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2.1 Introduction to Density Functional Theory  

The formulation of Density Functional Theory (DFT) [1], which predicts the fundamental 

properties of materials, is discussed briefly in this chapter. DFT is widely recognized as a 

successful technique and a quantum mechanical tool used for studying and predicting the 

properties of periodic bulk solids and material interfaces [2,3]. It has gained considerable 

attention due to its predictive power, especially in cases where direct experimental 

investigation is difficult due to factors such as cost, technical challenges associated with 

extreme conditions (e.g., high pressures, temperatures), in the study of toxic substances or 

nuclear radiation [4,5]. Compared to the classical approach, DFT offers superiority by 

employing a quantum mechanical approach to describe the interaction of quantum systems 

such as electrons in a periodic system, electron-phonon interactions, quasi-particle dispersions, 

and non-equilibrium states. In the quantum approach, the behavior of electrons in materials is 

investigated by solving the many-body-time-independent Schrödinger equation. However, this 

method encounters a challenge in considering the 3N degrees of freedom of the many-body 

electronic wave function. To overcome this, the many-body electronic wave function is 

approximated in terms of the electron density, significantly reducing the 3N variables to 3 

coordinates (x, y, z) only. This modification enables quicker and easier computational 

calculations. In 1964, Hohenberg and Kohn introduced two theorems which serves as exact 

theoretical framework for DFT [6,7].  

2.1.1 Many-body Problem 

The properties of crystalline solids at atomic level are governed by quantum mechanics. 

Nuclei and electrons are the fundamental constituents of any material which suggests that all 

the properties are determined with the interactions that occur between electrons and ions. The 
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interactions between the electrons and ions are understood through the quantum mechanical 

approach as they do not obey classical mechanics. The behaviour of electrons and ions 

governed under the quantum mechanical approach can be understood by solving the time 

independent Schrödinger equation. The time-dependent Schrödinger equation is written as [8], 

 Ĥψ = Eψ                                                                                                                             (2.1)    

The Hamiltonian in equation (2.1) is written as, 

Ĥ =  
p2

2m 
+ V(r⃗)                                                                                       (2.2) 

Here, Ĥ is the Hamiltonian of the system which is the sum of kinetic and potential energy, E 

is the energy eigen value characterize by wave function ψ(r). 

The simplest case is that of the hydrogen atom which consists of one proton and one 

electron. By solving the above-mentioned equation for hydrogen atom, we get the exact energy 

as-13.6 eV. But material consists of large number of atoms thus increasing the number of 

protons and electrons for which the single electron Schrödinger equation does not hold true. 

Thus, for a system of many electrons and protons we have to find the solution for many-body 

Schrödinger equation to estimate the interactions between the same. The many-body equation 

consists of many-body wavefunction depending on the position of each electrons 

(𝑟1⃗⃗⃗ ⃗, 𝑟2,⃗⃗⃗⃗⃗  𝑟3⃗⃗⃗⃗ , … … … 𝑟𝑖⃗⃗⃗ ) and nuclei (𝑅1
⃗⃗⃗⃗⃗, 𝑅2,⃗⃗ ⃗⃗ ⃗⃗  𝑅3

⃗⃗ ⃗⃗⃗, … … … 𝑅𝑙
⃗⃗ ⃗⃗ ). 

Accordingly, the many-body Schrödinger equation [9] is written as, 

Ĥψ(r⃗, R⃗⃗⃗) = Eψ(r1⃗⃗⃗⃗ , r2,⃗⃗⃗⃗⃗  r3⃗⃗⃗⃗ , … … … ri⃗⃗⃗;R1
⃗⃗ ⃗⃗⃗, R2,⃗⃗ ⃗⃗ ⃗⃗  R3

⃗⃗ ⃗⃗ ⃗, … … … Rl
⃗⃗ ⃗⃗ )                                   (2.3) 

Now, the Hamiltonian Ĥ can be represented as   

 Ĥ = T̂E + T̂I + V̂II + V̂EE + V̂IE                                                                                            (2.4) 
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Where, T̂E + T̂I is kinetic energy and V̂II + V̂EE + V̂IE represents potential energies to include 

ion-ion, electron-electron and electron-ion interactions. This can also be written as, 

Ĥ = −
ħ2

2me
∑

∂2

∂r̅i
2i −

ħ2

2M
∑

∂2

∂R̅l
2 +

1

2
∑

e2

4πε0

ZlZl′

|R̅l−R̅l′|l,l′
l≠l′

l

 

                                                       +
1

2
∑

e2

4πε0

1

|r̅i−r̅j|
i,j

i≠j

− ∑ ∑
e2

4πε0

Zl

|r̅i−R̅l|li

 

                          (2.5) 

here, 𝑖 and l run for electron and nuclei, 𝑚𝑒 ……, M, 𝑍𝑙𝑍𝑙′……. 

𝑚𝑒 is mass of electron 

M is mass of nuclei 

𝑍𝑙𝑍𝑙 defines charges on different nuclei 

�̅�𝑖 − �̅�𝑗 distance between electron-electron 

�̅�𝑖 − �̅�𝑙 distance between electron-nuclei 

By solving equation (2.4) we can obtain the ground state energy of the system through which 

the properties can be computed at equilibrium. For the solution of the equation (2.5) we need 

electronic charge, atomic number and mass and the calculation is based on laws of physics and 

nature’s constants. This type of calculations where no adjustable parameters are required as 

input is known as first principles calculations. Over the years, several approximations to this 

theory have been put forth which are discussed in subsequent sections. 

2.2 Wave Function Based Methods to Solve Many-body Problem 

2.2.1 Born-Oppenheimer Approximation 

The Born-Oppenheimer (BO) approximation allows to decouple electronic and ionic 

motions. Electrons being 103-104 times lighter than the ions, tend to move faster than the ions. 
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Thus, while solving the many-body Schrödinger equation, ions are considered at fixed position 

while electrons move around the ions adiabatically. According to this approximation [10] 

many-body wave function (equation 2.3) is decomposed in ionic and electronic part 

ψ = χi(R⃗⃗⃗)ψE(r,̅ R̅)                                                                                   (2.6) 

here, 𝜒𝑖(�⃗⃗�) is ionic wave function, 𝜒1(�⃗⃗�), 𝜒2(�⃗⃗�), 𝜒3(�⃗⃗�) … … … .. 

 𝜓𝐸(𝑟,̅ �̅�) is electronic wave function 

The electronic part of equation (2.6) is given by, 

[−
ħ2

2me
∑

∂2

∂r̅i
2i  +  VIE (r,̅ R̅) + VEE  (r̅)] ψE(r,̅ R̅) = EE  ψE(r,̅ R̅)                               (2.7)                                           

𝜓𝐸(𝑟,̅ �̅�) is many-body electron wave function satisfying Schrödinger equation with fixed ionic 

position 

Ionic part is given by 

[−
ħ2

2M
∑

∂2

∂R̅l
2l  +  VII (R̅) +  EE  (R̅)] χl(R⃗⃗⃗) = E χl(R⃗⃗⃗)                                                (2.8) 

Ions due to its heavy mass are considered stationary making the ionic kinetic energy term 

vanish and also ion-ion repulsion potential becomes constant. This approximation is better for 

semiconductors and insulators as the electrons cannot excite to higher levels due to steady ions 

whereas it is inconclusive in case of metals. However, Hamiltonian with electronic part is still 

difficult to solve and thus further approximation is required. 

2.2.2 Hartree Approximation 

The Coulomb interactions governed by classical electrostatics between the electrons need 

to be discussed for simplification of many-body systems. The calculations were simplified by 
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Hartree, as he modified the issue into the independent electron approximation [11,12]. He 

regarded the n-electron system as a collection of separate one-electron systems, with no 

interactions between them. In this scenario, each electron encounters an averaged electrostatic 

potential created by the presence of the other electrons. Hartree considered the electronic 

motion and assumed that the wave function is the product of the single particle function [13]. 

ΨH = Ψ(r1̅, σ1)Ψ(r2̅, σ2) … Ψ(rN̅̅ ̅, σN)                                                                                  (2.9)                                              

here, Ψ(r1̅, σi) is wave function of single electron i with spin σ. Variational principle is used 

for ground state energy, which states expectation value of the energy is 

 E = ⟨ΨH|H|ΨH⟩ ≥ E0                                                                                                                         (2.10)    

Using Hamiltonian from equation 2.7, the wave function from equation 2.9 we get the equation 

known as Hartree equation.  

−
ħ2

2me
∇i 

2Ψi −
1

4πε0
∑

Ze2

|r̅i−R̅l|
Ψi +

1

4πε0
l ∑ ∫

e2|Ψj|
2

|r̅i−r̅j|
d3rjj≠i =  ∈i Ψi                                        (2.11)         

In left hand side of the equation, first term is the kinetic energy, while the second term 

represents the ion-electron interaction (VIE) which depends only on the position of electron and 

the last term represents the Hartree potential VH. Also, Hartee did not consider the asymmetric 

wave function for electrons; as the electrons are classified as fermions, and according to the 

Pauli’s exclusion principle the asymmetric nature should be considered. 

2.2.3 Hartree-Fock Approximation 

It is imperative to discuss the behaviour of fermions in the framework of Fermi-Dirac 

statistics. In order to include asymmetric nature, unlike to product wave function, determinantal 

for function is used, and is written as, 
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ΨHF(r1̅, σ1, … , ri̅, σi,  … , rj̅, σj, … ) = −ΨHF(r1̅, σ1, … , ri̅, σi,  … , rj̅, σj, … )                       (2.12)  

If the wavefunction is represented as Slater’s determinant [14] then it satisfies the 

antisymmetric requirement. 

 ΨHF(r1̅, σ1, … , rN̅̅ ̅, σN) =
1

N!
|

Ψ1(r1̅, σ1) Ψ1(r2̅, σ2) … Ψ1(rN̅̅ ̅, σN)

Ψ2(r2̅, σ2) Ψ2(r2̅, σ2) … Ψ2(rN̅̅ ̅, σN)

ΨN(rN̅̅ ̅, σN) ΨN(rN̅̅ ̅, σN) … ΨN(rN̅̅ ̅, σN)
|         

The determinant of the wavefunction is given by, 

 ΨHF =
1

N!
∑ (−1)pP Ψ1(x1) Ψ2(x2) …  ΨN(xN)P                                                        (2.13)                                    

here, x = (�̅�, 𝜎)     

1

N!
 is the normalization factor 

P = number of permutation 

p = number of interchanges making the permutation 

Using the variational principle we obtain,  

E = ∑ ∫ Ψ∗(r⃗) [−
ħ2

2me
∑ ∇i

2

i

+ Vl(r⃗)] Ψ(r⃗)d3r

i

 

+
1

2
∑ ∑ ∬

e2

4πε0

| Ψi(xi)|| Ψj(xj)|
2

|r⃗ − r⃗′|
d3rd3r′

i≠ji

 

 −
1

2
∑  ∑ ∬

e2

4πε0

Ψi
∗(r⃗⃗)Ψj

∗(r⃗⃗′) Ψi(r⃗⃗′) Ψj(r⃗⃗)

|r⃗⃗−r⃗⃗′|
d3rd3r′

j≠ii,j                                                       (2.14) 

The first term of above equation is consisting the kinetic energy and interaction of external 

potential, while the second term represents Hartree potential and the last term appeared due to 
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the Pauli’s exclusion principle also known as exchange energy. Minimization of equation 2.13 

leads to canonical form of Hartree-Fock equation 

[−
ħ2

2me
∑ ∇ 

2
i − Vl(r⃗) + VH(r⃗)] Ψi(r⃗)  

 −
1

2
∑ ∑ ∬

e2

4πε0

Ψj
∗(r⃗⃗′) Ψi(r⃗⃗′) Ψj(r⃗⃗)

|r⃗⃗−r⃗⃗′|
d3rd3r′

j≠ii,j =  ∈i Ψi(r⃗)                                                (2.15) 

Involvement of exchange energy by taking asymmetric nature of wave function improves 

Hartree method. However, total energy ∈𝑖 contains minimization over sum of N particle 

Slater’s determinant and this type of determinant are quite large; hence this approximation 

becomes computationally very costly for large as well as small systems.  

2.3 Density Based Methods: Density Functional Theory 

DFT is the most successful approach for the calculation of ground state energy to determine 

the properties of a material. Here, for many-body problem of N electrons there are possible 3N 

variables which are reduced to 3 coordinates when considering density of electrons as the base 

of our study. In the subsequent sections, we will discuss the Thomas-Fermi theory that 

describes atoms, molecules or solids in terms of density followed by Hohenberg-Kohn 

theorems that give us the ground state energy in terms of density and lastly the Kohn-Sham 

equation, which is the many-body Schrödinger equation in terms of electron density. 

2.3.1. Thomas-Fermi Theory 

The first approach to solve many body systems and obtain the ground state energy using 

density was introduced by Thomas and Fermi in 1927 [15,16]. In this method, the basic variable 

is electron density instead of single particle wave function or orbitals. They have considered 

density of non-interacting electron in homogeneous gas equal to the local density at a given 
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point. Thomas-Fermi (TF) theory can approximate the kinetic energy and potential of N 

interacting electrons by following equation 

TTF = Ck ∫ η(r̅)
5

3d3r                                                                                                           (2.16)       

where, Ck =
3

10

ħ2

me
(3π2)

2

3 and η(�̅�) is the density of electrons 

 TTF is the local approximation to the kinetic energy that can be obtained by adding all free 

electron energy states up to Fermi wave vector. 

The TF theory gives total energy as a functional by adding kinetic energy, electrostatic energy 

and interaction of external potential as a functional of electron density which is represented in 

equation (2.17). 

𝐸 = 𝑇𝑇𝐹 + ∫ 𝑉𝐼𝐸(�̅�) 𝜂(�̅�)𝑑3𝑟 +
1

2
∬

𝑒2

4𝜋𝜀0

𝜂(𝑟′) 𝜂(�̅�)

|𝑟−𝑟′|
𝑑3𝑟𝑑3𝑟′                                           (2.17) 

This energy is known as TF energy and TF equation can be obtained by minimization of above 

energy with constraint recognized by Lagrange multiplier µ which gives the proper number of 

particles. 

5

3
Ckη(r̅)

2

3 + ∫
e2

4πε0

η(r⃗⃗′)

|r⃗⃗−r⃗⃗′|
d3r′ = μ   

μ =
5

3
Ckη(r̅)

2

3 + V(r̅)                                                                         (2.18)         

This is the basic equation of TF theory and it can be solved self consistently. TF does not 

include the exchange energy in the equation (2.18). Further, this method has been extended by 

Dirac to include the exchange interaction and to include the correlation to kinetic energy 

functional but fails to establish shell structure and does not describe the behaviour of electrons 

for atoms to complex systems. 

2.3.2. Hohenberg and Kohn Theorems 
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In 1964, Hohenberg and Kohn (HK) formulated two theorems [17] which forms the 

foundation of DFT calculations. Schematic of HK theorem is shown in Figure 2.1 [18]. The 

first theorem states that; 

Theorem I: “For any system of interacting particles in an external potential Vext(r), the 

potential Vext(r) is determined uniquely, except for a constant, by the ground state particle 

density η(r).” [17,19] 

The above theorem states that ground state can be determined by density. The density thus 

corresponds to a unique potential which can be used to describe a unique Hamiltonian. The 

proof of the theorem is as follows: 

Proof: Consider two potentials Vext
(1)(r) and Vext

(2)(r) which differ from each other by more 

than a constant. The two potentials have the same ground state density n(r). Thus, the two 

potentials provide us two separate wave functions ψext
(1)(r) and ψext

(2)(r). 

According to variational principle, wave function ψext
(1)(r) gives the lowest energy for Hext

(1)(r) 

and ψext
(2)(r) is not the ground state for Hext

(1)(r). Thus, 

𝐸(1) =  ⟨𝜓(1)|Ĥ(1)|𝜓(1)⟩ < ⟨𝜓(2)|Ĥ(1)|𝜓(2)⟩                                                                                    (2.19)                                                         

 If we consider non-degenerate system, the last term of above equation becomes, 

  ⟨ψ(2)|Ĥ(1)|ψ(2)⟩ =  ⟨ψ(2)|Ĥ(2)|ψ(2)⟩ + ⟨ψ(2)|Ĥ(1) −  Ĥ(2)|ψ(2)⟩                                                     (2.20) 

                             = E(2) +  ∫ [ Vext(1)(r) - Vext(2)(r)] η(r)d3r                                                   (2.21) 

So that  

E(1) <  E(2) +  ∫ [ Vext(1)(r) - Vext(2)(r)] η(r)d3r                                                                            (2.22)                                 
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Now, interchanging the labels 1 and 2 is reasonable. 

𝐸(2) <  𝐸(1) + ∫  [Vext(1)(r) - Vext(2)(r)] η(r)d3r                                                                       (2.23)                                          

Adding equations 2.18 and 2.19 we get, 

E(1) + E(2) <  E(2) + E(1)                                                                                                               (2.24)                                                          

This is contradictory which confirms the fact that there can only be one external potential Vext(r) 

that produces the ground state density η(r), and conversely that the ground state density η(r) 

uniquely determines the external potential Vext(r). The second theorem states that,  

HK 

η0(�⃗⃗�) Vext(�⃗⃗�) 

ψi({�⃗⃗�}) Ψ0({�⃗⃗�}) 

 

Figure 2.1: Schematic representation of first HK theorem. Here, the HK theorem 

completes the circle, while other smaller arrow shows the solution of Schrödinger 

equation. Image adapted from ref. [18] 
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Theorem II: “The functional that delivers the ground state energy of the system, describes the 

lowest energy if and only if the input density is the true ground state density. 

 Proof: Now we consider a system with the ground state density η(1)(r) which corresponds to 

external potential Vext
(1)(r). The universal functional can be written as, 

E[η] = F[η] + ∫ Vext(r)η(r)d3r                                                                                       (2.25) 

Where,  F[η] =  T[η] +  E[η]int                                                                                        (2.26) 

Further, it is known that universal functional equals the expectation value of ground state 

Hamiltonian with wave function ψ(1) and the corresponding density as η(1)(r). 

 E(1) =  E[η(1)] =  ⟨ψ(1)|Ĥ(1)|ψ(1)⟩                                                                                     (2.27)        

By the variational principle, a different density η(2)(r) will give higher energy 

 E(1) =  E[η(1)] =  ⟨ψ(1)|Ĥ(1)|ψ(1)⟩ < ⟨ψ(2)|Ĥ(1)|ψ(2)⟩ = E(2)                                             (2.28)                          

The H-K functional evaluated the correct ground state density η0(r) which is indeed lower than 

the value of this expression for any other density η(r) given by equation (2.25). Therefore, 

density based variational principle is also known as the second Hohenberg-Kohn theorem. 

2.3.3. Kohn-Sham Equation: Density Functional Theory 

In the above discussion we have referred number of approximations that have simplified 

the many-body Schrödinger equation but none of them guided us on how to solve it and obtain 

the value of charge density.  HK estimated the kinetic energy of electrons and exchange 

correlation energy same as TF theory. In 1998, noble prize was awarded to Walter Kohn for the 

Kohn-Sham (KS) ansatz [20] in which they have replaced a many-body interacting system in 

external potential with a non-interacting auxiliary system and further assumed that they possess 

same ground state electron density and hence same ground state properties. KS came up with 
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the approach that replaces N-electrons with fictious system of one electron. Figure 2.2 

summarizes the KS approach.              

                                           

The Hohenberg – Kohn theorem describes that total energy for a system can be expressed as, 

 E[η] = T[η] + V[η] + ∫ Vext(r)η(r)d3r                                                                              (2.29)                                               

where, T[η] is the kinetic energy functional 

V[η] is the Coulomb potential functional 

Vext is the external potential 

Assuming that single particle system and interacting-particle system have same density. Adding 

and subtracting Ts[η] (the non-interacting kinetic energy) and EH[η] (the Hartree energy) to 

HK KS HK0 
Vext(�⃗⃗�) η0(�⃗⃗�) η0(�⃗⃗�) VKS(�⃗⃗�) 

ψi({�⃗⃗�}) Ψ0({�⃗⃗�}) 
ψi({�⃗⃗�}) 

ψi=1,Ne({�⃗⃗�}) 

Figure 2.2: Same as Figure 2.1 but for Kohn-Sham ansatz. HK0 defines Hohenberg and 

Kohn theorem applied to non-interacting system. The connection between many-body 

and the independent particle systems provided by Kohn-Sham that labelled as double 

arrow. Image is adapted from ref. [21] 
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equation (2.29), giving 

EKS[η] = Ts[η] + EH[η] + {T[η] − Ts[η] + V[η] − EH[η]} + ∫ Vext(r)η(r)d3r                (2.30) 

EKS[η] = Ts[η] + EH[η] + EXC[η] + ∫ Vext(r)η(r)d3r                                                                  (2.31)                    

where the exchange correlation term is defined as,        

 EXC[η] =  T[η] − Ts[η] + V[η] − EH[η]                                                                           (2.32)                                         

here, Exc[η] is a universal functional, which does not depend on the external potential 

T[η]−Ts[η] is the kinetic contribution to correlation 

 V[η]−EH[η] arises from the Hartree-Fock exchange and the electrostatic contribution to 

correlation 

The Hartree energy EH[η] is the classical electrostatic energy for a charge distribution η(r) 

 EH[η] =
1

2
∫ ∫

η(r)η(r′)

|r−r′|
d3rd3r′                                                                                              (2.33)                                            

The non-interacting kinetic energy Ts is evaluated from the single particle wave functions and 

is given as; 

Ts[η] = −
1

2
∑ ⟨ψi|∇

2|ψi⟩
N
i                                                                                                      (2.34)                                                                                                         

The density η(r) and particle count N of the non-interacting system is straightforwardly 

calculated as, 

 η(r) =  ∑ |ψi(r)|2N
i                                                                                                                (2.35)                                             

 N = ∫ η(r)d3r                                                                                                                     (2.36)    

 Ts[η] is explicitly expressed as a functional of the orbitals that are also known as KS orbitals 

but all other terms are considered to be functionals of the density, then the solution is 

minimization in terms of η(r). 
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δEKS

δψi
∗(r)

=  
δTs[η]

δψi
∗(r)

+ [
δEext[η]

δη(r)
+

δEH[η]

δη(r)
+

δExc[η]

δη(r)
]

δη(r)

δψi
∗(r)

= 0                                        (2.37)                              

Also, from equations 2.29 and 2.30, we can write; 

δTs[η]

δψi
∗(r)

= −
1

2
∇2ψi(r)              and                 

δη(r)

δψi
∗(r)

= ψi(r)                                            (2.38) 

This further leads us to Schrödinger like equations: 

 (HKS − εi)ψi(r) = 0                                                                                                                           (2.39) 

where, εi are the eigen values 

HKS is the effective Hamiltonian 

 HKS(r) =  −
1

2
∇2 + VKS(r)                                                                                                    (2.40)                                                         

here, 

 VKS[r] = Vext[r] + VH[r] + Vxc[r]                                                                                        (2.41) 

                                                       

 Equations (2.39)- (2.41) are the well-known Kohn-Sham equations, where the total energy EKS 

and density η(r) are given by equations (2.30) and (2.35). These are independent particle 

equations and the potential can be found using the density, self consistently. The exact ground 

state density and energy can be obtained if exact functional Exc[η] is known.             

2.4 Self-Consistency in Kohn-Sham Equation 

In the above section, we have discussed various theories to solve the Schrödinger equation. 

Also, we have derived the Kohn-Sham equations to calculate density as well as ground state 

energy. The KS equation can be solved as eigen value problem. The solution can be obtained 

by varying the density of electrons and effective potential till desired self-consistency is 

achieved. In Figure 2.3, we have shown the schematic flow chart to obtain the solution for the 

KS equation. Hartree potential and exchange correlation potential depends on electron density 
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and this density yield correlation energy where initial guess of density is made. The unknown 

wavefunction  𝜓𝑖(𝑟⃗⃗⃗⃗ ) yields the new density and also the effective potential calculation is 

conducted. To achieve the self-consistency, initial guess is made. The initial guess is made by 

specifying nuclear coordinates. If the calculated new density is same as the old density, we can 

consider that desired self-consistency is achieved or else new effective potential is obtained 

from new electron density. After this process, when we achieve the ground state density, the 

energy is calculated.                        

Generate new η(�⃗⃗�) 

V(�⃗⃗�) 

Initial guess of 𝛙𝐢(𝒓⃗⃗ ⃗⃗ ) 

𝜼(𝒓) =  ∑|𝛙𝐢(𝒓⃗⃗ ⃗⃗ )|
𝟐

𝑵

𝒊

 

Calculate VH and Vxc 

Veff(�⃗�)= V(�⃗�)+VH(�⃗�)+Vxc(�⃗�) 

[−
ħ𝟐

𝟐𝒎𝒆
𝛁𝟐 + 𝑽𝒆𝒇𝒇] 𝛙𝐢(𝒓⃗⃗ ⃗⃗ ) 

Calculate new density 

Problem solved! We can now calculate energy, forces, etc. 

Self-Consistent? 

NO 

YES 

Figure 2.3: Schematic flowchart for finding self-consistent solutions of the Kohn-

Sham 

equations. [From Quantum Espresso Tutorial] 
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2.5 Exchange and Correlation Functional 

DFT solves many-body problem using KS equation where we need to approximate 

exchange and correlation potential. The exchange energy of electrons is defined as, 

 EX[η] = ⟨ψ[η]|VEE|ψ[η]⟩ − U[η]                                                                                      (2.42)   

The repulsion between electrons which can be calculated using Kohn-Sham wavefunction 

which further gives us Hartree contribution and an exchange contribution. Slater determinant 

is used to represent the KS orbitals whereas the Fock orbitals gives exchange energy [22]. The 

exchange energy obtained is completely different than HF approximation. The differences 

between HF exchange and KS-DFT exchange are subtle. They can be thought of as having two 

different sources. 

1) The KS exchange is defined for a given density, and so the exact exchange of a system is 

the exchange of the KS orbitals evaluated on the exact density. The HF exchange is 

evaluated on the HF orbitals for the system. 

2) To eliminate the density difference, we can compare KS EX[ηHF] with that from HF. The 

remaining difference is due to the local potential for the KS orbitals. 

The correlation energy is defined as, 

 Ec[η] = F[η] − Ts[η] − U[η] − EX[η]                                                                                (2.43)                                                        

To obtain the solution to many-body problem and describe the properties of various systems 

there are some approximations to account exchange and correlation potential, which are 

discussed in subsequent sections.       
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2.5.1 Local Density Approximation 

The accuracy to obtain sustaining results using KS equation, largely depends on the 

exchange-correlation functional. Kohn and Sham noticed that electrons in solids can often be 

considered to be close homogeneous electron gas, meaning that the effects of exchange and 

correlation are local. This approximation is known as the Local Density Approximation (LDA) 

which was proposed by Kohn and Sham. In LDA, we consider that at any point the contribution 

of each small volume to the exchange correlation energy is equivalent to the contribution of 

homogeneous electron gas that has the same density. The LDA exchange-correlation energy 

and functional are defined as, 

 Exc
LDA[η(r)] = ∫ dr η(r)εxc

LDA[η(r)]                                                                                   (2.44)                                             

 Vxc[η(r)] = (Exc[η] + η
δExc[η]

δn
)

η=η(r)
                                                                               (2.45)         

Quantum Monte Carlo Simulations [23] were used by Ceperly and Alder to obtain the 

functional for homogeneous electron gas which were further parameterized by Perdew and 

Zunger [24] and by Ortiz and Ballone [25]. LDA presents accurate results for the system in 

which electrons are placed in infinite region of space, with uniform positive external potential 

which is chosen for charge neutrality. The exchange-correlation energy sum rule in LDA is 

very well satisfied as exchange overestimates and correlation underestimates the values. 

However, LDA does not satisfy asymptotic behaviour of potential and also underestimates the 

band gap in semiconductors and insulators [26]. 

2.5.2 Generalized Gradient Approximation  

As discussed in the above section, LDA fails to present results for complex systems as the 
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electron density may vary with the volume element. To resolve this issue, gradient correction 

in density is required that is implemented in Generalized gradient approximation (GGA) [27]. 

Here, not just the density but also gradient of density is used in evaluation of exchange-

correlation energy that is expressed as, 

 Exc
GGA[η(r)] = ∫ dr η(r)εxc

GGA( η(r), ∇η(r), … )                                                                   (2.46) 

There are many parameterizations of the GGA based on semi-empirical and the first-principles. 

The widely used includes the one by Perdew, Burke and Ernzerhof which is derived from first-

principles calculations [28]. It is found that the electron correlation part for finite systems is 

improved by gradient corrections. The gradient in the charge density can be denoted as, 

 Exc[η] = ∫ εxc(η) |η=η(r)η(r)Fxc[η(r), ∇η(r)]dr                                                                (2.47) 

For simplicity in practical calculations, Exc and Fxc must be parameterized analytic functions. 

GGA provides satisfactory results for small molecules but fails in case of uniform electron gas 

in metals. It gives us better bond dissociation energy and transition-state barrier as compared 

to LDA. The Perdew-Wang 1991 (PW91) [29] functional is an analytic fit to this numerical 

GGA, designed to satisfy several further exact conditions.  

2.5.3 Pseudopotentials 

In DFT single particle orbitals are given as linear combination of basis functions i.e. 

ψi = ∑ Ciα∅α
α

 

The two most popular classes of basis functions are plane waves and Gaussian. The plane 

waves are preferred more in case of bulk materials and surfaces calculations as they are 

orthogonal to each other and are independent of atomic positions. In calculations, plane waves 

are used with periodic boundary conditions. Increasing the cutoff energy Ecut that defines the 
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number of plane waves increases the accuracy but also the computational cost. Also, large 

number of plane waves are needed to represent the wave functions of core electrons because 

of their oscillatory nature. Due to this reason pseudopotentials are used which reduces the 

number of plane waves in turn making the calculations more efficient.  

It is evident that the core states remain unchanged in molecules or atoms, thus the core 

electrons are combined with nucleus which generates effective potential on the valence 

electrons. Pseudopotentials are used to include properties of valence electrons in an atomic 

calculation. The potential designed are smooth with wave functions within a cutoff radius rc. 

Here, outside the core region, the pseudo wave function matches exactly the “true” valence 

wave function whereas inside the core region the former is smoother than the latter which is 

depicted in Figure 2.4. Each orbital channel (s, p, d, and f) has unique pseudopotentials defined 

for it. The pseudopotentials eliminate the core electrons lowering the memory requirement for 

simulations and they also incorporate relativistic effects at lower cost. There are mainly two 

kinds of pseudopotentials: Non-Conserving and Ultrasoft. There are few requirements of ab-

initio pseudopotential given by Hamann, Schluter and Chiang [30]. They are as follows, 

1) All electrons and pseudo valence eigen values agree for the chosen atomic reference 

configuration. 

2) All electron and pseudo valence wave functions agree beyond a chosen core radius rc. 

3) The logarithmic derivatives of all the electron and pseudo wave functions agree at rc. 

4) The integrated charge inside rc for each wave function agrees. 

5) The first energy derivative of the logarithmic derivatives of all the electron and pseudo 

wave functions agrees at rc. 
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The ultra-soft pseudopotentials fulfill the goal of accurate calculations by a transformation 

which expresses the problem in terms of a smooth and an auxiliary function around each ion 

core. 

 

2.6 Density Functional Perturbation Theory 

The understanding of vibrational frequencies and displacement patterns is crucial to 

describe the chemical structure and binding of atoms. Vibrational frequency is measured via 

Infrared, Raman and Inelastic scattering techniques. The lattice dynamical behaviour of a 

material affects the polarizability, phonons, Raman and Infrared spectrum, superconductivity 

and temperature dependent optical spectra. Density functional perturbation theory (DFPT) is a 

Figure 2.4: Comparison of wavefunction in Coulomb potential of nucleus (blue) 

and pseudopotential (red) inside and outside the cutoff region. Pseudo and real 

wave functions match after the cutoff radius. Image is adapted from ref. [21] 
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powerful theoretical technique within density functional theory framework to calculate such 

properties which calculate response function, phonon frequencies and Born effective charges 

[31-33]. By applying linear response to KS equation, we examine the alteration in electron 

density solution caused by perturbation. The external potential V is expanded in terms of taylor 

series as,  

 vext = vext
0 + λvext

(1)
+ λ2vext

(2)
+ λ3vext

(3)
+ ⋯                                                                         (2.48)                                               

 E[ψ] = min
ψ(1)

∑ ⟨ψi|T + Vext|ψi⟩ + EHxc[η]iocc                                                                       (2.49) 

The similar expansion is done for E, H, ψkn, η(r), etc. The second order energy E(2) is an 

important parameter which is used to calculate the dynamical matrix for phonon frequency 

calculations and Born effective charges. Energy as a functional of density is written as, 
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Where the second order term of energy is obtained as variational with respect to first order 

wave function provided first order wave functions are orthogonal to ground state wave 

functions 

 ⟨ψi
(0)

|ψj
(j)

⟩ = 0                                                                                                                     (2.51)      

The dynamical matrix is Hermitian and its eigenvalues ωj
2(q) are real, and eigenvectors 

ξj(q) are orthonormal. In addition, the phonon band structure ωj (q) directly corresponds to 

density of states which provides the information of phonons in whole Brillouin zone (BZ). To 

obtain the information of the whole phonon spectrum, the scanning of BZ is important. These 
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scanning consists in Dαβ(
𝑞

𝑘𝑘′
) -matrix diagonalization over the three-dimensional net of wave 

vector 𝑞 = (
𝑎∗

𝑛1
,

𝑏∗

𝑛2
,

𝑐∗

𝑛3
  ), at n1, n2, n3 = -N, .., N. In total, this includes Ni = (2N + 1)3 points in 

BZ. The phonon density of states (DOS) is determined by summation over all the phonon states 

and is defined by 

 g(ω) = D′ ∫ ∑ δ (ω − ωj(q)) dq = D′
jBZ

∫ ∑ δ (ω − ωj(q)) dqpjpBZ
                                 (2.52)           

Here, D’ is a normalization constant such that  ∫ g(ω) dω =1 ; and g(ω) dω is the fraction of 

phonons with energies ranging from ω to ω+dω. The mesh index (‘p’) is characterized by ‘q’ 

in the discretized irreducible BZ, where dqp provides the weighing factor corresponding to the 

volume of pth mesh in q-space. The contribution of different atoms to phonon density of states 

(DOS) is known from the partial atomic density of states (PDOS) which provides essentially 

aids in understanding the atomic level contribution to the total phonon DOS. It is defined as 

follow: 

 g(ω) =  D′ ∑ δ (ω − ωj(q))
|ξj(q)|

2

∑ |ξj(q)|
2

jp
jp                                                                                (2.53)      

2.7 Dispersion Correction to Density Functional Theory 

Kohn-Sham formulation of DFT is used to study the electronic structure of materials as it 

resonates accurate predictions for distinct properties of solids and molecules. To estimate the 

value of exchange correlation term, there are several approximations namely, LDA, GGA, 

hybrid functionals. Despite providing satisfactory results in various cases, GGA and hybrid 

functionals fail to describe the long-range electron correlations that are responsible for van der 

Waals (vdW) forces which is important to understand the adsorption behaviour of atoms and 

molecules on the surface and interfaces [34-36]. The total energy in case of vdW correction is 

given by, 
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 EDFT−D = EKS−DFT + Edisp                                                                                                  (2.54) 

where EDFT-D is general KS self-consistency energy 

Edisp is the empirical vdW dispersion correction to the correlational functional given by [35] 

 Edisp = −s6 ∑ ∑
C6

ij

Rij
6 fdmp(Rij)

Nat
j=i+1

(Nat−1)
i=1                                                                               (2.55) 

here, Nat is the number of atoms in the system 

C6
ij
 defines the dispersion coefficient for atom pair ij 

S6 depends on the functionals that are used, known as global scaling factor  

Rij is an interatomic distance 

Damping function fdmp (Rij) is used to avoid near singularities for small R, that is given by 

 fdmp(Rij) =
1

1+e
−d(

Rij
R0ij−1)

                                                                                                       (2.56) 

where R0 is the sum of atomic vdW radii 

The value of C6
ij
 and R0ij is calculated by the following relation, 

 C6
ij

= √C6
i C6

j
                        R0ij = R0i + R0j                                                                      (2.57) 

The results are precisely tested on systems including elements up to xenon and large 

hydrocarbons with many hydrogen atoms showed. 

2.8 Computational Packages 

This section briefly describes the Quantum Espresso that has been used throughout our 

work to conduct various calculations. 
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2.8.1 Quantum Espresso 

In 2001, a group of esteemed scientists, including Stefano Baroni, Paolo Giannozzi, Andrea 

Dal Corso, and others, initiated a collaborative project with the potential to bring about a 

remarkable transformation. This undertaking, recognized as Quantum Espresso (QE), played a 

pivotal role in the DFT computations carried out in this thesis [32,37]. It is an open-source 

package that is freely accessible to researchers worldwide under the terms of the GNU General 

Public License. This package was utilized for all aspects of the thesis, encompassing structural 

optimization, assessments of relative energy, electronic properties, magnetic characteristics, 

adsorption behaviours, and notably, the evaluation of catalytic activity. In this thesis, all 

graphical depictions of structures, DOS and PDOS plots were generated utilizing the 

XCrySDen [38] and Vesta visualization software [39]. 

2.9 Summary 

In this chapter, we thoroughly discuss the comprehensive computational techniques that 

have been applied in this thesis. Initially, we have introduced the concept of many-body 

systems and proceed to investigate various approximative approaches utilized for solving the 

many-body Schrödinger equation, which specifically focuses on Density Functional Theory 

(DFT). Furthermore, we have explained the exchange-correlation functionals. Finally, we offer 

a concise summary of the computational software utilized to evaluate the diverse material 

properties scrutinized in this thesis. 
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