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 Chapter 2 
 

Materials and Methods 
 

 

2.1 Study areas 

The study was conducted in three protected areas (PAs) in India (Figure 2.1): 

Shoolpaneshwar Wildlife Sanctuary (SWS) and Vansda National Park (VNP), both 

situated in Gujarat, and Mudumalai Tiger Reserve (MTR), located in Tamil Nadu. 

These areas have been declared as protected areas, facing variable rainfall patterns and 

temperatures as well as increasing anthropogenic pressure. The physiographic and 

climatic conditions of the three PAs are outlined in Table 2.1, showcasing a gradient in 

climatic conditions among them. Specifically, there is a discernible increase in rainfall 

moving from SWS to MTR. Based on the observed variability in the rainfall, SWS and 

VNP are referred to as drier PAs, and MTR as wetter PA.   

 

Figure 2.1| A. Location of three protected areas (PAs) in India. B. False color composite image 

of each PA (862.28 nm; red, 651.92 nm; green, 551.74 nm; blue) obtained from AVIRIS-NG 

datasets, with the yellow box on image indicating the region of interest generated as a subset 

based on field survey. (a) Shoolpaneshwar Wildlife Sanctuary (SWS), (b) Vansda National Park 

(VNP), and (c) Mudumalai Tiger Reserve (MTR). 
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2.1.1 Description of each Protected Area 

 

Protected Area 1: Shoolpaneshwar Wildlife Sanctuary (SWS) 

SWS is situated in the Narmada District of Gujarat, India, at the westernmost end of 

the Satpura mountain range along the southern bank of the Narmada River. The eastern 

boundary is shared by the Indian states of Madhya Pradesh and Maharashtra (Nirmal 

Kumar et al., 2005). The hills in the sanctuary are part of the Satpuras and Vindhayan, 

with the Rajpipla hills dominating the landscape. The highest peak, Dhaman Mal, 

reaches an elevation of approximately 882 m in the eastern part. The topography is 

undulated, featuring continuous and discontinuous mountain regions interspersed with 

valleys, streams, and agricultural clearings (Christian & Krishnayya, 2009). 

Geologically, the area consists of basaltic rocks, part of the Deccan trap, scattered with 

inter-montane valleys dating back from the upper Cretaceous to the lower Eocene 

(Nirmal Kumar et al., 2005). 

 

The region experiences three distinct seasons: summer (March to June), winter 

(November to February), and the southwest monsoon (July to October). The 

temperature of the region reaches its highest point in the summer months (43 ⁰C), and 

drops to 10 ⁰C during peak winter months of December-January. The decadal mean of 

rainfall and temperature is presented in Table 2.1. During the monsoon, the sanctuary 

is covered with numerous streams and rivulets, some of which are ephemeral, forming 

small pools on rocky river beds used by wildlife. SWS is known for its natural habitat, 

tribal population, and role as a catchment basin for nearby water sources (Sabnis & 

Amin, 1992). 

Table 2.1| Location, topography, and decadal mean of rainfall and temperature of three 

PAs. 

PAs 

Location 
Average 

Elevation (m) 

Rainfall 

(mm) 

Temperature (°C) 

Latitude 

(°N) 

Longitude  

(°E) 
Min Max 

SWS 21.88 73.65 287 1140.13 26.88 27.21 

VNP 20.82 73.44 169 1511.38 26.45 26.70 

MTR 11.73 76.46 1233 1636.98 24.64 25.36 

Source: Rainfall: (Funk et al., 2015), Temperature: (Dee et al., 2011) and  Average 

elevation: (JARVIS, 2008). 
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The major forest types in SWS are Tropical dry deciduous forests (Champion & Seth, 

1968; Roy & Roy, 2015), including very dry teak forests, southern dry mixed deciduous 

forests, dry bamboo, and tropical riverine forests. Riverine forests are found along the 

Terav River, Narmada Rivulets, and the Dev River. In the interior of the forest, there 

are some agricultural fields and experimental silvicultural research plots. Agricultural 

fields surrounding the villages and human settlements were also observed.  

 

SWS has rich floral and faunal diversity due to its geographical location, climate, 

topography, and altitudinal variation. An earlier study reported floral diversity 

comprising 575 species (Nirmal Kumar et al., 2005). According to Pradeepkumar, 

(1993), the dominant species include Tectona grandis and Dendrocalamus strictus, 

evenly spread across the area. All other tree species show a heterogeneous distribution. 

The sanctuary supports a wide range of fauna, including 32 species of mammal, 198 

species of bird, and various insects. The area is home to several animal species 

including the sloth bear, leopard, rhesus macaque, mongoose, four-horned antelope, 

barking deer, rusty-spotted cat, wild dog, sambar, Indian porcupine, pangolin and flying 

squirrel (Nirmal Kumar et al., 2005).  

 

Villages, mainly in the form of hamlets, are inhabited by the Tadvi and Vasava tribes, 

whose traditional lifestyle relies on hunting, gathering forest resources, and practicing 

shifting agriculture (Nirmal Kumar et al., 2005). Domestic animal herds include cows, 

buffaloes, goats, and sheep reared in the Sanctuary. A major source of income for the 

local villagers is from the harvest of minor forest products (MFP) such as gathering 

leaves of Diospyros melanoxylon, gum, honey, fruits of Terminalia bellirica and 

Phyllanthus emblica, and flowers of Madhuca longifolia. A visual representation of the 

PA is shown in Figure 2.2. 
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Protected Area 2: Vansda National Park (VNP) 

VNP is located in the Dangs District of Gujarat, India. The landscape of the park is 

characterized by hills with altitudes ranging from 110 to 360 m, extending from the 

Sahyadri mountain ranges. In 1986, the State Forest Department, Government of 

Gujarat, declared a forest area of 23.99 km² as a National Park under the Wildlife 

(Protection) Act, 1972. The northeastern boundary of the park is formed by the Waghai-

Bilimora railway line and the concurrent Ambica-Khapri River, while the southern 

boundary is marked by the Navtad-Waghai State Highway. The western side is 

delineated by the Navtad-Kala Amba Road. VNP, along with Purna Wildlife Sanctuary, 

constitutes the northern zone of the Western Ghats in Gujarat, covering 4.2% of the 

total geographical area of the Western Ghats zone in Gujarat (V. Kumar et al., 2013). 

 

The climate is tropical, with three distinct seasons: summer (March to mid-June), winter 

(October to February), and monsoon (from mid-June to October). July experiences the 

highest rainfall. Intermittent showers occur from November to January and March to 

May. The decadal mean of rainfall and temperature are given in Table 2.1. 

Temperatures begin to rise in the latter half of February, with May being the hottest 

month, featuring a mean daily maximum temperature of around 40 ⁰C and a mean daily 

Figure 2.2| Field photographs depicting landscape characteristics of SWS. 
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minimum temperature of approximately 26 ⁰C. December is the coldest, with a mean 

minimum of about 16 ⁰C.  

 

The major forest types in VNP include tropical dry deciduous forests and tropical moist 

deciduous forests (Champion & Seth, 1968; Roy & Roy, 2015). According to 

Champion & Seth, (1968), this forest has subgroups such as dry teak forest, moist teak 

forest, southern dry and moist mixed deciduous forest, and dry bamboo brakes. 

Agricultural practices within the park are confined to certain areas. Plantations of 

Tectona grandis, Dendrocalamus strictus, and Mangifera indica were observed. VNP 

supports rich flora and fauna, with a recorded total of 108 different tree species, 51 

shrub species, 64 climbers, 202 herbs, and 25 grass species (Vyas, 2004). Additionally, 

the park serves as a habitat for numerous higher vertebrates (Singh et al., 2000). The 

landscape view of the PA is represented in Figure 2.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3| Field photographs depicting landscape characteristics of VNP. 
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Protected Area 3: Mudumalai Tiger Reserve (MTR) 

The Mudumalai Tiger Reserve is situated on the border between Tamilnadu and 

Karnataka, India, and is a part of the Nilgiri Biosphere Reserve (NBR), designated as 

both an Elephant and a Tiger Reserve (Sukumar et al., 2005). It is surrounded by 

Bandipur National Park (874 km2), Wayanad Wildlife Sanctuary (344 km2), and 

Singara Reserve forests. The terrain elevation ranges from 440 m to 1260 m above 

mean sea level, featuring undulating and varied topography, including hills, valleys, 

ravines, watercourses, and swamps. The soils are of both red and black loam types, with 

the base rock being of the igneous type (George et al., 1988). 

 

The region experiences three distinct seasons: summer (March to mid-May), winter 

(November to February), and monsoon (mid-May to October). The decadal mean of 

rainfall and temperature are given in Table 2.1. During the summer months, the mean 

daily temperature reaches a maximum of 35 ⁰C, dropping to 12 ⁰C during winter 

(December-January). A significant portion of the reserve receives rain from the 

southwest monsoon between June and September, while another part of the reserve 

experiences rain from the northeast monsoon between October and November (Suresh 

et al., 2010).  

 

Tropical dry deciduous forests, tropical moist deciduous forests, and tropical semi-

evergreen forests are the types of forests found in MTR (Champion & Seth, 1968; Roy 

& Roy, 2015). These include dry and moist teak forests, southern dry and moist mixed 

deciduous forests, and dry and moist bamboo brakes (Champion & Seth, 1968). The 

western part of MTR exhibits semi-evergreen vegetation, while the eastern part features 

a dry deciduous cover. The northern portion is characterized by dry deciduous forest, 

while the southern part displays moist deciduous vegetation. The history and 

characteristics of dry season fires (Kodandapani et al., 2008), as well as the flora and 

vegetation types of MTR (Suresh, 2006), have been thoroughly documented. The 

average fire-return period is 6 years in tropical dry deciduous forests and 10 years in 

dry thorn forests (Kodandapani et al., 2008). In the tropical dry deciduous forest of 

MTR, the 50-ha Mudumalai Forest Dynamics Plot (MDFP) is centrally located, with a 

more comprehensive description provided by Sukumar et al., (2004).  
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Due to both topographical and climatic variations, the study area is considered unique 

in its species composition and biodiversity. Plantation of Camellia sinensis, Coffea 

Arabica, Grevillea robusta, and Eucalyptus globulus were observed. The dominant tree 

species observed here are Tectona grandis, Dalbergia latifolia, Lagerstroemia 

lanceolata, Anogeissus latifolia, and Terminalia crenulata (Verma & Jayakumar, 

2015). The fauna comprises a diverse wildlife population, including elephants, gaur, 

tigers, leopards, wild dogs, deer, etc. with varied avifauna and reptiles. Human 

settlements are scattered throughout the northeastern and central parts of the study area. 

The landscape view of the PA is depicted in Figure 2.4. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4| Field photographs depicting landscape characteristics of MTR. 



Chapter 2 

 

28 

 

2.1.2 Workflow 

The workflow illustrating the methods employed in this study is given in Figure 2.5. 

 

 

 

 

 

2.2 Data collection 

 

2.2.1 Field survey and data collection 

The initial field surveys at each PA were conducted approximately ± 5 days from the 

date of AVIRIS-NG image acquisition. These field surveys involved the recording of 

both quantitative and qualitative data on vegetation covers. During the preliminary field 

visits, it was observed that individual trees of some of the frequently occurring species 

showed canopy spread of > 4 meters. Before the AVIRIS-NG data collection, the 

provided technical information indicated a spatial resolution of 4-8 meters. Considering 

this, quadrats with dimensions of 8 m × 8 m were randomly placed along the forest 

trails, with some deliberately placed at a distance from human trails. Additionally, three 

to five polygons of varying sizes (500–750 m2) were also established. These field 

quadrats and additional polygons were laid along the length and width of the flight path 

Figure 2.5| Flowchart of the carried-out methodology. 
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(Figure 2.6). The determination of polygon sizes and the number of quadrats at each 

PA were primarily based on observed vegetation features and expert comments from 

local forest personnel. 

 

In each quadrat, data on tree species diversity, density, height, and canopy spread were 

recorded (Figure 2.7). Height measurements were obtained using a Vertex Hypsometer 

(Haglof, Vertex IV), while canopy spread and the diameter of tree trunks at 1.37 meters 

above ground were measured using a meter tape. Tree species identification relied on 

information from published field manuals, consultations with local residents, forest 

department personnel, and published records. Trees with a diameter > 4 cm at breast 

height (DBH) in each quadrat and polygon were counted. A portable global positioning 

system (GPS) device (Garmin Ltd., Olathe KS, USA) was used to geolocate trees and 

field plots, with an instrument accuracy of less than 3 meters. 

 

In the subsequent months, PAs were revisited to compile comprehensive tree species 

inventories. Qualitative observations indicated variations in the progression and 

duration of the senescent phase among species and across the three PAs. Some species 

exhibited greener crowns and full foliage during the data acquisition period. The 

recorded tree species were categorized as evergreen or deciduous, common (found in 

more than one PA), and PA-specific (seen only in one PA). Drier PAs were 

characterized mostly by deciduous species with a few evergreen ones, while wetter PA 

supported deciduous species with a higher proportion of evergreen species. The 

fieldwork was carried out by a team of research fellows from the Ecology laboratory. 

It can be seen in Chaurasia et al., (2020) and Chaurasia et al., (2021). 
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Figure 2.6| Sampled quadrats (yellow) and polygons (blue) generated 

during the field study. 
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2.2.2 AVIRIS-NG data and preprocessing 

The Airborne Visible/InfraRed Imaging Spectrometer Next Generation (AVIRIS-NG) 

is a new generation airborne sensor of the National Aeronautics and Space 

Administration (NASA) developed by Jet Propulsion Laboratory (https://aviris-

ng.jpl.nasa.gov/). As a part of the Indian Space Research Organization (ISRO)-NASA 

joint initiative for the HYperSpectral Imaging (HYSI) program, the first phase of the 

airborne hyperspectral campaign was organized with AVIRIS-NG payload to cover an 

extensive 22,840 sq. km area across 57 sites in India over 84 days from December 16, 

2015, to March 6, 2016 (Bhattacharya et al., 2019). These sites represent diverse fields 

such as forestry, agriculture, horticulture, geology, coastal areas, oceans, rivers, snow, 

Figure 2.7| Photographs showing activities carried-out during field work. 

https://aviris-ng.jpl.nasa.gov/
https://aviris-ng.jpl.nasa.gov/
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etc. Additionally, coordinated field campaigns were conducted, involving researchers 

from universities and various ISRO centers located in Ahmedabad, Dehradun, 

Hyderabad, and the Indian Institute of Technology, who collected in situ data. 

 

AVIRIS-NG captured data across wavelengths ranging from 380 to 2510 nm with 5 nm 

spectral sampling. Mounted on a King Air B200 at elevations between 4000–8000 m, 

the sensor generated pixels ranging in size from 4 to 8 m based on the respective flight 

altitudes. The AVIRIS-NG data used in this study had a spatial resolution of 4 meters 

for the three PAs. Comprehensive details regarding AVIRIS-NG image data acquisition 

and sensor specifications are given in Table 2.2 and Table 2.3 respectively (Hati et al., 

2021). The total number of flight lines and geographical area covered at each of the 

PAs were as follows: six flight lines covering 501.88 sq. km for SWS, three flight lines 

covering 82.36 sq. km for VNP, and ten flight lines covering 540.70 sq. km for MTR. 

 

The preprocessing procedure involved the generation of Level-0 (L0) and Level-1(L1) 

radiance data, which were subsequently utilized to generate Level-2 (L2) surface 

reflectance data comprising 425 bands at 5 nm intervals. Additionally, the dataset 

underwent atmospheric correction (Thompson et al., 2015). Due to the influence of 

topography and anisotropic reflectance by vegetation, airborne imaging spectroscopy 

data were susceptible to strong sun–sensor surface illumination effects. These effects 

were addressed using the procedures outlined in Soenen et al., (2005) and Wanner et 

al., (1995), resulting in imagery that were topographically and bidirectional reflectance 

distribution function (BRDF) corrected. Thus, the AVIRIS-NG dataset used in this 

study was atmospherically, topographically and BRDF corrected. All of these data 

preprocessing steps were conducted by the Phil Townsend lab at the University of 

Wisconsin, Madison, USA, with the associated code available at 

https://github.com/EnSpec/HyTools-sandbox. 
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Table 2.3| Sensor specifications of AVIRIS-NG data. 

 Specifications AVIRIS-NG 

Spectral information 

Range 380 to 2510 nm 

Position 5 nm 

Response 1 to 1.5 X sampling 

Calibration ± 0.1 nm 

Radiometric information 

Range 0 to max Lambertian 

Precision (SNR) > 2000 @ 600 nm 

─ > 1000 @ 2200 nm 

Accuracy 95% (<5% uncertainty) 

Linearity ≥ 99% characterization 

Spatial information 

Range 34 field of view33 

Sampling 1 milliradian 

Response 1 to 1.5 X sampling 

Sample Distance 0.3 m to 20 m 

Geom Model Full 3 Axes cosines 

Uniformity 
Spectral Cross-Track > 95% across FOV 

Spectral-IFOV-Variation > 95% Spectral Direction 

 

The topographically and BRDF-corrected images of each PA were mosaicked into a 

single image using Environment for Visualizing Images (ENVI v 5.3) software. 

Subsequently, a subset was extracted from this mosaic for each PA, serving as the 

region of interest for tree species classification. The forest area of each subset in the 

respective PAs is 17.23 sq. km (SWS), 10.92 sq. km (VNP), and 141.67 sq. km (MTR).  

 

Out of the available 425 bands, 366 usable bands were retained for analysis after 

eliminating noisy (< 411 nm) and water vapour absorption bands (1348–1428, 1778–

1949 nm) due to their low spectral information content for vegetation. Based on visual 

and field observations, non-forest areas were masked by applying NDVI threshold 

Table 2.2| Flight details of AVIRIS-NG data. 

PAs 

Image 

acquisition 

date 

Image 

Acquisition 

Time (GMT 

+5:30) 

Flight 

Elevation 

(km) 

Flight 

footprint 

length 

(km) 

Geographical 

area (sq. km) 

Cloud 

cover 

SWS 08-Feb-16 
12:58:43 – 

14:01:58 
4.15 44.85 501.88 Clear 

VNP 09-Feb-16 
11:02:17 – 

11:57:46 
4.16 13.32 82.36 Clear 

MTR 05-Jan-16 
11:02:47 – 

13:21:39 
4.83 42.22 540.70 

Clear 

to 

hazy 
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values of 0.4 (SWS and VNP) and 0.6 (MTR) to each image. The forest pixels having 

> threshold values were retained for further processing. The NDVI formula used is 

given in Equation 1.  

𝑁𝐷𝑉𝐼 =
ρ860 – ρ650

ρ860 + ρ650
      (1) 

 

These thresholds were visually determined following Dahlin, (2016) and selected to 

exclude pixels likely to be mixtures of soil and vegetation from the analysis. The 

variation in NDVI threshold values across PAs was due to the observed differences in 

canopy greenness and senescent phases during the flight pass over the three PAs. 

Following Dahlin, (2016), a continuum removal (CR) transformation was also applied 

to minimize overall brightness variation. CR, widely used in studies linking plant 

functional traits to imaging spectroscopy (Dahlin et al., 2013; Féret & Asner, 2014), 

involves fitting a convex hull over each spectrum, setting the convex hull to 1.0, and 

subtracting the original spectrum. This normalization of reflectance spectra ensures that 

CR spectra maintain the same number of dimensions as the original, with end values 

set to one. Spectra exhibiting zero variance were excluded, while the remaining CR-

transformed spectra were considered for further spectral diversity analysis. 

 

2.3 Data analysis 

 

2.3.1 Field data analysis  

The field-collected data from 8 m × 8 m quadrats were aggregated by combining 10 

quadrats to form each field plot. This aggregation resulted in 20 field plots for SWS, 19 

for VNP, and 21 for MTR. Examination of the field data revealed that 21–23 species 

were seen frequently at each PA, collectively accounting for more than 85% of the 

forest cover and thus considered as abundant species. The field plot data for analysis 

were systematically organized into matrices, representing the abundance values of each 

species for every field plot (Kindt & Coe, 2005). These matrices were generated for all 

recorded species and abundant species of each PA. All analyses of field plots were 

conducted in R version 4.0.5 (R Core Team, 2021), using the “BiodiversityR” package 

(Kindt, 2023).  
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Estimation of the total number of species in the survey area 

In instances where the objective is to estimate the number of species in a vast area, it is 

acknowledged that the entire area cannot be surveyed. Due to the inherent challenge of 

many species remaining unseen or undetected in sample-based surveys (Kindt & Coe, 

2005; Oksanen, 2018), the determination of total species was estimated using various 

estimators to provide a more comprehensive understanding of species richness patterns. 

To extrapolate the total number of species in three PAs, four non-parametric estimators 

(Chao, Jackknife 1, Jackknife 2, and Bootstrap) were evaluated.  

 

The expectation is that using a range, rather than a single value, will provide a better 

characterization of tree species richness estimates for a PA. These estimators estimate 

the number of unseen species and incorporate them into the observed species richness. 

Equations for these estimators are given below (Oksanen, 2018). In the following, SP is 

the extrapolated richness in a pool, S0 is the observed number of species in the 

collection, a1 and a2 are the number of species occurring only in one or only in two sites 

in the collection, pi is the frequency of species i, and N is the number of sites in the 

collection. The variants of extrapolated richness are: 

 

 

 

 

 

These estimators generally perform well when there are a moderate number of rare 

species, but their accuracy can decrease if the number of rare species is very high. Chao 

estimator is specifically designed to handle datasets with many rare species and will 

often give higher estimates in such cases. Bootstrap estimator can smooth out the effect 

of rare species by averaging over many resampled datasets, but it may still be influenced 

by the presence of rare species. 

 

Rank-abundance curve 

Rank-abundance curves provide a straightforward method for analyzing diversity 

patterns (Kindt & Coe, 2005). To assess potential changes in the tree community across 

the three PAs, rank-abundance curves were constructed using field plot data from each 
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PA. Also known as Whittaker plots (Whittaker, 1965), these curves arrange recorded 

species from most to least abundant along the x-axis, with their proportional or 

percentage abundance displayed on the y-axis. To accommodate all recorded species 

on a single graph, the rank abundance curve is typically presented in a log 

transformation. These curves distinctly illustrate variations in species richness (width) 

and highlight differences in evenness among assemblages (shape). 

 

Species diversity-area curves 

Species diversity-area curves (Dahlin, 2016) also referred to as species accumulation 

curves depict the species richness for different plot combinations (Kindt & Coe, 2005). 

To estimate and compare species richness in each PA, species diversity-area curves 

were generated. These curves illustrate the average pooled species richness for all 

possible combinations of plots. The curve continues to rise as long as new species are 

discovered with increasing sampling efforts (Ugland et al., 2003). When no new species 

are discovered, even with an increase in the number of sample plots, the curve will 

reach an asymptote. This signifies that the species inventory was adequate to 

comprehensively capture the total species richness within the corresponding PA 

(Ugland et al., 2003). In this study, species diversity-area curves were developed for all 

the field plots in each PA using the accumulation exact method (Kindt & Coe, 2005) 

with 1000 permutations. These curves were created for all the recorded species as well 

as the abundant species in each PA.  

 

Bray-Curtis dissimilarity  

Exploring the intricacies of species composition goes beyond the insights provided by 

species diversity area curves. While these curves lack information on species overlap, 

Kindt & Coe, (2005) suggest that measures of similarity or dissimilarity become crucial 

in understanding the diversity dynamics. It is also emphasized that the quantification of 

biodiversity is incomplete without addressing the spatial variation in species 

composition (Rocchini et al., 2016). To measure the differences in species composition 

among plots (beta diversity), various dissimilarity methods exist, with Bray-Curtis 

dissimilarity (Bray & Curtis, 1957) as one of the most effective dissimilarity measures 

(Southwood & Henderson, 2009). This method takes into account species abundance 
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(Chao et al., 2005). Ecological distance summarizes the differences into a single 

distance statistic (Kindt & Coe, 2005).  

 

In this study, Bray-Curtis dissimilarity was calculated for field plots of each PA, and 

graphs were created to examine the compositional dissimilarity between any pair of 

field plots within a PA. The values of the Bray-Curtis dissimilarity matrix range from 

0 to 1, depending on the degree of similarity between existing species in a pair of plots 

(0 for 100% similarity, 1 for complete dissimilarity). Bray-Curtis graphs, akin to species 

diversity area curves, were created for all recorded species and abundant species in each 

PA. These graphs provide a visual representation of the compositional dissimilarity, 

offering insights into the spatial variation and diversity dynamics within the studied 

PAs. 

 

2.3.2 Data preparation for classification 

 
Additional class to the identified species classes 

In addition to the 21–23 abundant species, an extra four to six species were identified 

in each PA, collectively covering 8%–10% of the respective forest area. These species 

exhibited a relatively low number of individuals recorded during field surveys, and 

showed less variation in physiognomy and canopy spectra. Consequently, they were 

grouped into a single class and given the name ‘others’. The combined contribution of 

the abundant species and the ‘others’ accounted for 88%–93% of the total forest cover 

in each PA. The class ‘others’ was referred to as an abundant species in the 

classification process. As a result, the total number of species considered for 

classification in each PA was 24 for SWS, 23 for VNP, and 22 for MTR, combining 

both the abundant species and the ‘others’ class. This grouping strategy aimed to 

capture the overall biodiversity and spectral characteristics within each PA, 

acknowledging the ecological significance of both abundant and less numerous species 

in the classification efforts. 

 

Crown level spectra extraction 

A crown-level spectral library was developed manually for all the abundant tree species. 

The spatial position of different tree species was determined by overlaying GPS 
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coordinates onto an AVIRIS-NG false-color composite image in ENVI 5.3 software. 

Using the Region of Interest (ROI) tool in ENVI 5.3 software, spectra of each species 

were extracted from the image. The false-color composite image of the area was used 

to ensure that no pixels were collected outside the canopy of each species. Specific 

criteria were established for extracting crown-level spectra for each species, taking into 

account tree crown dimensions and prevailing growing conditions. The diameter of the 

tree crown had to be sufficiently large, encompassing at least one pixel (4 m). Abundant 

species were often encountered with a canopy spread exceeding 5 m or as pure patches 

with a spread exceeding 15 m (Table 2.4). To mitigate potential spectral mixing from 

other species, selected trees were predominantly of a single tree species, allowing for 

the extraction of pure pixels for classification. For the classification process, shapefiles 

containing crown-level spectra of abundant tree species were extracted from the image 

for each PA. 

 

Table 2.4| Measured biophysical parameters of the tree species at each PA. 

PAs 

Height (m) Canopy area (m2) DBH (m) 

Mean 

(±SD) 
Min Max 

Mean 

(±SD) 
Min Max 

Mean 

(±SD) 
Min Max 

SWS 
12.23 ± 

4.90 
2.60 25.80 

57.76 ± 

67.32 
2.41 613.80 0.42 ± 0.29 0.04 1.80 

VNP 
18.31 ± 

6.29 
3.50 35.00 

71.12 ± 

68.71 
2.55 446.93 0.38 ± 0.22 0.05 1.58 

MTR 
22.83 ± 

7.57 
6.00 39.00 

74.61 ± 

74.44 
2.41 638.20 0.68± 0.35 0.04 1.98 

 

Spectral variation and regions selection 

For the spectral analysis of tree species, only those species with a minimum abundance 

of five individuals in each PA were chosen. Using ENVI 5.3 software, the spectral 

values (reflectance) for each abundant species across the full spectrum were extracted. 

Subsequently, the mean reflectance of each abundant species was plotted against the 

spectral bands, creating a visual representation of the species’ spectral characteristics 

within each PA. This step not only facilitated a detailed exploration of individual 

species’ spectral behavior but also provided insights into the overall spectral variations 
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across the study areas. To enhance the clarity and efficacy of the subsequent 

classification process, spectral regions where the spectra of different species overlapped 

were eliminated. This step aimed to mitigate potential confusion arising from spectral 

similarities, thereby ensuring more accurate discrimination of species based on their 

unique spectral signatures (Fassnacht et al., 2016; Thenkabail et al., 2004).  

 

The determination of optimal hyperspectral narrow bands for vegetation studies 

involves a thorough literature review (L. Kumar et al., 2001; Schmidt & Skidmore, 

2003; Thenkabail et al., 2004; Vaiphasa et al., 2005). Additionally, visual observation 

was used to identify spectral regions where species exhibited separability. The selected 

regions, chosen for their significance for vegetation, were incorporated into numerous 

studies due to their absorption and reflectance characteristics across various spectrum 

regions (Ahmad et al., 2021). 

 

Brightness normalization 

Brightness normalization (BNORM) serves as a reflectance normalization method 

designed to correct brightness gradients in spectral bands (Jänicke et al., 2020). By 

implementing BNORM, variations in brightness are eliminated, while emphasizing the 

inherent structural characteristics of the spectrum. This is achieved by dividing each 

image spectrum by its sum over all bands (Berman et al., 2004; Collings et al., 2010). 

In this study, BNORM was specifically applied to the bands within the selected spectral 

regions. This approach ensured that any brightness discrepancies across these bands 

were rectified, allowing for a more accurate and consistent analysis of the spectral data. 

 

Moreover, in addition to BNORM, the use of continuum removal (CR) normalization 

was also incorporated (Jänicke et al., 2020). This technique involves dividing each 

image spectrum by its respective convex hull, aiming to eliminate brightness 

differences and enhances the absorption features akin to BNORM. However, upon 

comprehensive evaluation, it was observed that BNORM consistently outperformed CR 

in terms of classifier performance. Therefore, BNORM was chosen as the preferred 

normalization method for this study. 
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Dimensionality reduction 

The hyperspectral imagery has huge data dimensionality which leads to extensive data 

processing and more complex computations. To address this challenge, the brightness-

normalized spectral bands of each PA were subjected to forward Minimum Noise 

Fraction (MNF) transformation (Green et al., 1988). This transformation was 

implemented to mitigate the high data dimensionality issue in hyperspectral images and 

enhance the identification of bands with maximum variance. The MNF transformation 

effectively reduces the high-dimensional data into a more manageable, low-

dimensional form without loss of information.  

 

This process involves two consecutive Principal Component (PC) transformations. 

Firstly, the noise covariance matrix is computed to decorrelate and rescale the noise 

from the data, referred to as "noise whitening". Subsequently, eigen decomposition is 

applied to the modified matrix to organize the bands based on their signal-to-noise ratio. 

The first PC transformation primarily focuses on whitening the noise, while the second 

standard PC transform arranges bands in descending order of significance, from the 

highest eigenvalue (>1) containing the most significant bands to the lowest eigenvalue 

(close to 1) with noisy bands (Ballanti et al., 2016).  

 

The resulting set of MNF bands was ranked solely based on variance within demarcated 

forested areas. While ENVI's data dimensionality wizard allows for automated 

estimations of MNF band coherence, using default calculations carries a risk of both 

over- and underestimating dimensionality. To address these concerns, a visual analysis 

of MNF band images was conducted. The analysis revealed that the first 15 MNF bands 

for VNP and the first 20 bands for SWS and MTR demonstrated coherence and 

provided more informative content. These selected bands were utilized as inputs for the 

classification of abundant species. 

 

Data sampling 

The crown-level spectra extracted for each abundant species of each PA were divided 

into training (75%) and testing (25%) samples, using a simple random sampling 

technique with replacement. To address the issue of imbalanced classification, the 

Synthetic Minority Oversampling Technique (SMOTE) was applied to the training 
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samples (Chawla et al., 2002). SMOTE tackles the imbalance by duplicating classes 

with fewer samples, thereby augmenting the minority data population. The application 

of this approach resulted in enhanced classification outcomes. 

 

2.3.3 Classification of hyperspectral data 

 

Abundant species mapping using Random Forest (RF) and Support 

Vector Machine (SVM) 

A comparative classification approach was utilized to evaluate the performance of two 

machine learning algorithms (RF and SVM). The MNF-transformed spectra of training 

samples for all abundant species of each PA were subjected to supervised classification 

using the RF classifier (Breiman, 2001) and SVM classifier (Cortes & Vapnik, 1995). 

Both of these non-parametric classification algorithms are widely recognized as valid 

and effective methods for hyperspectral remote sensing data classification (Melgani & 

Bruzzone, 2004; Mountrakis et al., 2011; Waske et al., 2012; Wu et al., 2023). The 

classification was carried out using the “caret” package (Kuhn et al., 2022), which 

offers a standard syntax for executing various machine-learning algorithms, simplifying 

the process of systematically comparing different classifiers (Ghosh et al., 2014; 

Maxwell et al., 2018). Additionally, the “raster” (Hijmans et al., 2023), and the 

“themis” (Hvitfeldt, 2022) packages were also utilized. 

 

The popularity of the RF classifier arises from its user-friendly interface and capability 

to produce accurate and robust results, even with small sample sizes and high-

dimensional feature spaces (Scornet et al., 2015). RF is an ensemble classifier that uses 

bootstrap aggregation (bagging) to construct multiple decision trees, utilizing the best 

subset of input variables at each node (Genuer et al., 2010). During the bagging process, 

a portion of the original data is selected with replacement to develop each tree, while 

the remaining samples, representing the out-of-bag (OOB) sample, are reserved for 

model validation (Adelabu et al., 2015; Maxwell et al., 2018). The aggregation of OOB 

predictions provides the mean squared error of the model (Friedman, 2001).  

 

The RF classifier in the “caret” package utilizes the “randomForest” package (Liaw & 

Wiener, 2002). It is straightforward to implement, requiring only two tuning 
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parameters: the number of trees (ntree) and the number of features (mtry), which are 

randomly selected at each split in the tree-building process (Ghosh et al., 2014; Probst 

et al., 2018). Accordingly, the RF classifier was tuned by varying values of tuning 

parameters at each PA, with mtry parameter set to two, and ntree values ranging from 

300 to 700 for the three PAs. 

 

SVM is a kernel-based classifier designed to identify the optimal hyperplane in n-

dimensional feature space with the highest margin between classes by introducing the 

concept of the kernel function (Cortes & Vapnik, 1995). The SVM classifier in the 

“caret” package utilizes the “kernlab” package (Karatzoglou et al., 2004). In this study, 

considering the complexity of the dataset, the radial kernel function (Ghosh et al., 2014; 

Wu et al., 2023) was employed. The training of the “svmRadial” method involves 

tuning two parameters: cost of constraints violation (C) and sigma (σ). The parameters 

were tuned with a range of values to identify the optimal model, setting the value of C 

to five, and sigma values ranging from 0.05 to 0.7 for the three PAs. The resulting 

classification maps of abundant species underwent an accuracy assessment procedure, 

concluding with a comparative analysis of the outputs from the two classifiers. 

 

2.3.4 Accuracy assessment 

Accuracy assessment is an important aspect of remote sensing data analysis. Standard 

methods were chosen by using a confusion matrix as the basis for comparison. This 

matrix delineates accurately identified pixels and facilitates the evaluation of class 

accuracy through metrics such as overall accuracy, producer's accuracy, user's 

accuracy, and kappa coefficient (Congalton & Green, 2019). The overall accuracy, 

representing the total classification accuracy, is computed by summing all correctly 

classified values and dividing them by the total number of values. Producer's accuracy 

measures the probability of correctly classifying a feature on the ground, determined 

by dividing pixels correctly classified in each class by the sample pixels for that class. 

Conversely, user’s accuracy assesses the likelihood that a pixel labeled as a specific 

class on the map genuinely belongs to that class. It is calculated by dividing accurately 

classified pixels by the total pixels classified in that class. The kappa coefficient, a 

discrete multivariate method in accuracy assessment, ranges from -1 to 1. A value of 0 

suggests no improvement over random classification, while a negative value indicates 
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a classification significantly worse than random. A value near 1 signifies a classification 

significantly better than random. 

 

The accuracy of the classifications was also assessed using the receiver operating 

characteristics (ROC) technique (DeLeo, 1993) and its derived area under the curve 

(AUC) (Bradley, 1997; Hanley & McNeil, 1982). The ROC graph, a two-dimensional 

representation of a classifier's performance (Fawcett, 2006), is generated by calculating 

sensitivity (equation 2) and specificity (equation 3) for each possible classification 

threshold, where  

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑎

(𝑎+𝑐)
     (2) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑏

(𝑏+𝑑)
     (3) 

Here, a and d signify true positives and true negatives for a given classification 

respectively, and b and c represent corresponding false positives and false negatives. 

Sensitivity reflects the probability of correctly classifying a pixel belonging to a specific 

class, while specificity measures the probability of accurately classifying a pixel from 

a different class. In this way, the best-performing classification would be the one with 

the highest possible value of both sensitivity and specificity. The ROC graph was 

developed for each class, and from it, the corresponding AUC was calculated. AUC 

serves as a quantitative performance score, measuring the probability that a randomly 

selected positive sample is correctly classified with higher suspicion than a randomly 

selected negative sample, ranging between 0.5 (random assignment) and 1 (perfect 

classification). 

 

2.3.5 Comparison of classifiers 

A thorough visual examination was performed to detect potential areas of error and 

highlight differences between classification maps, which can be observed in the 

zoomed-in subset. The results obtained from the two classifiers were assessed using a 

confusion matrix, which considered overall accuracy, user’s accuracy, and producer’s 

accuracy (Congalton & Green, 2019).  
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The utility of the developed classification map was evaluated to determine its alignment 

with the observed distribution of both common and PA-specific species, as well as 

evergreen and deciduous species in the field. Additionally, the distribution of common 

abundant species across the three PAs was validated using the developed classification 

map, and proportional distribution maps were generated accordingly. This analysis 

aimed to ensure the accurate representation of the prevalence and distribution of 

commonly occurring tree species on the map. The verification process added depth to 

the assessment, contributing to a more nuanced understanding of the vegetation patterns 

within the studied PA. 

 

2.4 Spectral data analysis 
 

2.4.1 Correlation between species and spectral diversity 

To explore the correlation between species and spectral diversity, various 

methodologies have been used (Chaurasia et al., 2020; Dahlin, 2016; Gholizadeh et al., 

2018). In this study, both the CR-transformed images and the abundant species maps 

of each PA were used to assess the efficacy of CHV as a spectral diversity measure and 

its association with species diversity. 

 

The CHV calculates the volume of pixels forming a convex hull, using the first three 

principal components (PC1, PC2, and PC3) obtained from spectral reflectance data 

(Dahlin, 2016). The CHV represents the volume of the convex hull enclosing these data 

points. Larger CHV values indicate greater spectral diversity. 

 

Mathematically: Given a set P of n points in the plane (Rosén et al., 2014). To define 

the convex hull of P, denoted conv(P), the convex hull is the largest convex polygon 

whose vertices are all points in P (Figure 2.8). 

 

 

 
Figure 2.8| A point set and its convex hull. 
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CHV calculation for plots and species derived from classification 

maps 

In this analysis, RF classification maps were utilized to select plots of uniform size (0.5 

ha, n = 6), each containing a diverse range of species characterized by both low and 

high alpha diversity in the three PAs. After the selection of these plots, CR-transformed 

spectral data were extracted, and the CHV values were calculated at the plot level using 

the code provided by Dahlin, (2016). This provided valuable insights into whether and 

how the CHV values changed as the number of species in each plot increased. This 

method allowed for a comprehensive examination of how CHV values evolved in 

response to varying species composition within each plot. 

 

As an alternative approach, an equal number of canopy spectra (n = 10) for each 

abundant species were extracted, aligning with the RF classification maps of each PA. 

Subsequently, these canopy spectra for each abundant species were added, and CHVs 

were calculated to explore the intricate one-to-one relationship between the number of 

abundant species and cumulative spectral diversity. Linear Regression Line was then 

used to test this relationship, providing a statistical assessment of the correlation 

between the number of species and their corresponding CHVs. This dual-method 

approach, combining information from RF classification maps, provided a robust 

framework for investigating the dynamic interplay between species diversity and 

spectral diversity.  

 

Spectral diversity area-curves for random plots 

In this method, 175 plots (10 × 10 pixels) were randomly laid down on an NDVI-

masked image in ENVI v 5.3, and their CR-transformed spectra were extracted from 

each PA to investigate the relevance of hyperspectral data in evaluating diversity 

without field study inputs. The CR-transformed spectral data (366 bands) from the 

sampled plots of each PA were then exported from ENVI to R for further analysis, 

following the code provided by Dahlin, (2016). The initial step involved reducing the 

dimensionality of the spectral data using Principal Component Analysis (PCA), where 

the first three principal components (PCs) accounted for the majority of overall 

variation (94%). As a measure of spectral diversity, CHV values and the sum of the 
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variance of the first three PCs were calculated (Dahlin, 2016). Spectral diversity-area 

curves were constructed for each PA using the sum of the variance of sampled plots.  

 

The CHV, akin to the multivariate equivalent of range (Cornwell et al., 2006), estimates 

the volume of the trait space occupied by each species within a community, irrespective 

of distribution shape. The CHV values and the sum of the variance of the first three PCs 

calculated from the spectral data of this study were utilized as empirical proxies for 

demonstrating the functional trait diversity of tree species within each PA, as reported 

by Dahlin, (2016).  

 

Spectral diversity-area curves for field plots  

To establish the relationship between the species diversity measured in the field plots 

and the spectral diversity obtained from remote sensing measurements over the same 

areas, this approach involved extracting spectral data from areas falling within the GPS 

coordinates of the field plots (20 in SWS, 19 in VNP, and 21 in MTR) within each PA. 

CHV values were calculated from the CR-transformed spectral data of each field plot, 

and these values were utilized to construct a moving average-based spectral diversity-

area curve, representing the spectral diversity of species recorded during the field study. 

In the subsequent step, spectral data for only abundant species were extracted, aligning 

with the classification map of each PA, and their corresponding CHV values were 

calculated. Given that the spectral data were derived from the classification map 

indicating abundant species in the regions of interest, the patterns identified through 

this approach were considered as abundant species spectral diversity-area curves. 

Additionally, Bray-Curtis dissimilarity graphs were also generated for both all recorded 

species and abundant species, using the CHVs calculated for the field plots in each PA. 

 

Comparative analysis of species and spectral diversity area curves 

A comparison was conducted between the patterns observed in the species diversity-

area curve and the spectral diversity-area curves of both all recorded species and 

abundant species. Furthermore, these patterns were contrasted with the spectral 

diversity area-curve obtained from the summed variance of 175 randomly selected 

plots. Additionally, Bray-Curtis dissimilarity graphs generated from both field data and 

remote sensing data were compared to further enhance the understanding of the 
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ecological dynamics. The purpose of this comprehensive analysis was to identify 

noteworthy similarities or distinctions among the various representations of species and 

spectral diversity. It aimed to provide valuable insights into the relationship between 

these ecological parameters within the studied areas. 

 

2.4.2 Intra- and Inter-species spectral diversity 

To explore variations in both intra- and inter-species characteristics, abundant species 

maps derived from remote sensing data were utilized. For each of the common abundant 

tree species 500 spectra were extracted across three PAs, to assess the effectiveness of 

spectral data as indicators of functional trait diversity.  The CHV of the spectral data 

for each common abundant species in each PA was then calculated and visualized in a 

graph. The hypothesis posited that the CHV values for each of the common tree species 

would exhibit minimal variation, suggesting resilience to environmental factors. This 

analysis aimed to elucidate the relationships between species diversity, spectral 

diversity, and the functional trait diversity of common tree species within the studied 

areas. 


