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1. Introduction 
During the last six decades, phosphors with excellent displays of several kinds of 

luminescence have been widely investigated for their practical technological applications in 

various fields of science and technology. Phosphors doped with different luminescent 

activators are widely investigated for lighting devices and displays, lasers, and medical 

purposes [1]. As well as the production and fabrication of white light-emitting diodes (WLEDs) 

have attracted huge interest worldwide because of their several advantages, including low 

power consumption, environmental friendliness, cost-effectiveness, and high luminescence 

efficiency [2]. Consequently, luminescent materials, also called phosphors, with excellent 

luminescence displays are the key components of commercially available WLEDs. A new 

generation is working on the luminescence phenomenon, primarily focusing on the 

luminescence efficiency enhancement and low cost-effectiveness of WLEDs [3]. 

Rare earth elements play a crucial role in the luminescence properties of various 

materials. Luminescence refers to the emission of light from a substance when it absorbs 

energy. Rare earths are known for their unique electronic configurations, which give rise to 

distinct energy levels and transitions, making them excellent candidates for luminescent 

applications [4,5]. The electronic configuration of rare earths provides energy levels with 

specific quantum numbers, which determine the wavelengths of light they can absorb and emit. 

The transitions between these energy levels result in luminescence. Different rare earth ions 

exhibit specific energy level structures, leading to a broad range of colors and emission spectra 

[6]. Moreover, rare earth elements are widely used in phosphors, which are materials that 

convert absorbed energy into visible light. Phosphors doped with rare earth ions exhibit 

luminescence through various mechanisms, such as fluorescence, phosphorescence, and up-

conversion luminescence.  

In the field of luminescence investigation and its applications, many phosphors were 

explored for their excellent display of luminescence. In this thesis, the luminescence studies on 

perovskite-based luminescent phosphors and activated perovskite phosphors are discussed to 

functionalize them for various applications. During the initial stages of the research, a brief 

literature review on luminescent phosphors and rare earth-activated perovskite phosphors was 

carried out. As per the literature survey, several luminescent perovskites were previously 

reported for their diverse luminescence phenomena, such as photoluminescence, 

thermoluminescence, persistent luminescence, optically stimulated luminescence, up- and 

down-conversion luminescence, etc. This survey of literature motivates us to explore more 

perovskite for their practical technological applications.  
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2. Research methodology 
After conducting an extensive review of the available literature, it becomes evident that 

perovskite hosts doped with rare earth ions have been the subject of numerous studies due to 

their remarkable luminescence properties and versatile applications in solid-state light sources, 

displays, temperature sensors, plasma display panels, radiation dosimetry, fluorescent lamps, 

optoelectronics, photonics, and more. This thesis primarily focused on the synthesis and 

luminescence characterization of perovskite phosphors activated by different rare earth ions. 

In order to fulfilment of the proposed problem, following are the steps involved and research 

methodology applied to accomplished the target aim.  

• Synthesis of rare-earth doped perovskite phosphors using the combustion route of synthesis. 

• Utilization of different characterization techniques, such as crystal structure identification 

using X-ray diffraction (XRD), examination of morphology using field emission scanning 

electron microscopy (FESEM), and functional group identification via Fourier transform 

infrared (FTIR) spectroscopy. 

• Investigation of photoluminescence (PL) properties in several rare earth (Eu3+/Tb3+/Ho3+) 

activated perovskite phosphors. 

• Study of thermoluminescence (TL) properties in rare earth doped perovskite phosphors by 

irradiating them with high energy and low energy ionizing radiations, and calculation of TL 

parameters from the TL glow curves. 

3. Results and key findings 
In this study, total 23 rare earth doped double perovskite-based phosphors were 

synthesized via the combustion route of material synthesis. This method was chosen for its 

simplicity, high productivity, and cost-effectiveness. In the thesis, various characterization 

techniques used to examine the prepared phosphors potential, including X-ray diffraction 

(XRD), field emission scanning electron microscopy (FESEM), Fourier-transform infrared 

spectroscopy (FTIR), thermoluminescence (TL), and photoluminescence (PL). Moreover, the 

determination of expected parameter using each characterization technique was discussed in 

detail. 

First, we prepared Sr2YNbO6 double perovskite by doping Eu3+, and studied their 

luminescence properties in detail. The concentration of Eu3+ is taken from 1 mol% to 5 mol%. 

The phosphor crystallized in pure monoclinic crystal structure, that exhibited excellent PL and 

TL properties [7,8]. The optical properties of this phosphor were studied via the FTIR 

technique, wherein we found the presence of standard niobate octahedra. The results obtained  
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Figure 1. (a) PL emission spectra of Sr2YNbO6: 4 mol% Eu3+ at different temperatures; (b) 

plot of PL intensity vs. Temperature. 

 

Figure 2. TL glow curves of Sr2YNbO6:x mol% Eu3+ (x=0, 1, 3, 5) phosphors at different 

beta doses.  
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from XRD and FTIR were significant and corelated. For photoluminescence studies, all 

samples were examined under different excitation wave length, out of which Sr2YNbO6: 4 

mol% Eu3+ phosphor excited under 396 nm excitation exhibited good intense red emission, 

which is ascribed to standard europium emission resulting due to 5D0-
7F2 transition [9,10]. 

Furthermore, to investigate the thermal stability of Sr2YNbO6: 4 mol% Eu3+ phosphor, the PL 

emission spectra were measured for wide temperature range, i.e. from room temperature to 250 

C presented in Figure 1(a). The results revealed that the thermal stability could be 79.4% at 

LED burning temperature (150 C), as shown in Figure 1(b), it making this phosphor promising 

to be used in the WLEDs as a red component phosphor [11]. Moreover, for 

thermoluminescence studies all samples were irradiated using beta radiation for dose the range 

of 1-10 Gy, then after TL glow curves were measured from room temperature to 250 C. The 

effect of dose and doping concentration on TL emission was examined as well as TL kinetic 

parameter was calculated. The TL glow curves of Sr2YNbO6:x mol% Eu3+ (x=0, 1, 3, 5) are 

shown in Figure 2. The linear response of TL intensity with increasing beta dose in the range 

of 1-10 Gy indicate that the phosphor may also be used in the TL dosimetry [12]. The detail 

study of all characterizations was presented in chapter 3 of thesis. 

 

Figure 3. (a) PL emission spectra of Sr2YVO6: x mol% Eu3+ (x =1-5) phosphors monitored 

with 320 nm excitation wavelength; and (b) Magnified image of PL emission spectra of 

Sr2YVO6: x mol% Eu3+ phosphors within 630-750 nm. 

In further experiments, we prepared a new double perovskite composition Sr2YVO6 

doped with Eu3+. The synthesis of this phosphors was accomplished through the combustion 

synthesis method, and structural analysis was performed using FESEM, EDAX, and FTIR 

spectroscopy. The Rietveld refinement of the XRD pattern of Sr2YVO6 phosphor suggests 

monoclinic crystal structure of all the Sr2YVO6 phosphor [13]. The PL properties were 
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thoroughly examined to understand the luminescent behaviour of the phosphor, wherein we 

found excellent PL emission of Eu3+. Figure 3(a-b) depicts the PL emission spectra of 

Sr2YVO6:x% Eu3+ (x=1-5) phosphor under 320 nm excitation. The red and far-red emission at 

653 nm and 705 nm were observed when the 3 mol% Eu3+ doped phosphor excited with 320 

nm excitation, which are attributed to 5D0-
7F3 and 5D0-

7F4 transitions of Eu3+, respectively 

[14,15]. 

 

Figure 4. (a) Thermoluminescence glow curves of Sr2YVO6:x mol% Eu3+ (x=0, 1, 3, 5) 

phosphors after 10 Gy dose of beta irradiation; (b) TL glow curves of Sr2YVO6:x mol% 

Eu3+ (x=0, 1, 3, 5) phosphors under UV irradiation for 60 min. 

Moreover, in TL experiments, the phosphor Sr2YVO6 doped with Eu3+ underwent 

irradiation using two different ionizing radiations, namely beta and UV rays, with varying 

radiation doses. Figure 4 (a) and (b) depicts the TL glow curves of Sr2YVO6:x% Eu3+ phosphors 

under fixed dose of beta and UV rays, respectively. Interestingly, the undoped phosphor under 

study exhibited highest TL glow under both the irradiation rays. The linear dose response 

towards beta rays and UV rays indicate that the phosphor may useful for the dosimetry purpose 

towards beta rays and UV rays [16-17]. The detail study of all characterizations was presented 

in chapter 4 of thesis. 

Our further study aimed the perovskite exploration for the luminescence 

characterization. Kept this in mind, we selected a tungstate perovskite Ca3WO6 for 

luminescence study, which is doped with Tb3+ and Ho3+. The Ca3WO6:Tb3+ (Tb3+=0.5-2.5 

mol%) and Ca3WO6:Ho3+ (Ho3+=1-5 mol%) phosphors were prepared via the combustion route 

of synthesis. A study on XRD technique of all the tungstate phosphors considered for 

luminescence study indicated the pure monoclinic crystalline structure with a P 21/c symmetry 

[18-19]. A study on FTIR spectroscopy of undoped, Tb3+ doped and Ho3+ doped phosphors 
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suggest the presence of standard tungstate bonding [20,21]. Both the phosphor series exhibited 

very good green spectral emission with notable intensity.  

 

Figure 5. PL emission spectra of Ca3WO6: x% Tb3+ (x=0.5, 1, 1.5, 2, 2.5) phosphors.  

 

Figure 6. TL glow curves of Ca3WO6:x% Tb3+ (x=0.5-2.5) phosphors after 50 Gy dose of 

beta irradiation. 

When Ca3WO6:Tb3+ phosphor excited with 278 nm, it shows green emission at 545 nm, 

which is standard terbium emission occurs from 5D4-
7F5 transition, shown in Figure 5 [22,23]. 

When the phosphor is doped with 1 mol% of Tb3+, it exhibited highest PL intensity. Later, for 

higher doping concentration of Tb3+, the PL intensity found quenched. Moreover, a high 
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intense TL is observed from Ca3WO6:Tb3+ phosphors after beta irradiation, shown in Figure 6. 

After 50 Gy dose of beta irradiation, the Ca3WO6:x% Tb3+ (x=0.5-2.5) phosphors exhibited 

most intense TL glow maximum at 170 C with a small hump on the lower temperature side. 

The excellent linear dose response with increasing beta dose, and less TL fading making 

Ca3WO6:2.5%Tb3+ phosphor promising candidate to be used in TL dosimetry [24,25].    

 

Figure 7. (a) Temperature dependent PL of Ca3WO6:1 mol% Ho3+ phosphor monitored with 

454 nm; (b) Temperature dependent PL of Ca3WO6:1 mol% Ho3+ phosphor monitored with 

362 nm.  

In the case of Ca3WO6:Ho3+ phosphor series, we found admirable PL display with 

notable emission intensity. When the Ca3WO6:Ho3+ phosphor is excited at 362 nm, and 454 

nm, it exhibited standard holmium emission, which is resulted due to 5F4-
5I8 transition of Ho3+ 

[26,27]. The thermal stability of the phosphor Ca3WO6:Ho3+ phosphor was checked by taking 

the PL emission at various temperatures, starting from RT to 300 C. Figure 7 (a) and (b) shows 

the temperature dependent PL emission spectra of Ca3WO6:1%Ho3+ phosphor under 454 nm 

and 362 nm excitations. The phosphor under study shows very high thermally stable PL 

emission at 150 C (LED burning temperature) with PL intensity of 85.6% when excited at 454 

nm, and 84.2% when excited at 362 nm, when compared to intensity observed at RT. The 

excellent thermal stability of Ca3WO6:Ho3+ phosphor making it very promising for its 

applications in UV and blue excited LEDs [28]. The detail study of all characterizations was 

presented in chapter 5 of thesis. 

4. Conclusion and future study 
Herein, several rare earths (Eu3+, Tb3+ and Ho3+) activated double perovskite phosphors 

were synthesized via the combustion synthesis and studied for their luminescence 

characterizations.  As a result, we found multi-purpose materials for their applications in the 
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field of lighting devices and radiation detection. First, we have prepared the Sr2YNbO6 double 

perovskite doped with various concentrations of Eu3+. Wherein, we have found highly 

thermally stable materials with the thermal stability of the order of ~79.4%. Moreover, the TL 

investigation is also found interesting and shows linear dose response to beta rays within the 

dose range of 1-10 Gy. The overall results obtained from the Sr2YNbO6 phosphor under study 

provide enough evidence that the phosphor can be used as a red component phosphor in the 

WLEDs. Later, by replacing the Nb5+ site with V5+ in the Sr2YNbO6 double perovskite, we 

have prepared new double perovskite Sr2YVO6 by doping Eu3+. As a result, we found deep red 

PL emission in addition to the orange-red PL emission. Moreover, these phosphors also 

exhibited excellent TL response after beta irradiation. The excellent linear TL dose response 

was observed towards high-energy beta rays. The excellent PL display at 278 and 320 nm with 

very high color purity shows the potential application of the phosphor under study in the display 

devices. Moreover, from the observed linear dose-response, it also may be useful in the TL 

dosimetry.      

In the next experiment, we have taken a tungstate based double perovskite Ca3WO6 and 

doped with various concentrations of Tb3+ and Ho3+. When the Ca3WO6:Tb3+ phosphor under 

study was excited at 278 nm, it exhibited excellent green emission at 545, 553, and 567 nm, 

with the highest intensity at 545 nm (5D4-
7F5 transition of Tb3+). The highest PL intensity was 

observed from the phosphor containing 1 mol% of Tb3+, however, further increment in doping 

level leads to intensity quenching, for which multipolar interaction is the responsible 

phenomenon. Additionally, after beta irradiation, all the Tb3+ doped Ca3WO6 phosphors 

exhibited excellent TL response. The excellent linear dose-response and the very low fading of 

the order of ~12% indicate that the Ca3WO6:2.5 mol% Tb3+ phosphor can be a good candidate 

to be used in TL dosimeters. Moreover, the bright green emission under 278 nm excitation 

reviled potential application of the phosphor in the display materials. In the second tungstate-

based phosphor series doped with Ho3+, we have found highly intense single-peak wavelength 

green emission under UV (362 nm) and blue (454 nm) excitations. A study on temperature 

dependent PL shows highly thermally stable material, which has ability to emit bright green 

emission even after reaching LED burning temperature. In addition, all the Ho3+ doped 

tungstate phosphors displayed good TL response after beta irradiation. Wherein, the effect of 

Ho3+ concentration and different doses of beta radiation were studied and discussed. Among 

all studied samples, Ca3WO6:2% Ho3+ was found more promising for TL characteristics. An 

exceptional linear dose-response was observed from the phosphor within the dose range of 10-

50 Gy. Besides, the effect of heating rate on the TL glow curve was studied, which indicates 
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negligible thermal quenching from the phosphor under study. Finally, the linear dose response 

and lower thermal quenching features make phosphor a good candidate to be used for 

dosimetry applications. The exceptionally high thermal stability at 362 and 454 nm excitation, 

makes phosphor promising to be used in UV- and blue-excited LEDs. 

In this thesis, we reported the rare-earth activated double perovskites, which are 

prepared via the combustion route of synthesis. In future, we would like to explore the rare-

earth free perovskites as well as rare-earth doped perovskites for their PL and TL 

characterization. Also, we want to explore the perovskite nanoparticles, that can be prepared 

by using the hydrothermal method of material synthesis.      
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