Table of Contents

Chapter 1: Introduction	1
1.1 Energy Crisis	1
1.1.1 Various Methods of Renewable Energy Production	2
1.2 Electrocatalysis	4
1.2.1 Hydrogen Evolution Reaction	5
1.2.2 Oxygen Evolution Reaction	6
1.3 Emergence of Two-Dimensional Materials: Graphene and Transi	tion Metal
Chalcogenides	7
1.4 Catalytic Properties of 2D Transition Metal Chalcogenides	9
1.4.1 Experimental Studies	10
1.4.2 Theoretical Studies	12
1.5 Enhancement in the Catalytic Efficiency	14
1.5.1 Doping	14
1.5.2 Defect	15
1.6 Research Objectives	15
1.7 Structure of the Present Thesis	16
References	19

Chapter 2: Theoretical Framework and Computational Methodology	23
2.1 Introduction to Density Functional Theory	23
2.1.1 Many-Body Problem	23
2.2 Wave Function Based Methods to Solve Many-Body Problem	25
2.2.1 Born-Oppenheimer Approximation	25
2.2.2 Hartree Approximation	26
2.2.3 Hartree-Fock Approximation	27
2.3 Density Based Method: Density Functional Theory	29
2.3.1 Thomas-Fermi Theory	29
2.3.2 Hohenberg and Kohn Theorems	30
2.3.3 Kohn-Sham Equation: Density Functional Theory	33
2.4 Self-Consistency in Kohn-Sham Equation	36
2.5 Exchange and Correlation Functional	38
2.5.1 Local Density Approximation (LDA)	39
2.5.2 Generalized-Gradient Approximation (GGA)	39
2.5.3 Pseudopotentials	40
2.6 Density Functional Perturbation Theory	42
2.7 Dispersion Correction to Density Functional Theory	44
2.8 Computational Packages	45
2.8.1 Quantum Espresso	46
2.9 Summary	46

References	46	
Chapter 3: Hydrogen Evolution and Oxygen Evolution Reactions of		
Pristine and Alkali Metal Doped SnSe ₂ Monolayer	49	
3.1 Introduction	49	
3.2 Computational Methods	51	
3.3 Results and Discussion	53	
3.3.1 Structural and Electronic Properties of Pristine SnSe ₂ and Na, K	and	
Ca Doped SnSe ₂	53	
3.3.2 Optical Properties and Work Function Analysis	59	
3.4 Conclusions	64	
References	65	
Chapter 4: Enhanced HER Activity of 1T-SnSe ₂ by Defect Engineerin	g: A	
DFT Study	68	
4.1 Introduction	68	
4.2 Computational Methods	72	
4.3Results and Discussion	73	
4.4 Conclusions	84	
References	85	
Chapter 5: In Situ Defect Engineering of HfS2, HfSe2 and Janus HfSSe for		
Highly Efficient Hydrogen Evolution Reaction: An Ab Initio Study	89	

5.1 Introdu	action	89
5.2 Compu	utational Methods	91
5.2.1	Computational Details	91
5.2.2	Theoretical Formulations	92
5.3 Results	s and Discussion	93
5.4 Conclu	isions	108
References	S	109
Chapter 6	: Summary and Future Scope	114
List of Pul	blications	119
Curriculu	m Vitae	122