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1. INTRODUCTION 

 

Substantial requirement of the energy to fulfil the basic need of human being require either 

large amount of fuels or the technology for energy conversion. Existing fuel sources are on the 

verge of extinction due to its current rate of mining. As an alternate to such fuel crisis scientific 

world is aiming towards sustainable energy conversion methods which utilize the renewable 

sources of energy for large-scale applications. Amongst such techniques, photocatalysis is 

known to human kind since the understanding of plant anatomy. Photocatalysis comprises of 

four steps, (i) formation of photo-generated charge carriers on light illumination, (ii) migration 

of charge carriers to the surface of the photocatalyst, (iii) participation of respective photo-

induced charges in the respective reaction, and (iv) annihilation of electron-hole pair (e--h+). 

Here, with the help of photo-generated charge carriers, the rate of reaction over the surface is 

enhanced with an aid of solar energy. So far, this technology have gained its fame for pollutant 

degradation, such as dye disintegration, toxic micro-organism removal, and self-cleaning 

glasses. But, its utilization in hydrogen production, oxygen evolution, conversion of carbon 

dioxide/carbon mono-oxide into methane or methanol, and nitrogen reduction to ammonia has 

presented photocatalysts as potential energy conversion materials in last half century.  

Owing to fascinating properties such as, high absorbance in visible spectrum of light, large 

surface area for reactions, multiple sites acting as reduction/oxidation centres, rapid charge 

migration for feasible reaction mechanism, photocatalysts have shown its usefulness among 

energy materials. Various semiconducting materials with band gap (Eg) larger than 1.23 eV 

such as TiO2, CdS, ZnS, ZnO, SrTiO3, g-C3N4, MoS/Se2, have been studied as an efficient 

photocatalysts. Based on the feasibility of charge migration to the surface, band edges 

straddling across the reduction/oxidation potential, suppressed recombination of photo-induced 

carriers, and large surface activity, two-dimensional (2D) photocatalysts were preferred. These 

2D-materials were then screened on the basis of their capability to accommodate the impurity 

within their forbidden region, low toxicity, and environmental friendliness. Graphitic carbon 

nitride (g-C3N4), one among eight polymorphs and formed by bridging three triazine ring with 

a single N. g-C3N4 (CN) is found in hexagonal geometry synthesized from melamine/urea using 

thermal poly-condensation method. Its feasible exfoliation is result of its weak binding via van 

der Waals (vdW) forces, and its π-conjugated structure provides high surface reactivity.  
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The rapid recombination of e--h+ in CN provide us room to design and utilize the strategy to 

enhance the photocatalytic activity by functionalization. This thesis comprises of design 

mechanism of efficient photocatalyst along with various functionalization techniques to reduce 

the rate of recombination either by spatial separation or formation of charge transfer channel 

across the interface. Structural modification, loading/doping of cation/anion, co-catalyst 

decoration, and vertical metal/semiconductor, semiconductor/semiconductor stacking over CN 

have been studied in this work for overall water splitting detailing oxygen/hydrogen evolution 

mechanism. While potential photocatalyst for reduction reaction is selected to investigate the 

CO2/N2 reduction to useful fuels. Work done in this thesis focuses on different modification 

strategies, charge dynamics dependence, and their role on the overpotential of simulated 

reactions.        

  



8 
 

2. COMPUTATIONAL METHODOLOGY 

 

The proposed work have been undertaken computationally where structural, electronic and 

optical properties were computed using Density Functional Theory (DFT) based Quantum 

Espresso and Wein2k codess. DFT allows us to by-pass the computational difficulty in solving 

the many-body wave function by considering the electron density instead of the electron wave 

function. In DFT, Kohn and Sham have changed the problem of solving the ground state energy 

and particle density of an N-electron system to that of solving a set of independent-particle 

equations therefore total energy of the system is a unique functional of density. These Kohn–

Sham equations consist of N single-particles (three-dimensional) Schrödinger-like equations 

with a modified effective potential and are much easier to solve than the original (3N-

dimensional) many-body problem. The modified potential is itself a functional of the total 

particle density 𝜌( r


) and contains a contribution from the quantum-mechanical exchange and 

correlation 𝜐𝑥𝑐( r


) of the particles. In DFT scheme, the one particle Kohn-Sham Hamiltonian 

operator is defined as  

𝐻 =  −
ħ

2𝑚𝑒
∇2  +  𝜐𝑒𝑓𝑓(𝑟) 

Where, 

𝜐𝑒𝑓𝑓(𝑟) = 𝜐(𝑟) +  𝜐𝐻(𝑟) + 𝜐𝑥𝑐(𝑟) 

which includes the external potential, Coulomb potential and exchange-correlation potential, 

respectively. In order to calculate the accurate Eg hybrid DFT (h-DFT) with HSE06 functional 

has been utilized accompanied by Maximally Localized Wannier Functions for band structure 

computation. Layered system were relaxed with the Grimme-D2 dispersion correction within 

a vacuum region for truncation of periodic image interaction. Initial computation for structural 

relaxation was performed with converged lattice parameters, kinetic energy cutoff for wave-

function as well as for charge density.  

Effective mass computation using parabolic approximation, real/imaginary part of dielectric 

function using Kramer-Kronig relationship, reaction barrier using Nudge elastic band 

calculation, and Gibbs free energy change using Computational Hydrogen Electrode model has 

been performed in studied cases. Band edges were computed using Normal Hydrogen 

Electrode model, while for simulation of water splitting over the surface of photocatalyst was 
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performed following Rossmeisl and Nørskov’s formulation. CO2 reduction reaction was 

performed with all the possible reaction intermediates and the possible reaction pathways 

consisting of existing intermediates adsorbed over the surface meanwhile N2 reduction was 

simulated using alternating, enzymatic and distal reaction mechanism. 
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3. METAL/NON-METAL LOADED/DOPED g-C3N4 

MONOLAYER 

 

Formation of charge transfer channel aids to the rapid charge migration at the surface of the 

photocatalyst. Cation (Co/Fe/Ag) loading over the surface, anion (B/O/P) doping within 

pristine framework of CN, an atomic monolayer has affected the π-conjugation and enhanced 

the optical absorption. These cation-anion pairs Co-B/Fe-O/Ag-P, have been screened on the 

basis of their band edges as a potential photocatalyst. Band edges straddling across the 

reduction-oxidation potential has been seen for Co-B, loaded-doped CN, hence it is studied 

further. The pristine CN, Bint-CN (B substituted at bay C site), Bnon-int-CN (B substituted at 

corner C site), Co-CN, (Co-B)int-CN, and (Co-B)non-int-CN were analysed based on the 

structural, electronic, and optical properties for the application of photocatalytic activity 

utilizing the h-DFT.  

B-doping and Co-loading resolved the limited photo-generation of charge carriers and rapid 

rate of e--h+ pair recombination in CN. In B doped CN, the partially filled B-2p orbitals aids in 

spatial charge migration and their redistribution across the surface. (Co-B)int-CN [(Co-B)non-int-

CN] shows the formation of intermediate band on Co-loading while narrowing [widening] 

impurity band when B directly interact with Co [B indirectly interact with Co]. Curvature of 

band structure (conduction band minima and valence band maxima) determines the effective 

mass of the electrons and holes hence their mobility. The large variance in the effective mass 

ratio of e--h+ in (Co-B)int-CN show reduced rate of e--h+ recombination, increasing the 

efficiency of photocatalytic reduction-oxidation reaction. An excess negative charge is 

accumulated on the Nedge atom due to the influence of Co-B short- and long-range interaction 

and charge redistribution. This alters the adsorption energy of intermediates in hydrogen 

evolution reaction (HER) and oxygen evolution reaction (HER). The simulation of HER/OER 

result in an overpotential (ηOER) values of 2.32, 1.22, 1.27, 1.78, 1.28, and 1.08 V for pristine 

CN, Bint-CN, Bnon-int-CN, Co-CN, (Co-B)int-CN, and (Co-B)non-int-CN, respectively. Whereas, 

ηHER value for pristine CN, Bint-CN, Bnon-int-CN, Co-CN, (Co-B)int-CN, and (Co-B)non-int-CN is 

calculated as -0.69, -2.11, -2.37, 0.06, 0.27, and 0.37 V, imparting Co-CN as the best reducing 

capability. Considering the band edge straddling and reported prohibitive overpotential, (Co-

B)-CN in long and short range interaction shows reduction in ηOER. Therefore, on the basis of 

Eg reduction, high optical absorbance in visible range, high variance of effective mass ration 
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and low ηOER/HER value (Co-B)int-CN is the most potential photocatalyst for overall water 

splitting. 

 

4. g-C3N4 BASED HETEROSTRUCTURE 

 

The role of Co and B over the photocatalytic activity of CN has been performed by 

decorating/stacking cobalt boride (CoB) cluster/slab over CN monolayer. As a metal-

semiconductor heterostructure, the work function (Φ) of metal/semiconductor govern the 

charge transfer dynamics at the interface. In the case of CoB-CN based 0D/2D-2D metal-

semiconductor heterostructure ΦM < ΦS before the contact leading to electron transfer from 

metal to semiconductor leading to the downward band bending. The type of contact based on 

the extrinsic semiconductor, for n-type (corrugated-CN) shows low-resistance junction while 

for p-type (planar-CN) rectifying contact is generated. This two systems along with a smaller 

cluster is systematically studied to comprehend the optical behavior, charge dynamics, and 

impact of dimensionality variation on the ηOER/HER. Heterostructures investigated in this report 

have attained several necessary conditions required for an effective photocatalyst, these 

conditions includes large number of reactive sites, low reaction barrier for HER and OER, wide 

charge carrier separation  due to formation of interface and interfacial electric field (Eif). 

Relative variance in the band structure across the Fermi energy promotes low recombination 

rate of photo-induced charge carriers, while high optical absorbance in the visible range 

enhances the numbers of photo-generated carriers within photocatalyst. The electron transfer 

on the heterojunction formation inhibit formation of Eif due to charge accumulation at the 

semiconductor, this Eif promotes feasible electron transfer across the interface for Ohmic 

contact. On the other hand prohibited migration of holes from metal to semiconductor in the 

Schottky barrier promotes either side with OER/HER. Eif and surface dipole generation has 

been attributed for the enhanced photocatalytic activity seen from the ηOER/HER, and cluster 

decorated CN with ordered-disordered geometry is seen to show efficient capability for overall 

water splitting owing to Schottky barrier formation at the interface. 

In order to get a deeper understanding of the interplay between semiconductor-semiconductor 

heterostructures, we have examined the Hf2CO2/CN system, in which the CN-photocatalyst 

supports Hf-based MXene. Hafnium based MXene are widely known semiconductor utilized 

for the vertical stacking owing to its suitable band edge alignment, and high charge carrier 
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mobility across the surface. The ΔΦ of the semiconductors causes electron transfer, this result 

in the equilibrium of Φ and band bending across the interface along with Eif. The 

unidirectionality of charge transfer and band alignment leading to straddling of reduction-

oxidation potential imparts either side with simultaneous OER/HER capability. The electron 

localization function (ELF) plot showed the interlayer orbital interaction, this character governs 

the narrowing of Eg resulting in a large number of photogenerated charge carriers. Based on 

effective mass ratio/band curvature, effective charge carrier migration, decreased 

recombination, and spatial separation indicates the potential applications of Hf2CO2/CN 

heterostructure as an excellent water-splitting photocatalyst. 

 

5. MODIFIED BILAYER OF g-C3N4 

 

Structural modification is known as effective method among the photocatalysts fraternity as an 

efficient way to modulate the charge mobility over and within the surface. In this work h-DFT 

based computation has been utilized to analyze structural, electronic, optical, and 

photocatalytic properties of monolayer (ML) and spatially tailored bilayer (BL) of CN. The 

screened BL showing efficient photocatalytic properties has been investigated for the reaction 

kinematics of HER and OER. The ineffective π-localization in ML-CN has been tuned by 

structural changes in BLs, this changes affect the Eg depending on the corrugation/planar 

geometry of BL. This geometry variation increased spatial charge distribution, and higher 

electron mobility in the corrugated BL. Such BL displays interlayer π-lone pair hybridization 

reducing the photogenerated e--h+ pair recombination and also increases the absorption in the 

visible region for BLs by allowing forbidden transitions within the band structure. The water 

dissociation reaction is the limiting step for all OER sites, according to charge transfer studies. 

The formation of an Eif on water adsorption is seen owing to the double layer model, whereas 

the influence of additional H2O is seen in substantially reducing the free energy change value 

for highly efficient HER. Charge accumulation and dispersion at the edges strengthen the 

ability of reaction sites due to in-plane π-conjugation driven by interlayer orbital interaction. 

This is evident from the decrease in the adsorption energy of intermediates, which results in a 

modification of the overpotential with values of -1.15 eV for OER and -0.20 eV (-0.05 eV with 

additional H2O molecule) for HER enhanced photoactivity compared to ML and navigates-up 

possibilities for its application in flexible nano-devices for complete water splitting.  
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Absence of intercalant, which prevents effective charge transfer across the BL before 

illumination and intermediate adsorption is a major issue hindering in the efficient 

photocatalytic activity of BLs. Li is intercalated in the BL-CN to resolve this issue attributing 

to its ionic radius, and feasible diffusion within layers on synthesis. Li intercalation has an 

crucial impact on the system’s charge transfer mechanism due to the development of a charge 

transfer channel within the CN BL. An interlayer electric field (Eil) within the layers of CN is 

formed on the intercalation of Li due to partial charge transfer and formation of potential 

difference. The simultaneous oxygen/hydrogen production with couple of water molecules 

have been formulated to study the overall water splitting using the climbing image nudge 

elastic band approach. As the reaction progresses, reactant contact with the photocatalyst 

surface, Eif is produced. The Eif and Eil pair to promote effective reactant adsorption. Li-

mediated BL-CN bridging modifies the optical and electrical characteristics. Because of this, 

Li-CN is a more effective photocatalyst than BL-CN because of its high absorbance in the 

visible region, band edge straddling of the reduction-oxidation potential, and variation in Eil, 

Eif, and adsorption energy of the reactants as the reaction proceeds. The significance of two 

H2O molecules highlighted in this study to comprehend the charge transfer channel and 

simultaneous HER and OER reaction mechanism justify the intercalation techniques as 

effective functionalization method. 

 

6. CO2RR & N2RR OVER Co DECORATED g-C3N4  

 

Co-based CN show brilliant charge transfer dynamics owing to the pπ-dπ interaction of N and 

Co atom facilitating the charge migration axially and spatially. Wide forbidden gap prepares 

existing material to absorb a large number of photons resulting in equally large photo-generated 

charge carriers hence efficient for photo-conversion of solar energy. The presence of π-

conjugation and IB provide Co-CN large adsorption sites for CO2 and N2 reduction, high 

adsorption in the visible region of the spectrum, and reduced rate of recombination of 

photogenerated charge carriers. Potential adsorption energy value in physisorption and low 

difference of the adsorption energy for reaction steps display Co-CN as a potential 

photocatalyst for efficient CO2RR/N2RR. 
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CONCLUSIONS 

 

As a conclusion of all the chapters, various functionalization techniques have been considered 

and discussed to understand its dependence on the reaction overpotential. With the initialization 

by cation-loading, anion-doping over CN, a narrowing of the band gap along with a reduction 

in the ηHER/OER verifying its role on the increase of absorbance, and feasibility of reaction has 

been observed. Moving to the metal-semiconductor heterojunction formation, CoB decorated 

CN in two configurations, (CoB)0D-CN, and (CoB)2D-CN have been studied to utilize the 

synergistic effect of Co and B atoms in cluster and slab form, respectively. High performance 

in photocatalytic activity has been evidenced from ηHER/OER, along with red shifting of 

absorbance curve, and formation of a unidirectional charge transfer channel. This study has 

been further explored over the semiconductor-semiconductor heterojunction, where Hf-based 

MXene has been supported over CN. Hf2CO2/CN shows an alternating charge transfer pathway 

for spatial separation of photogenerated charge carriers for the reduction in the recombination 

rate, followed by reduced ηHER/OER value in comparison to CN. The modification method used 

to corrugate the bilayer through orbital interaction and intercalation of alkali metal for 

interlayer charge transfer channel creation has shown extraordinary results with increment in 

the band gap value for bilayer accommodating the ηHER/OER within band edges. Whereas, Li-

CN has further improved the overall water splitting efficiency by the lowest value of ηOER 

among the studied photocatalyst, ηHER/OER smaller than band edges and optical absorption in 

the visible region of the spectrum making it perfect photocatalyst for complete water 

dissociation. The study then explores more about the reaction mechanism over the best-

reducing photocatalyst among the studied for CO2RR, and N2RR. 
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