

κ
x

m−1
2 , at y = 0,

u = Ue (x) , C → C∞, T → T∞, as y → ∞.

 (5.3.19)

Heat flux by Rosseland [126] is:

qr = −4σ∗∂T 4

3k∗∂y
(5.3.20)

expanding T 4 beyond the first degree in (T − T∞) with the help of the Taylor series

about T∞ and discard higher order terms, we get

T 4 + 3T 4
∞ − 4TT 3

∞
∼= 0.
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then,

qr = −16σ∗T 3
∞

3k∗
∂T

∂y
(5.3.21)

Linear radiative heat flux is represented by the equation (5.3.21). However, the

intention of this research is to explore the effect of nonlinear radiation, so by changing

T 3
∞ with T 3 in Eq.(5.3.21), we get

qr = −16σ∗T 3

3k∗
∂T

∂y
(5.3.22)

Adegbie et al. [112] provide a mathematical model of temperature dependent vis-

cosity

µ (T ) = µ∗ [1 + h1 (T∞ − T )] , (5.3.23)

where, h1 is constant and its value depends on the fluid.

The introduction of similarity transformations

u = b∗xmf ′ (η) , v = −
√
b∗νx

m−1
2

[(
m− 1

2

)
ηf ′ (η) +

(
m+ 1

2

)
f (η)

]
,

η =

√
b∗

ν
yx

m−1
2 , ϕ (η) =

C − C∞

Cw − C∞
, θ (η) =

√
b∗

ν

κ

q0
(T − T∞),


(5.3.24)

Inserting Eq. (5.3.24) in Eqs. (5.3.15)-(5.3.18) and (5.3.19), Equation (5.3.15) is

identically satisfied and Eqs. (5.3.16)-(5.3.18) and (5.3.19) will be

(1− ζθ)

[
1 + 3

(
pi − 1

2

)
We2f ′′f ′′

]
f ′′′ −m(f ′f ′ − 1)−M2(f ′ − 1)

− ζ

[
1 +

(
pi − 1

2

)
We2f ′′f ′′

]
f ′′θ′ +

(
1 +m

2

)
ff ′′ = 0, (5.3.25)

(
1 +

4

3
Rd {(θw − 1) θ + 1}3

)
θ′′ +DuPrϕ′′ + 4Rd ((θw − 1) θ + 1)2 (θw − 1) θ′θ′

+ Pr

(
m+ 1

2

)
θ′f = 0, (5.3.26)

ϕ′′ +
m+ 1

2
Scfϕ′ + ScSrθ′′ = 0, (5.3.27)

f (η) = fw, f
′ (η) = B, θ′ (η) = −1, ϕ (η) = 1, at η = 0, (5.3.28)

f ′ (η) = 1, θ (η) = ϕ (η) = 0. as η → ∞. (5.3.29)
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hereWe, B,M , fw, θw, ζ, Du, Sr, Pr and Sc are given asWe =

√
Γ2b∗3x3m−1

ν
, B =

a∗

b∗
,M =

√
σB2

0

ρb∗
, fw =

−2vw√
b∗νx

m−1
2 (m+ 1)

, θw = 1+

√
ν

b∗
q0
κ

1

T∞
, ζ = h1

√
ν

b∗
q0
κ
, Pr =

µCp

κ
,Sc =

ν

DM

, Rd =
4σ∗T 3

∞
k∗κ

, Du =
DMKT

νCpCs

(Cw − C∞)√
ν

b∗
q0
κ

, Sr =
DMKT

νTm

√
ν
b∗

q0
κ

(Cw − C∞)
,

Skin friction coefficient Cfx, Nusselt count Nux and Sherwood count Shx are the

physical measures of concern in this study, and they are described as,

Cfx =τw (x) ρU2
e , (5.3.30)

where, surface shear stress τw (x) = µ(T )

{
1 + 3Γ2

(
pi − 1

2

)(
∂u

∂y

)2
}
∂u

∂y

∣∣∣∣∣
y=0

,

(5.3.31)

then CfRe
1
2
x = (1− ζθ(0))

[
1 + 3

(
pi − 1

2

)
We2f ′′ (0) f ′′ (0)

]
f ′′ (0) ,

(5.3.32)

Nux =
xqw (x)

κ (T − T∞)
, (5.3.33)

where, surface heat flux qw (x) =

(
− κ

∂T

∂y
+ qr

)
y=0

(5.3.34)

then NuxRe
− 1

2
x =

(
1 + 4

3
Rd {(θw − 1) θ(0) + 1}3

)
θ (0)

, (5.3.35)

Shx =
xqm

DM(Cw − C∞)
, where surface mass flux qm = −DM

∂C

∂y

∣∣∣∣
y=0

, (5.3.36)

then ShxRe
− 1

2
x = −ϕ′ (0) , (5.3.37)

where Re
1
2
x =

√
b∗

ν
x

m+1
2 .

5.4 Solution by Homotopy Analysis Method

Liao [121] established HAM. Initial guesses and linear operators are described in that

kind of a manner that they gratify the boundary conditions given in Eq. (5.3.19).
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Initial guesses

f0 (η) = η + (fw +B − 1) + (1−B) e−η, θ0 (η) = e−η, ϕ0 (η) = e−η, (5.4.1)

and linear operators

Lf =
∂3f

∂η3
+
∂2f

∂η2
, Lθ =

∂2θ

∂η2
+
∂θ

∂η
, Lϕ =

∂2ϕ

∂η2
+
∂ϕ

∂η
, (5.4.2)

Satisfying

Lf

(
k1 + k2η + k3e

−η
)
= 0,Lθ

(
k4 + k5e

−η
)
= 0,Lϕ

(
k6 + k7e

−η
)
= 0. (5.4.3)

where arbitrary constants are ki, (i = 1, 2, . . . , 7).

5.4.1 Zero-th order deformation

(1− q)Lf [F (η; q)− f0 (η)] = qℏfNf [F (η; q)] , (5.4.4)

(1− q)Lθ [Θ (η; q)− θ0 (η)] = qℏθNθ [Θ (η; q)] , (5.4.5)

(1− q)Lϕ [Φ (η; q)− ϕ0 (η)] = qℏϕNϕ [Φ (η; q)] . (5.4.6)

where q ∈ [0, 1] and non-zero auxiliary parameters are ℏf , ℏθ, ℏϕ.

NF [F (η; q)] = (1− ζΘ)

[
1 + 3

(
pi − 1

2

)
We2

∂2F

∂η2
∂2F

∂η2

]
∂3F

∂η3
−M2

(
∂F

∂η
− 1

)
−m

(
∂F

∂η

∂F

∂η
− 1

)
−ζ
[
1 +

(
pi − 1

2

)
We2

∂2F

∂η2
∂2F

∂η2

]
∂2F

∂η2
∂Θ

∂η
+

(
m+ 1

2

)
F
∂2F

∂η2
,

(5.4.7)

Nθ [Θ (η; q)] =

(
1 +

4

3
Rd {1 + (θw − 1)Θ}3

)
∂2Θ

∂η2
+ Pr

(
m+ 1

2

)
F
∂Θ

∂η

+DuPr
∂2Φ

∂η2
+ 4Rd (1 + (θw − 1)Θ)2 (θw − 1)

(
∂Θ

∂η

)2

, (5.4.8)

Nϕ [Φ (η; q)] =
∂2Φ

∂η2
+ Sc

(
m+ 1

2

)
F
∂Φ

∂η
+ ScSr

∂2Θ

∂η2
, (5.4.9)
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boundary conditions subject to

F ′ (0; q) = B, F (0; q) = fw, Φ (0; q) = 1, Θ′ (0; q) = −1, (5.4.10)

F ′ (+∞; q) = 1, Φ (+∞; q) = 0, Θ(+∞; q) = 0. (5.4.11)

where

F (η; 0) = f0 (η) , Θ(η; 0) = θ0 (η) , Φ (η; 0) = ϕ0 (η) , (5.4.12)

F (η; 1) = f (η) , Θ(η; 1) = θ (η) , Φ (η; 1) = ϕ (η) , (5.4.13)

If q is vary from 0 to 1, then we get

F (η; q) = f0 (η) +
∞∑
i=1

fi (η) q
i, (5.4.14)

Θ (η; q) = θ0 (η) +
∞∑
i=1

θi (η) q
i, (5.4.15)

Φ (η; q) = ϕ0 (η) +
∞∑
i=1

ϕi (η) q
i. (5.4.16)

where

fi (η) =
1

i!

∂if(η; q)

∂η i

∣∣∣∣
q=0

, θi (η) =
1

i!

∂iθ(η; q)

∂η i

∣∣∣∣
q=0

, ϕi (η) =
1

i!

∂iϕ(η; q)

∂η i

∣∣∣∣
q=0

(5.4.17)

The convergence of the series is largely reliant on ℏf , ℏθ and ℏϕ. If non-zero ℏf ,
ℏθ and ℏϕ are selected in such a manner that Equation (5.4.16) converge at q = 1.

f (η) = f0 (η) +
∞∑
i=1

fi (η), θ (η) = θ0 (η) +
∞∑
i=1

θi (η), ϕ (η) = ϕ0 (η) +
∞∑
i=1

ϕi (η)

(5.4.18)

5.4.2 i-th order deformation

The ith order deformation equations are

Lf [fi (η)− χifi−1 (η)] = ℏfRf,i(η),

Lθ [θi (η)− χiθi−1 (η)] = ℏθRθ,i (η) ,

Lϕ [ϕi (η)− χiϕi−1 (η)] = ℏϕRϕ,i(η),

 (5.4.19)

and
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fi (0) = f ′
i (0) = ϕ′ (0) = θ′ (0) = 0, f ′

i (∞) = ϕ (+∞) = 0, θ (+∞) = 0. (5.4.20)

where

Rf,i (η) = f ′′′
i−1 − 3ζ

(
pi − 1

2

)
We2

i−1∑
j=0

f ′′′
i−1−j

j∑
l=0

f ′′
j−l

l∑
p=0

f ′′
p θl−p

− ζ
i−1∑
j=0

f ′′
i−1−jθ

′
j − ζ

(
pi − 1

2

)
We2

i−1∑
j=0

f ′′′
i−1−j

j∑
l=0

f ′′
j−l

l∑
p=0

f ′′
p θ

′
l−p

+M2(1− f ′
i−1) +m

(
1−

i−1∑
j=0

f ′
i−1−jf

′
j

)
+

(
m+ 1

2

) i−1∑
j=0

fi−1−jf
′′
j (5.4.21)

Rθ, i (η) =
4

3
Rd (θw − 1)3

{
i−1∑
j=0

θ′′i−1−j

j∑
l=0

θj−l

l∑
p=0

θl−pθp

}
+

(
1 +

4

3
Rd

)
θ′′i−1

+ 4Rd (θw − 1)3
{

i−1∑
j=0

θ′i−1−j

j∑
l=0

θ′j−l

l∑
p=0

θl−pθp

}
+DuPrϕ′′

i−1

+ 4Rd (θw − 1)
i−1∑
j=0

θ′′i−1−jθj + 4Rd (θw − 1)2
i−1∑
j=0

θ′′i−1−j

j∑
l=0

θj−lθl

+ 4Rd (θw − 1)
i−1∑
j=0

θ′i−1−jθ
′
j + 8Rd (θw − 1)2

i−1∑
j=0

θ′i−1−j

j∑
l=0

θ′j−lθl

+ Pr

(
m+ 1

2

) i−1∑
j=0

θ′i−1−jfj, (5.4.22)

Rϕ,i (η) = ϕ′′
i−1 +

(
m+ 1

2

)
Sc

i−1∑
j=0

fjϕ
′
i−1−j + SrScθ′′i−1, (5.4.23)

with

χi =

{
0, i < 1

1, i ≥ 1
(5.4.24)

The general solutions of Equation (5.4.19) are given by,

fi (η) = f ∗
i (η) + k1 + k2η + k3e

−η, (5.4.25)

θi (η) = θ∗i (η) + k4 + k5e
−η, (5.4.26)

ϕi (η) = ϕ∗
i (η) + k6 + k7e

−η, (5.4.27)

where the constants kj, (j = 1, 2, . . . , 7) can be found by the boundary conditions.
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Table 5.1: Comparison of numerical and analytical outcomes when We = 0.05, pi =
0.2,M = 0.04, fw = 0.4,m = 0.6, P r = 0.7, ζ = 0.4, B = 0.5 for various values of η.

HAM Solution [Present] BVP 4C [128]

η f f ′ −θ′ ϕ f f ′ −θ′ ϕ

0.0000 0.4000 0.5000 1.0000 1.0000 0.4000 0.5000 1.0000 1.0000
0.0045 0.4023 0.5038 0.9990 0.9984 0.4023 0.5035 0.9990 0.9984
0.0090 0.4045 0.5076 0.9981 0.9968 0.4045 0.5070 0.9981 0.9968
0.0135 0.4068 0.5114 0.9971 0.9952 0.4068 0.5105 0.9971 0.9952
0.0180 0.4091 0.5151 0.9961 0.9936 0.4091 0.5139 0.9961 0.9936
0.0225 0.4115 0.5180 0.9951 0.9921 0.4115 0.5174 0.9951 0.9921
0.0270 0.4138 0.5226 0.9941 0.9905 0.4138 0.5208 0.9941 0.9905
0.0315 0.4161 0.5263 0.9931 0.9889 0.4161 0.5242 0.9931 0.9889
0.0360 0.4185 0.5300 0.9921 0.9873 0.4185 0.5275 0.9921 0.9873
0.0405 0.4209 0.5336 0.9911 0.9857 0.4209 0.5309 0.9911 0.9857
0.0450 0.4233 0.5373 0.9901 0.9841 0.4233 0.5342 0.9901 0.9841

5.5 Convergence Analysis

For the appropriate choice of ℏf , ℏθ and ℏϕ HAM solutions converges. f ′′(1), θ
′
(1)

and ϕ
′
(1) are plotted upto the suitable approximations. We can choose ℏf = −0.4,

ℏθ = −0.5 and ℏϕ = −1.0 from Figure 5.1.

5.6 Result and discussion

To gain a clear physical understanding of the current problem, computations for

variations in the pertinent parameters are performed using the Mathematica soft-

ware, and the results are graphically illustrated in Figures 5.2 - 5.22. Comparison

of the current outcome and available published outcome using BVP 4C by Abbas

et al. [128] are given in Table 5.1 and Table 5.2, for the purpose of verifying the

accuracy of the used HAM. The comparision contains agreement. As a result, we

are sure that the existing results are accurate.

Figure 5.2 illustrates similar behaviour for variable viscosity parameter ζ on ve-

locity profile f ′(η) with shrinking and stretching parameter B. With increasing

values of ζ, f ′(η) increases. Opposite behaviour for M on f ′(η) in the shrinking

and stretching case can be viewed in Figure 5.3. When M increases, f ′(η) increases

for shrinking parameter and decreases for stretching parameter while the other pa-

rameters are kept fixed. Lorentz force opposes the pressure acting on the opposite

direction of the fluid flow. Here friction force slows fluid’s movement. Figure 5.4
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Figure 5.1: ℏ-curve for range f ′′, θ′ and ϕ′.

scrutinized effect of m on f ′(η). It shows that f ′(η) enhances with m for the both

shrinking/stretching cases. The consequences of pi on the f ′(η) is depicted in Figure

5.5. For B < 0, f ′(η) decreases while increases for B > 0. Figure 5.6 examined

effect of fw on the f ′(η), when the other parameters are held constant, for increasing

values of fw, f
′(η) increases in both shrinking and stretching. Figure 5.7 depicts the

impact of We on the f ′(η). In the case of shrinking, f ′(η) raises with a rise in We,

whereas the reverse sort of behaviour has been witnessed in the case of stretching.

The consequence of M on θ(η) is depicted in Figure 5.8. A rise in M has been

evidenced to raise θ(η). Figure 5.9 shows that θ(η) declined for a large amount of m.

The impact of Rd on θ(η) is demonstrated in Figure 5.10. It is worth noting that the

θ(η) increased for large values of Rd. The impact of θw on θ(η) is explained in Figure

5.11. We can see that for large values of θw, θ(η) rises. The variation of various

values of Du on θ(η) is depicted in Figure 5.12. It is discovered that the diffusion

thermal effect has a significant impact on fluid temperature. For increasing values of

Du, θ(η) increases. Figure 5.13 demonstrates how Sc influences ϕ(η). A reduction

in ϕ(η) is encountered with increasing values of Sc, mass diffusivity decreases. The

variation of different values of Sr on ϕ(η) is depicted in Figure 5.14. ϕ(η) rises as

the value of Sr rises.

Figures 5.15 and 5.16 demonstrate the trend of S on friction factor for shrinking
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Table 5.2: Comparison of numerical and analytical outcomes when We = 0.5, pi =
0.2,M = 0.04, fw = 0.4,m = 0.6, P r = 2, ζ = 0.4, B = 0.5 for various values of η.

HAM Solution [Present] BVP 4C [128]

η f f ′ −θ′ ϕ f f ′ −θ′ ϕ

0.0000 0.4000 0.5000 1.0000 1.0000 0.4000 0.5000 1.0000 1.0000
0.0015 0.4008 0.5012 0.9991 0.9995 0.4008 0.5012 0.9991 0.9995
0.0030 0.4015 0.5024 0.9981 0.9989 0.4015 0.5024 0.9981 0.9989
0.0045 0.4023 0.5037 0.9972 0.9984 0.4023 0.5036 0.9972 0.9984
0.0060 0.4030 0.5049 0.9962 0.9979 0.4030 0.5048 0.9962 0.9979
0.0075 0.4038 0.5062 0.9953 0.9974 0.4038 0.5060 0.9953 0.9974
0.0090 0.4045 0.5074 0.9943 0.9968 0.4045 0.5072 0.9943 0.9968
0.0105 0.4053 0.5086 0.9934 0.9963 0.4053 0.5084 0.9934 0.9958
0.0120 0.4061 0.5099 0.9924 0.9958 0.4061 0.5096 0.9924 0.9958
0.0135 0.4068 0.5111 0.9914 0.9952 0.4068 0.5108 0.9914 0.9952
0.0150 0.4076 0.5123 0.9905 0.9947 0.4076 0.5120 0.9905 0.9947

cases in 2-dimensions and 3-dimensions. Friction factor enhances as S rises in the

shrinking case, and the reverse trend can be spotted in Figures 5.17 and 5.18 for

the stretching case in 2-dimensions and 3-dimensions. Figure 5.19 and 5.20 display

the effect of θw on the Nusselt count in 2-dimensions and 3-dimensions, respectively.

The Nusselt count is rising for θw. Figure 5.21 and 5.22 demonstrate the trend of Sr

on Sherwood count in 2-dimensions and 3-dimensions respectively. Sherwood count

rises as Sr boosts. The numerical output of skin friction and the Nusselt count are

described in Table 5.3 and 5.4.
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Figure 5.2: f ′ via ζ

Table 5.3: Comparison of Skin friction for stretching/shrinking case and different
values of pi, fw,m,M, ζ.

pi m ζ M fw CfxRe
1
2
x for B = −2.0 CfxRe

1
2
x for B = 2.0

1.0 0.1 0.1 0.1 0.1 1.3657 -0.9071
2.0 1.3843 -0.9219
3.0 1.3933 -0.9365

0.1 1.3657 -0.9071
0.2 1.3926 -1.0195
0.3 1.4194 -1.1326

0.1 1.3657 -0.9071
0.2 1.0656 -0.7448
0.3 0.7147 -0.5689

0.1 1.3657 -0.9071
0.2 1.3939 -0.9170
0.3 1.4409 -0.9334

0.1 1.3657 -0.9071
0.2 1.4211 -0.9275
0.3 1.4767 -0.9480
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Figure 5.3: f ′ via M

Table 5.4: Nusselt count for different values of Pr,Du,m,Rd, θw.

Pr Du m Rd θw NuxRe
−1
2

x .

7.0 0.01 0.1 0.5 0.9 -3.4411

8.0 -2.1908

9.0 -1.6450

0.01 -3.4411

0.02 -3.6896

0.03 -3.9798

0.1 -3.4411

0.2 -2.5031

0.3 -1.9908

0.5 -3.4411

0.6 -4.1257

0.7 -4.9698

0.9 -3.4411

1.0 -3.9633

1.1 -5.2880
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Figure 5.4: f ′ via m
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Figure 5.5: f ′ via pi
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Figure 5.6: f ′ via fw
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Figure 5.7: f ′ via We
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Figure 5.8: θ via M
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Figure 5.9: θ via m
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Figure 5.10: θ via Rd
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Figure 5.11: θ via θw
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Figure 5.12: θ via Du
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Figure 5.13: ϕ via Sc
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Figure 5.14: ϕ via Sr
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Figure 5.15: Friction factor for fw in 2-dimension shrinking case
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Figure 5.16: Friction factor for fw in 3-dimension shrinking case
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Figure 5.17: Friction factor for fw in 2-dimension stretching case
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Figure 5.18: Friction factor for fw in 3-dimension stretching case
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Figure 5.19: Nusselt count for Rd and θw
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Figure 5.20: Nusselt count for Rd and θw

Figure 5.21: Sherwood count for Sc and Sr
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Figure 5.22: Sherwood count for Sc and Sr

111



Chapter5

5.7 Conclusion

The main findings of the research are following:

� Velocity field increases for variable viscosity parameter, Nonlinear parameter

and Suction parameter for shrinking and stretching cases.

� For large amount of Magnetic parameter and Weissenberg number velocity

field increases in shrinking case and behaves opposite in stretching case.

� For large value of power index, velocity decreases in shrinking case and reverse

effect ouccurs for stretching case.

� Temperature enhances for large amount of Magnetic parameter, Temperature

ratio parameter, Dufour number and Radiation parameter, and gives reverse

impact for nonlinear parameter.

� Concentration field increases for Soret number and behaves opposite for Schimdt

number.

� Skin friction coefficient increases with increaseing values of Suction parameter

for shrinking case and decreasing for stretching case.

� Nusselt count increases for large amount of temperature ratio parameter.

� For increasing values of Soret number, Sherwood count increases.
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