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The detection and identification of particles produced by nuclear reactions are critical tools for 

studying several aspects of nuclear processes. The particle's mass, charge, kinetic energy, and 

emission angle are crucial elements to be found for their identification. If the outgoing channel of 

a nuclear reaction consists of two particles, the kinematic details of the process can be 

reconstructed by detecting and identifying one of the particles. But this situation becomes 

complex when three particles are involved in the final kinetic energy distribution. Reactions 

accompanied by breakup are the latter type of complexity. To implement the proper study of the 

breakup mechanism, we need to carefully understand the generation and detection of these 

particles. This study of breakup nuclear reactions involves the production of particles, and their 

acceleration which is attended by detection, electronic setup, and data acquisition system. A brief 

discussion of each of these components is presented. 
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2.1   Production and Acceleration of particle: 

The study of low energy nucle                                                                M    

nucleon. This much energy can be attained with help of accelerators. In India, several 

accelerators are installed to track nuclear research. The research work presented in the thesis was 

executed at Inter University Accelerator Centre (IUAC), 15 UD pelletron facility, New Delhi, 

and BARC-TIFR, 14 UD pelletron facility, Mumbai. Both of these are tandem Van De Graff 

electrostatic accelerators. A typical schematic pelletron accelerator is shown in figure 2.1. The 

v    f       m        f                                 ‘SNICS (S       f N     v  I   b  

C    m S         )’         f                                 v                     f  m     

source and pre-accelerated E0 ≈ 25  K  . W                  f              m     ,           

mass of selected ions is injected into a sturdy electric field inside an accelerator tank stuffed with 

insulating  SF6. This beam is accelerated with energy eVT,, where VT is terminal voltage. 

Towards high terminal voltage in million volts at the center of the tank. The terminal voltage for 

IUAC pelletron is 15V and for BARC-TIFR pelletron is 14 V. The high electric field is achieved 

by utilizing steel pellets to maintain uniform charging and is mutually separated from the 

insulator. Therefore these accelerators are named Pelletron accelerators.   At the terminal, a thin 

carbon foil of thickness ~5μg/cm
2
 or a small volume of gas is used as a stripper and this is 

adjusted such that it strips off some electrons from each negative ion and thus converts them into 

positive ions. Since the terminal is staying at a positive potential, the positive ion face repulsion  
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         Figure 2.1: Schematic block diagram of a typical pellletron accelerator tank [1]                     
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away from this and accelerated to the ground. Thus the energy achieved by the q charge particle 

becomes qVT. Thus the final energy becomes a total sum of  

                                                E= [E0 + (q+1) VT] MeV                                                        (2.1)        

At the end of the tube analyzing magnet is established to keep analyzing a specific charge and 

energy selection. At the last, taking assistance of a switching magnet, the beam of ions is 

m                   f   b  m        k  ‘G       P       S          C  mb   (GPSC)’    ‘I      

Nation   G mm  A     (INGA)’    ‘G mm  D        A     (GDA)’,                m        

science line or biology science, etc. The measurement carried out in the presented thesis were 

taken in GPSC. 

 

2.2 Target Fabrication  

The target of appropriate thickness plays a very crucial and centered role in experimental nuclear 

physics.  Depending on the purpose the thickness may vary and needs special attention in terms 

of energy loss. In nuclear reaction experiments, thin targets are of very high importance. Along 

with the thickness, the factors like uniformity in thickness, sustainability against high energy 

beams, isotopic purity, good tensile strength, etc. are of core importance and should be taken 

care of properly while fabricating the targets. The purpose is fulfilled by using a high vacuum 

(HV) evaporator chamber, an ultra- high vacuum (UHV) evaporator chamber, tabular furnace. 

Physical vapor deposition (PVD) technique was exploited with e-gun evaporation. The HV setup 

is accommodating a diffusion pump along with a liquid nitrogen trapper for oil droplets to  
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achieve a pressure of 1.5x 10
-8 

mbar. The UHV evaporator is facilitated by a turbo molecular 

pump and cryo-pump to achieve a pressure of ~ 10
-11 

torr. The multi-pocket advantage is always 

there so that the sequential deposition of required material can always be fulfilled.  The cryo 

pump helps towards reducing more contaminants like carbon. Both the evaporator units possess a 

piezoelectric crystal based thickness monitor 23 cm away from source. The schematic diagram of 

both chambers can be found in T. Banerjee et al. [2]. The following steps are adopted for 

fabricating a typical nuclear reaction target. 

(a) Natural carbon baking: The parting reagent Potassium chloride (Kcl), was used as a parting 

agent and was brought into the frame in form of a pellet. After the thorough cleaning of the HV 

chamber and attaining the requisite pressure the deposition started. At a distance of 21 c.m. the 

glass substrate holder was placed over which the film was to be deposited. The multi pocket 

facility gives the advantage to deposit different materials in a single run. Kcl having very low 

lattice energy was a good choice for parting reagent that was deposited with the fixed rate of 0.4 

Å/s till the thickness monitor indicated the 100 nm thickness. The natural carbon also in form of 

pellets and was exposed to an e-beam at 0.1 Å/s to obtain a thickness of 22μg/cm
2
. After the 

deposition, the chamber was in the cooling process for almost 8 hours. Due to deposition, the 

thin films are under stress so to contrive, annealing of deposited is done at 250°C for 1 hour in an 

inert argon environment and allowed for argon as well natural cooling. This leads to post-

deposition of the material in the sense of recovery, recrystallization, or chemical reaction 

depending on the temperature and time. 
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(b) Molybdenum deposition: : In the ultra-high vacuum chamber where the vacuum can be 

achieved up to the order 10
-11

 torr, the annealed carbon slabs were loaded to furnish Mo 

deposition at some prominent distance. There were several trials with natural 

Molybdenum to check out the texture, sustainability, and floating properties of the film 

which has to be compromised with the availability of pure raw material. After optimizing 

the parameters with natural Mo the UHV chamber is cleaned thoroughly for isotopic film 

deposition. The pure isotopes were supplied from Oak Ridge Laboratory, USA. The 

isotope 
92

Mo was in rod form of 100 mg weight so just accumulated and was put in the 

crucible. The 
100

Mo was in form of powder, molded to a pellet of 3mm diameter to secure 

minimum loss of the material. ORL claims 99.05% enrichment of 
100

Mo of 100mg 

amount. The pressure was maintained at the order of 10
-7

 torr during the deposition. The 

substrate was kept at 7 cm distance from the source and the crystal based thickness 

monitor was at a distance of 21 cm from the source. After attaining a pressure of 10
-11

 

torr the deposition of 
92

Mo was done at a current of 170 mA/A with a rate of 0.1 Å/s till 

the thickness of  211 nm. The same parameters were fixed for 
100

Mo deposition and also 

for another set of carbon deposited slabs to achieve a thickness of 297 nm. The chamber 

was allowed to cool for 8-10 hours after each run of isotopes. 

 (c ) Annealing: The thin films were allowed to go for annealing at 250°C for 1 hour in an 

argon environment and undergo natural cooling. This process supported post growth of the 

films. As described earlier this leads to post-deposition of the material in the sense of 

recovery, recrystallization, or chemical reaction depending on the temperature and time. 
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Figure 2.2: Deposition of 
92

Mo during the run and internal view of the chamber after deposition   

respectively. 

 

(d) Target Preparation: The isotopes were floating in lukewarm deionized water and were 

taken carefully on the target frame holder. We could make 20 targets of 20μg/cm
2 

thicken
 
carbon 

backed 
92

 Mo of thickness 217 μg/cm
2
   and 16 targets of 20μg/cm

2
 thicken carbon backed 

100
Mo 

isotopes of thickness 305 μg/cm
2
. One of the blank slab was there in each run to have the isotope 

deposition and afterward it is used to measure the thickness of the deposited film using a stylus 

profilometer. We fabricated Mo isotopes thin film using carbon backing of approximately 20 

μg/cm
2
 and deposited Mo isotopes sequentially over it in different runs [3]. 

 

                                          

 

 

 

 

Figure 2.3: Floating off the thin film and taking on SS target frame for target fabrication. 
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2.3   Interaction of charged particle with matter: 

When a charged particle hits the detector, it is primarily interacting with the last shell electrons 

of atoms of the detector's material via the Coulomb field. The particle will transmit its energy to 

the atom as it passes through the material. Because electromagnetic interactions have a great 

range, it is not essential for a light or heavy charged particle to collide directly with an atom. 

Further due to this interaction, the energetic charge particle can either excite the electron or 

remove it from the shell and thus result in a loss of energy. The basic principle of energy loss in 

semiconductor           (ΔE-E telescope configuration here)  may be given by the Bethe-Bloch 

formula  [4]. The formula calculates loss of energy of an incoming entity travelling in a detector 

correctly as - 
  

  
 = 

   

 
 , where E is incident energy, M and Z are mass and atomic number 

respectively of the incoming particle.  Less energetic and more massive particles will deposit 

more energy. In the telescope configuration, ΔE                         where less energy is 

deposited by incoming  particles, and just after this thicker E is present where all remaining 

energy is dumped.  A standard plot between ΔE v .  ETotal provides different bands of energy loss 

for different mass particles and thus helps to distinguish the fragments involved in the reaction. 

A schematic demonstration of the telescope is given in figure 2.4 

In the modern era, mostly semiconductor detectors are found suitable in detection techniques due 

to the following reasons: 

(i) the narrow band gap (∼1 eV) makes the generation of electron-hole pairs easier 

(ii) they are compact in size 



Chapter 2: Experimental Methods and Theoretical Models      

 

The semiconductor detector is reversed biased p-n junction diode. In this particular operation, 

depletion depth gets increased with bias voltage and thus region becomes charge free. Now when 

an energetic charge particle enters this region, creates electron-hole pairs, a drift of these charge 

carriers produces an electrical signal. 

The semiconductor detection system utilized in our experiment are silicon surface barrier 

detectors. To create the p-n junction, an n-type silicon wafer is oxidized on one side and then 

coated with a thin coating of gold. The characteristics of the surface barrier are greatly 

influenced by the little oxidation of the gold layer before evaporation. After that, the junction is 

encased in an insulating ring with metalized surfaces for ohmic connections. Because the barrier 

is produced at the crystal's surface, detectors made in this manner are known as silicon surface 

barrier detectors (SSB). SSBs of varied thickness and depletion regions may be manufactured.  

 

          

 

 

 

 

 

Figure 2.4: Schematic illusion of ΔE-E telescope detector setup. ΔE is the thinner solid state/gas 

detector where less energy is deposited by incoming particles and just after this thicker E, solid 

state detector is present where all remaining energy is dumped by particles. 
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2.4   Electronics for processing of signals and Data Acquisition:  

A high energy incident beam of ion interacts with the target attached to the target ladder and 

after the reaction events are measured by the detector. Due to the specific volume of detectors 

and various interaction procedures of different particles, each energy signal which is deposited in 

the detector can be correlated and scaled.  Those events thus we can record using proper 

electronics.  Primary signals produced are small and need amplification. From each telescope 

detector, the preamplifier signals are fed to amplifiers using coaxial cables. These amplifiers 

shape the signal using inbuilt CR & RC circuits and thus amplify the signal. Generally, an 

electrical signal generated by a detector can be processed for two information namely energy and 

  m   . T     m                     b  ΔE                  the preamplifier and this fast output 

is fed further to Timing Filter Amplifier.  All Timing f              f  m     ΔE               f   

to the Constant Fraction Discriminator (CFD) with a delay cable to have a delay signal. This 

delay output stops the signal and the corresponding start signal is taken from the main trigger for 

Time to Digital Converter (TDC). Timing signals from CFD via logic OR gate are fed to Gate 

and Delay Generator (GDG) where the main gate is built and given as master strobe to ADC. 

ADC converts all analog signals to digital [5]. Afterward, ADC signals are sent to the data 

acquisition system with help of BUS. A schematic picture is given below in the figure 2.5. A 

v                   q              m    ‘LAMPS (L   x A v      M     P   m     S    m)’ 

[6], which can be used offline also.  
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 Figure 2.5: Schematic block diagram of electronic setup corresponding to the experimental 

arrangement in the thesis.  

 

2.5 Theoretical models for nuclear reactions: 

2.5.1 Optical Model and Optical Potential: 

The nuclear reaction incidents like nucleon-nucleon or nucleon-nucleus interactions are very 

complicated to draw into a complete model. Feshbach, Porter, and Weisskopf proposed the 

Optical Model in 1954 in which this complication was simplified by considering two body 

interactions between incident and target nucleus. This model suggests that incident particle 

encounters an average complex potential while interacting with a target nucleus [7, 8]. An 

interplay of incoming nucleons with target nucleus can be compared to light transmission 

through a cloudy refractive medium. It was also known as the 'cloudy crystal ball model'.  

OR 
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According to the model considered, elastic scattering can be thought to play the role of refraction 

phenomenon and all channels other than elastic as absorption process. As a result, the optical 

potential is divided into dual parts: real and imaginary. Where real component causes elastic 

scattering and imaginary portion causes absorption from an elastic channel. This was regarded as 

a complex potential for ascribing possibility of non-elastic scattering into imaginary part. The 

optical model has two features. The first is connected to the fundamental one, which is 

concerned with nucleon-nucleon interactions. The second part is the phenomenological aspect, in 

which parameters must be carefully set and can be modified for obtaining a justified result with 

experimental results. The second approach was used in this work for optical model analysis of 

elastic scattering angular distributions. 

Sum of Coulomb VC(r) and nuclear VN(r) potentials describes total potential. 

                                                       V (r) = VC(r) +VN(r)                                                           (2.2) 

 

The Coulomb potential can be considered in the following form, 

                                      Vc (r ) = Zp ZT e
2
 {   

 

 
                                 

(
 

 
 

 

   
  
) 

 

  
             

                                    (2.3) 

 

   Rc is the Coulomb radius. ZT, ZP  called atomic charges of target and projectile respectively.  

 

2.5.1.1 Wood Saxon Potential (WSP): For real and imaginary components of the nuclear 

optical potential, the volume Woods-Saxon form was used -                         
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                               VN(r) = 
   

                
 + i   

    

                
                                              (3.4) 

 

Where V0 and W0 are the potential depths, rv and rv are the radii, and av and aw are the 

diffuseness of the real and imaginary parts of the potential, respectively. Rv=rv(AP
(1/3)

 +A T
 (1/3)

) and 

Rw=rw(AP
(1/3)

 +A T
 (1/3)

). Thus, there are total of six parameters that needed to vary for obtaining the 

optimum value from the fitted data. Moreover, spin dependent terms can also be added as per the 

requirement of the problem in equation (2). 

 

 

 

 

 

         Figure 2.6: Illustrative example of the form of Wood-Saxon potential.    

 

2.5.1.2 Sao Paulo Potential (SPP SPP construction considers the following building blocks, 

(1) Both potential parts of optical potential are calculated in context of substantial systemization 

on nuclear densities. In the process, the parts were considered to have the same radial shapes. 
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(2) Energy dependence of bare potential is determined by a model on the basis of the nonlocal 

nature of the interaction. The bare interaction VN entangles Pauli nonlocality and is correlated by 

folding potential VF as follows [9], 

                                                VN(R,E) ≈ VF (R) exp 
    

  
 ,                                                       (2.5) 

In this equation, v is local relative velocity among interacting nuclei. For speed of light in a 

vacuum c is shown. The Pauli nonlocality basically involves exchange of nucleons among target 

and projectile [10].  

                                                          (R,E) =  
 

 
) [E-VC- VN(R,E)]                                          (2.6) 

VC        C    mb            . μ                m   .  

Folding potential VF is given by, 

                                     VF®  =                                                                    (2.7) 

 

The folding potential is calculated using nuclear matter distributions that account for the 

nucleon's limited size and a zero-range approach to nucleon-nucleon interaction V (r). 

A systematization of nuclear densities was created for generating a universal parameter-free 

explanation of nuclear interaction by a thorough investigation that included the extraction of 

charge distributions. This charge distribution can be experimentally derived from electron 

scattering data. The Dirac-Hartree-Bogoliubov  model calculates theoretical densities which use 

the 2-parameter Fermi (2pF) distribution for representing nuclear densities. 
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Here imaginary part is supposed to exhibit same shape as that of real component, incorporating 

an adjustable parameter Ni, 

                                                       W(R, E) = Ni VN(R, E)                                                       (2.8)   

 

For more than 30 systems, Ni was found to be well fitted with elastic scattering angular 

distribution data with an average value Ni= 0.78. 

In general, the SPP can be written in a normalized form as below: 

                                          VSPP (R, E) = (NR (E) + i NI (E)) VN(R, E)                               (2.9)   

 

NR(E) and NI(E) are energy dependent normalization factors look after Dynamic Polarization 

Potential (DPP). Further, it can be mentioned here that real and imaginary components of all 

DPP are dispersive and related by dispersion relation. 

 

 

2.5.2 Microscopic Double Folding Model 

A Schrödinger equation with an optical potential U® for two nuclei a+A can be written as 

                                                            (2.10) 
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Where , E is center of mass energy for relative motion, R is center of mass distance µα is the 

        m     f               ,          χ®                                  f   + A             

boundary conditions. A standard way of making eq. (1) describing elastic scattering is to expand 

total wave function of system a + A in terms of internal eigenstates of separate nuclei, 

                                      Ѱ α = Σ ѱ ai  ѱ Ai χij®,                                                 (2.11) 

χij®       b             v  m       f                        .  χ00 then signifies elastic scattering as 

i,j=0 gives the ground state. For the moment, if the effects of antisymmetrization between the 

two nuclei are ignored then Uop has the form 

                                                                                       (2.12) 

Where V has the interaction between a and A and the sum is for all exited states of a or A. The 

first term is real and so called Folded Potential, 

                                                                       (2.13) 

Now if V is a local two body operator then 

                                                       = Σ vij                                                                    

Where i is no of nucleon in one nucleus and j in the other. The folded potential (4) may be 

written as  
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                         UF®=                                                                            (2.14)                                                            

H    ρ  is the distribution of centers of mass of nucleons in ground state of the i
th

 nucleus (called 

density distribution) whose coordinates are defined by figure 2.7. The details of the double 

folding model are given in reference [11]    

 

               

 

 

 

Figure 2.7: There is integration over two densities and therefore it is called the double folding 

model. 

 

2.5.3 Dispersion Relation Calculation: 

Real V(r, E) and imaginary W(r, E) potential parameters show an abrupt behavior in proximity 

of the Coulomb barrier and this is the consequence of optical model outcome from angular 

distribution of elastic scattering. Thus, dispersion relation analysis possesses its practical  
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implementation in the interpretation of energy dependence of these parameters at that region. If 

optical potential is of the form, 

                                        U(r,E) = V(r,E) + i W (r,E)                                                        (2.15)   

For energy below the barrier, the imaginary portion rapidly falls, and this event is accompanied 

by a rise in the real part. The threshold anomaly (TA) associated with this behaviour was part of 

the investigation for strong bound projectiles. [12]. Dispersion interrelates real (V(r, E)) and 

imaginary (W (r, E)) components as follows,  

                                                Δ ( ,E) = 
 

 
  

       

    

 

 
                                                          (2.16)   

This equation provides the potential at a given radial distance. Here, P is the principle value and 

Δ  ( , E)                  . A              f                                               f 

particles thus potentials are non-local in nature. The real potential can be better represented as 

follows. T    b v   q                  W ( , E’)        v            v      f Δ  ( , E)  v    

       b      W               ,     v      f Δ  ( , E)              f x                 .  T        

real part can be given as-   

                                                V(r,E) = V0(r,E)+ Δ ( ,E)                                               (2.17)   

The very popular method for real part calculation is a linear schematic model for potential 

parameter energy dependence. Following this, V(r, E) is made up of three linear segments of 

W(r, E) as in figure 2.8  
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Figure 2.8: The liner segments of W(r, E). The figure is taken from reference [13]. 

 

T       b      q       f       ΔV (r, E) will be 

                                               Δ (E) =(E-Eb) 
 

 
  

     

             

 

 
                              (2.18)   

Eb should be taken as reference energy. For one more r f              E , ΔV (E) will be, 

                                                Δ Es(E) =  Δ (E) - Δ (E )                                                  (2.19)   

 

Δ (E) m k         b      f  m  m         m     (W  =W(E )-W(Ej)) of each line segment, 

                                             Δ   (E)=
   

 
 [ɛiln|ɛi| - ɛjln|ɛj| ],                                        (2.20) 

                                 Here, ɛi = 
      

   
  ,   ɛj = 

      

   
 and Δij= (Ej-Ei). 

The resultant real part  thus  come out to be, 

πΔ (E) = W0[ɛaln|ɛa| - ɛbln|ɛb| ]+ (W1-W0) [ɛ'bln|ɛ'i| - ɛ'cln|ɛ'c| ]-W1[ɛ"cln|ɛ"c| -        
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                   ɛ"mln|ɛ"m| ],+ W1[η ln η- (η+ ) ln (η+ )]                                     (2.21)        

  Where, W0, W1≥       ɛi = 
      

  
  , ɛ'i = 

      

  
  , ɛ"i = 

      

  
  , η = 

  

  
 

                      

2.5.4 Coupled Channel Calculation: 

When a projectile approaches a target nucleus in a laboratory frame, the interaction between 

them can result in a number of possible channels. During the process, some rearrangements can 

also play a variety of roles. The coupled channel calculations basically predict the effect of these 

multistep process. As we have discussed earlier that depending on the time scale we can always 

categorize the reaction as direct or compound. We will be elaborating on the direct reaction 

process for this modeling. The calculations involving bound inelastic states without transfer or 

breakup in the account are simple coupled channel calculations The influence of transfer in 

different partitions makes it Coupled reaction Channel (CRC). If breakup channels are 

incorporated from continuum with energy/momentum discretization then the adopted method is 

Continuum Discretized Coupled Channel (CDCC) calculations. We executed CRC and CDCC 

calculations for the vivid theoretical discussion of various channels using the code FRESCO 

[14]. 

2.5.4.1 CRC 

During the process of nuclear reaction, several possible channels may contribute. Every reaction 

channel may be represented by a basis state and total wave function is consequence of 

superposition of all these bases as below- 



Chapter 2: Experimental Methods and Theoretical Models      

                                        

       

                                                    |Ѱtot >= ∑         
                                                                    (2.22)                                    

                                             

Now as total wave function space is associated with both direct and compound nuclear parts but 

our focus is on the direct reaction part and therefore, a projection of complete wave function has 

to be drawn on direct reaction space. Thus if a projection operator is applied to the total wave 

function onto the model space then    

 

(2.23) 

where |φi >=|φipφit >, φit      φip are the states (bound or continuum) of target and projectile for 

i
th

 channel and χi represents the wave-function depending on the relative separation between 

them for that channel. 

In model space, a complete Hamiltonian  Ħ and total energy E, Schrödinger equation 

 [Ħ-E] |Ѱtot >=0  is converted to [Ҥ-E] |Ѱtot >=0  with 

 

                                                              
 

        
                                           (2.24) 

 

Here Q=1-P, ϵ shows dropped channels possess time retarded propagator and thus removal of 

flux from model space. Thus second term as whole signifies the excluded channels. The model 

Hamiltonian Ҥ uses optical potential as effective potential with the usual meaning of real and 

imaginary incoming flux. The model Hamiltonian could now be individually on the basis states 

Ф . If E     k                                                     H m         Ҥ satisfies 

                                                 

                                                Hi-Ei= <Фi| Ҥ -E|Фi>                                      (2.25) 
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T                                 f                   Ħ                          Ҥi, so 

                                                  Ҥi- Ei +Vi = Ҥ –E                                          (2.26) 

 

This gives vanishing diagonal matrix element <Фi|   |Фi> =0. 

If we take the model Schrödinger equation [Ҥ –E] Ѱ=0 then its projection onto different basis 

       Ф,          f  q        b   m :  

                                     [Ei-Hi] Ѱ (R )= Σ< Фi| Ҥ –E| Фj> Ѱj(Rj), i ≠ j                    (2.27) 

 

T      q                              k       v  f         Ѱ (R ). T   m    x    m        b  

expended in the following different forms- 

                                             Ҥ –E = Hi – Ei + V  (post form) 

                                                  = Hj – Ej + Vj  (prior form)                                (2.28) 

Therefore, 

                                    Фi| Ҥ –E| Фj> = Vij
post  

+ [Hi-Ei] Kij (post) 

          

                                       Or        = Vij
prior

 +Kij[Hj-Ej] (prior)  

Where 

                                   Vij
post 

≡ <Фi| Vi |Фi> ,  Vij
prior 

≡ <Фj| Vj |Фj>                       (2.29) 

 

T    v      f        K  = <Фi| Фj> arises from non-orth          b           b            Фi 

    Фj if these are in different mass partitions. More details are given in reference [14]. 
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2.5.4.2 CDCC 

The studies of breakup on cluster structure of exotic nuclei is a very interesting field of research 

nowadays. The phenomena of breakup become difficult to be tackled with perturbation due to 

multi-step effects. The Continuum discretized coupled channel approach is a non-perturbative 

method that treats breakup to all orders and incorporates Coulomb and nuclear effects on an 

equal footing (CDCC). According to our understanding of quantum physics, bound states are 

        , f     ,         b     m   z  ,           b                          ,   f     ,        ’  

be normalized. Thus to obtain the solution for these unbound states, the continuum should be 

replaced with a discretized continuum so that the wave-function suit to be normalized. We can 

achieve this task by (a) including continuum to Coupled channel calculation and (b) 

characterizing continuum as a finite set of  q            b         . L  ’                       +  

 v+c+t here v and c stand for valance and core fragments after the breakup of a projectile and t, 

p are target, projectile respectively,.  

                                                               

 

 

 

 

Figure 2.9: Represent the coordinates of arrangement and now the three body becomes two 

body. 
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Hamiltonian of the system becomes,                                                                                                                                               

                                                                                                                                   (2.30) 

             

Where initial who terms are kinetic energy operators and the other three are potential energy 

operators. As well as the three body wave function can be designated as a superposition of bound 

state wave function and integration of all the wave functions of continuum state up to infinity as 

follow 

                                               (2.31) 

 

Here, 
 
→ is the momentum of fragments (c+v) and 

 
→ is the momentum of the target and 

projectile. The Schrödinger equation solution becomes impractical for such kind of situation and 

therefore discretization of the continuum wave function into finite discretized square integrable 

basis is mandatory. I       v      m     ,            f         f               m b    ũp(r), are a 

superposition of the scattering eigenstates within a bin [kp−1, kp].  

 

                                                                                 (2.32) 

 

H   , ωp(k) is the weight function, N            m   z                                  ũp(r) form 

an orthonormal set, while p=0 bound state and p ≥   x            . ωp(k) is the weight function.  

The total wave function, s the function of every single bin will be  
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                                                                      (2.33) 

 

Now, the Schrödinger wave function can be solved and obtain the S-matrix elements by utilizing 

partial wave decomposition and proper boundary conditions. These S-matrix components may be 

utilized for calculating the cross-section of exclusive breakup channels. Thus this described 

method of CDCC calculations is adopted in the theoretical analysis in the present thesis. More 

elaborating detailing on the topic is covered in reference [14]. 
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