LIST OF FIGURES

Figur	re No. Figure Caption	Page No.
1.1	Classification of luminescence in term of emission time.	3
1.2	Mechanism of fluorescence emission.	3
1.3	Mechanism of phosphorescence emission.	4
1.4	Luminescence emission occurring due to the luminescent activator only.	5
1.5	Energy transfer mechanism and occurrence of luminescence phenomenon.	6
1.6	Schematic classification of luminescence kinds.	6
1.7	Thermoluminescence mechanism.	7
1.8	Classification of perovskite structure.	13
2.1	Flow chart of combustion route of material synthesis.	27
2.2	Bruker D8 Advance diffractometer.	28
2.3	Carl Zeiss Model Supra 55 FESEM.	29
2.4	JASCO-4600 IR spectrometer.	30
2.5	Shimadzu Spectro-fluorophotometer (model: RF5301 PC; Shimadzu Japan	a). 31
2.6	PC-controlled TL reader of type TL1009, designed by Nucleonix.	32
2.7	Risø TL/OSL reader DA 15 (Bøtter-Jensen et al., 2003) instrument.	33
3.1	XRD of Sr ₂ YNbO ₆ : x mol% Eu^{3+} (x= 0-5) phosphors along with standard	
	ICDD reference.	39
3.2	Rietveld refined XRD pattern of pure Sr ₂ YNbO ₆ phosphor.	40
3.3	Magnified diffraction patterns of undoped and Eu ³⁺ doped Sr ₂ YNbO ₆ phos	phors. 41
3.4	W-H plots of Sr_2YNbO_6 (a) and Sr_2YNbO_6 :1% Eu ³⁺ (b).	43
3.5	SEM micrographs of 4% Eu ³⁺ doped Sr ₂ YNbO ₆ .	44
3.6	FTIR spectrum of Sr ₂ YNbO ₆ : x Eu ³⁺ (x =0-5 mol%).	45
3.7	Photoluminescence excitation and emission spectra of pure Sr ₂ YNbO ₆ .	46
3.8	PL excitation (a) and PL emission (b) spectra of Sr_2YNbO_6 : 1 mol% Eu^{3+}	
	phosphor.	47
3.8	(c-j) PL excitation and respective PL emission spectra of 2 mol% to 5 mol%	0
	Eu^{3+} activated Sr_2YNbO_6 phosphors.	49
3.9	Photoluminescence excitation spectra of Sr_2YNbO_6 : x mol% Eu ³⁺ (x =1-5)	

phosphors.	52
3.10 PL emission spectra of Sr ₂ YNbO ₆ : x mol% Eu ³⁺ (x =1-5) recorded under	
(a) 274 nm, (b) 396 nm, and (c) 467 nm excitation wavelengths.	53
3.11 Plot of PL intensity vs. doping concentration.	54
3.12 PL emission spectra of Sr_2YNbO_6 : 4 mol% Eu^{3+} at different temperatures (a);	
plot of PL intensity vs. Temperature (b).	56
3.13 Plot of ln[(I ₀ /I)-1] vs.1/kT.	57
3.14 PL decay lifetime curves of Sr_2YNbO_6 : 4% Eu ³⁺ .	58
3.15 CIE diagram of Sr_2YNbO_6 :4 mol% Eu^{3+} .	59
3.16 Thermoluminescence glow curves of Sr_2YNbO_6 :x mol% Eu ³⁺ (x=0, 1, 3, 5).	62
3.17 TL intensity response to different Eu^{3+} concentrations.	63
3.18 TL glow curves of Sr ₂ YNbO ₆ :x mol% Eu ³⁺ (x=0, 1, 3, 5) phosphors at different	
beta doses.	64
3.19 Dose response of Sr_2YNbO_6 :x mol% Eu ³⁺ (x=0, 1, 3, 5) phosphors towards	
beta rays.	65
3.20 Deconvoluted TL glow curves of Sr_2YNbO_6 :x mol% Eu ³⁺ (x=0, 1, 3, 5) phosphot	rs
after beta irradiation of 10 Gy.	68
3.21 Notation of peak shape method.	69
4.1 Rietveld refined XRD pattern of Sr ₂ YVO ₆ phosphor.	80
4.2 XRD patterns of Sr ₂ YVO ₆ : x mol% Eu ³⁺ (x= 0-5) phosphors.	81
4.3 Magnified diffraction patterns of undoped and Eu ³⁺ doped Sr ₂ YVO ₆ phosphors.	82
4.4 W-H plots of Sr_2YVO_6 (a) and Sr_2YVO_6 :1% Eu ³⁺ (b).	83
 4.4 W-H plots of Sr₂YVO₆ (a) and Sr₂YVO₆:1% Eu³⁺ (b). 4.5 SEM micrographs of 3% Eu³⁺ doped Sr₂YVO₆ phosphor. 	83 84
4.5 SEM micrographs of 3% Eu^{3+} doped Sr_2YVO_6 phosphor.	
 4.5 SEM micrographs of 3% Eu³⁺ doped Sr₂YVO₆ phosphor. 4.6 SEM micrographs of 3% Eu³⁺ doped Sr₂YVO₆ phosphor at scanning resolution 	84
 4.5 SEM micrographs of 3% Eu³⁺ doped Sr₂YVO₆ phosphor. 4.6 SEM micrographs of 3% Eu³⁺ doped Sr₂YVO₆ phosphor at scanning resolution of 200 nm. 	84 85
 4.5 SEM micrographs of 3% Eu³⁺ doped Sr₂YVO₆ phosphor. 4.6 SEM micrographs of 3% Eu³⁺ doped Sr₂YVO₆ phosphor at scanning resolution of 200 nm. 4.7 EDAX of 3 mol% Eu³⁺ doped Sr₂YVO₆ phosphor. 	84 85 86
 4.5 SEM micrographs of 3% Eu³⁺ doped Sr₂YVO₆ phosphor. 4.6 SEM micrographs of 3% Eu³⁺ doped Sr₂YVO₆ phosphor at scanning resolution of 200 nm. 4.7 EDAX of 3 mol% Eu³⁺ doped Sr₂YVO₆ phosphor. 4.8 Elemental mapping of 3% Eu³⁺ doped Sr₂YVO₆. 	84 85 86 86
 4.5 SEM micrographs of 3% Eu³⁺ doped Sr₂YVO₆ phosphor. 4.6 SEM micrographs of 3% Eu³⁺ doped Sr₂YVO₆ phosphor at scanning resolution of 200 nm. 4.7 EDAX of 3 mol% Eu³⁺ doped Sr₂YVO₆ phosphor. 4.8 Elemental mapping of 3% Eu³⁺ doped Sr₂YVO₆. 4.9 FTIR spectra of undoped and 3 mol% Eu³⁺ doped Sr₂YVO₆ phosphors . 	84 85 86 86 87
 4.5 SEM micrographs of 3% Eu³⁺ doped Sr₂YVO₆ phosphor. 4.6 SEM micrographs of 3% Eu³⁺ doped Sr₂YVO₆ phosphor at scanning resolution of 200 nm. 4.7 EDAX of 3 mol% Eu³⁺ doped Sr₂YVO₆ phosphor. 4.8 Elemental mapping of 3% Eu³⁺ doped Sr₂YVO₆. 4.9 FTIR spectra of undoped and 3 mol% Eu³⁺ doped Sr₂YVO₆ phosphors . 4.10 Photoluminescence excitation and emission spectra of pure Sr₂YVO₆. 	84 85 86 86 87

 4.11 (c) PL excitation and (d) PL emission spectra of Sr₂YVO₆:2 mol% Eu³⁺ phosphor; (e) PL excitation and (f) PL emission spectra of Sr₂YVO₆:3 mol% Eu³⁺ phosphor; 			
(g) PL excitation and (h) PL emission spectra of Sr_2YVO_6 :4 mol% Eu ³⁺ pl	nosphor;		
(i) PL excitation and (j) PL emission spectra of Sr_2YVO_6 :5 mol% Eu ³⁺ photon 12 PL excitation and (j) PL emission spectra of Sr_2YVO_6 :5 mol% Eu ³⁺ (model) (Sr_2^{3+} (Sr	osphor. 91		
4.12 Photoluminescence excitation spectra of Sr_2YVO_6 : x mol% Eu ³⁺ (x =1-5)	0.4		
phosphors. $12 (2) \text{ Pl} = \frac{1}{2} \frac$	94		
4.13 (a) PL emission spectra of Sr ₂ YVO ₆ : x mol% Eu ³⁺ (x =1-5) phosphors mo with 278 nm excitation wavelength.	nitored 94		
4.13 (b) PL emission spectra of Sr_2YVO_6 : x mol% Eu ³⁺ (x =1-5) phosphors mo			
with 320 nm excitation wavelength; and (c) Magnified image of PL emission spectra $(x - 1 - 3)$ phosphore into $(x - 1 - 3)$ phosph			
spectra of Sr_2YVO_6 : x mol% Eu ³⁺ phosphors within 630-750 nm.	95		
4.13 (d) PL emission spectra of Sr ₂ YVO ₆ : x mol% Eu ³⁺ (x =1-5) phosphors mo			
with 396 nm; and (e) PL emission spectra of Sr_2YVO_6 : x mol% Eu ³⁺ (x =1)	·		
phosphors monitored with 467 nm excitation wavelength.	96		
4.14 Plot of PL intensity as a function doping concentration.	98		
4.15 CIE diagram of Sr ₂ YVO ₆ :3 mol% Eu ³⁺ phosphor.	99		
4.16 Thermoluminescence glow curves of Sr_2YVO_6 :x mol% Eu ³⁺ (x=0, 1, 3, 5)	1		
phosphors.	101		
4.17 TL intensity response to different Eu ³⁺ concentrations.	102		
4.18 TL glow curves of Sr ₂ YVO ₆ :x mol% Eu ³⁺ (x=0, 1, 3, 5) phosphors at diffe	erent		
beta doses.	103		
4.19 TL response of undoped and Eu^{3+} doped Sr_2YVO_6 phosphors to beta irradi	iation. 104		
4.20 Deconvoluted TL glow curves of Sr_2YVO_6 :x mol% Eu ³⁺ (x=0, 1, 3, 5) pho	osphors		
after beta irradiation of 10 Gy.	105		
4.21 TL glow curves of Sr_2YVO_6 :Eu ³⁺ phosphors along with undoped Sr_2YVO	6		
when exposed to UV irradiation for 60 min.	109		
4.22 TL glow curves of Sr ₂ YVO ₆ :Eu ³⁺ phosphors at different at different UV			
exposure time.	111		
4.23 Plot of TL intensity vs. UV exposure period.	111		
4.24 TL glow curves of Undoped and Eu ³⁺ doped Sr ₂ YVO ₆ phosphors with PSM			
notations.	112		

5.1 Rietveld refined XRD pattern of Ca ₃ WO ₆ .	122
5.2 XRD patterns of Ca ₃ WO ₆ : x mol% Tb ³⁺ (x= 0-2.5) phosphors.	123
5.3 Magnified diffraction patterns of undoped and Tb^{3+} doped Ca_3WO_6 phosphors.	124
5.4 W-H plots of Ca_3WO_6 (a) and Ca_3WO_6 :0.5 % Tb ³⁺ (b).	125
5.5 (a-d) SEM micrographs of 1 mol% Tb^{3+} doped Ca ₃ WO ₆ phosphor.	126
5.6 EDAX spectrum of 1 mol% Tb^{3+} doped Ca_3WO_6 phosphor.	127
5.7 Elemental mapping of the 1 mol% Tb^{3+} doped Ca ₃ WO ₆ phosphor.	127
5.8 FTIR spectra of Ca_3WO_6 : Tb ³⁺ double perovskite phosphors.	128
5.9 Photoluminescence excitation and emission spectra of pure Ca ₃ WO ₆ .	129
5.10 PL excitation and PL emission spectra of Ca ₃ WO ₆ : 0.5% Tb ³⁺ phosphor.	129
5.11 PL emission spectra of Ca ₃ WO ₆ : x% Tb ³⁺ (x=0.5, 1, 1.5, 2, 2.5) phosphors.	131
5.12 Plot of PL intensity as a function doping concentration.	131
5.13 CIE diagram of 1 mol% Tb^{3+} doped Ca_3WO_6 phosphor.	132
5.14 TL glow curve of Ca ₃ WO ₆ :2.5% Tb ³⁺ phosphor irradiated with 50 Gy of beta	
rays.	133
5.15 TL glow curves of Ca ₃ WO ₆ :x% Tb ³⁺ (x=0.5-2.5) phosphors after 50 Gy of	
beta irradiation.	134
5.16 TL intensity response to different Tb^{3+} concentrations.	134
5.17 TL glow curves of Ca ₃ WO ₆ :2.5% Tb ³⁺ phosphor at different doses of beta	
irradiation.	135
5.18 Dose response of Ca_3WO_6 :2.5% Tb ³⁺ phosphor towards beta rays.	136
5.19 (a) TL glow curves of Ca_3WO_6 :2.5% Tb ³⁺ after 30 days of irradiation.	137
5.19 (b) Comparative TL intensities of Ca ₃ WO ₆ :2.5% Tb ³⁺ after 30 days of irradiation	. 137
5.20 Deconvoluted TL glow curve of Ca ₃ WO ₆ :2.5% Tb ^{$3+$} phosphor.	138
5.21 XRD patterns of Ca ₃ WO ₆ : x mol% Ho ³⁺ (x= 0-5) phosphors.	140
5.22 Magnified diffraction patterns of undoped and Ho^{3+} doped Ca_3WO_6 phosphors.	141
5.23 W-H plots of Ca_3WO_6 (a) and Ca_3WO_6 :1% Ho ³⁺ (b).	142
5.24 (a-d). SEM micrographs of 4 mol% Ho ³⁺ doped Ca ₃ WO ₆ phosphor.	143
5.25 EDAX spectrum of 4 mol% Ho ³⁺ doped Ca ₃ WO ₆ phosphor.	144
5.26 Elemental mapping of the 4 mol% Ho ³⁺ doped Ca ₃ WO ₆ phosphor.	144
5.27 FTIR spectra of Ca ₃ WO ₆ :Ho ³⁺ double perovskite phosphors.	145
5.28 (a) PL excitation spectra of Ca ₃ WO ₆ : 4 mol% Ho^{3+} (b) PL emission spectra of	

Ca ₃ WO ₆ : 4 mol% Ho ^{$3+$} phosphor.	146			
5.29 PL excitation spectra of Ca ₃ WO ₆ : x mol% Ho ³⁺ (x =1-5) phosphors recorded under				
454 nm excitation wavelength.	147			
5.30 PL emission spectra of Ca_3WO_6 : x mol% Ho ³⁺ (x =1-5) phosphors monitored				
with (a) 275 nm, (b) 303 nm, (c) 362 nm, and (d)722 nm excitation wavelengths.	148			
5.30 PL emission spectra of Ca ₃ WO ₆ : x mol% Ho ³⁺ (x =1-5) phosphors monitored				
With (e) 422 nm, (f) 454 nm, and (g) 488 nm excitation wavelengths.	149			
5.31 Plot of PL intensity vs. doping concentration.	150			
5.32 (a) Temperature dependent PL of Ca ₃ WO ₆ :1 mol% Ho ³⁺ phosphor monitored				
with 454 nm.	151			
5.32 (b) Plot of ln[(Io/I)-1] vs. 1/kT using plotted Arrhenius equation.	151			
5.33 (a) Temperature dependent PL of Ca ₃ WO ₆ :1 mol% Ho ³⁺ phosphor monitored				
with 362 nm.	153			
5.33 (b) Plot of ln[(Io/I)-1] vs. 1/kT using plotted Arrhenius equation.	153			
5.34 CIE diagram of Ho ³⁺ doped Ca ₃ WO ₆ phosphors for the excitations of 362 nm				
and 454 nm.	154			
5.35 TL glow curve of Ca ₃ WO ₆ :2% Ho ³⁺ phosphor irradiated with 50 Gy dose of beta				
rays.	155			
5.36 (a) TL glow curves of Ca ₃ WO ₆ :x% Ho ³⁺ (x=1-5) phosphors after 50 Gy of beta				
irradiation, recorded at 2 °C/s heating rate.	156			
5.36 (b) TL glow curves of Ca ₃ WO ₆ :x% Ho ³⁺ (x=1-5) phosphors after 50 Gy of beta				
irradiation, recorded at 4 °C/s heating rate.	157			
5.36 (c) TL glow curves of Ca_3WO_6 :x% Ho ³⁺ (x=1-5) phosphors after 50 Gy of beta				
irradiation, recorded at 6 °C/s heating rate.	157			
5.37 TL intensity response to different Ho^{3+} concentrations.	158			
5.38 TL glow curves of $Ca_3WO_6:2\%$ Ho ³⁺ phosphor at different doses of beta				
irradiation with a fixed heating rate of 4 °C/s.	159			
5.39 TL response of undoped and Ho^{3+} doped Ca_3WO_6 phosphors to beta irradiation.	160			
5.40 TL glow curves of $Ca_3WO_6:2\%$ Ho ³⁺ phosphor after irradiated with 50 Gy beta				
dose at heating rates of 2 $^{\circ}$ Cs ⁻¹ , 4 $^{\circ}$ Cs ⁻¹ , and 6 $^{\circ}$ Cs ⁻¹ .	160			
5.41 Plot of TL intensity and temperature as a function of HR.	161			
5.42 Deconvoluted TL glow curve of $Ca_3WO_6:2\%$ Ho ³⁺ phosphor recorded after				
50 Gy beta irradiation.	162			