LIST OF TABLES

Sr. No.	Contents	Page No.
1.	Estimated volume of porridges required to cover energy and protein needs of children 12-24 months of age.	9
2.	Least-cost diets calculated for children 1-3 years of age.	27
3.	Temperature ranges for sprouting of different cereals.	. 44
4.	Suggested sprouting temperature, time and yields of sprouts.	46
5.	Commonly found cyanogenic glycosides their source and products of hydrolysis.	60
6.	Weaning food formulations developed in various countries.	71
7.	A comparative estimate of the processes used for the manufacture of weaning foods.	73
8.	Indigenous weaning mixes.	75
9.	Effect of extrusion on calorie densities of cereal gruels of uniform consistency.	81
10.	Effect of reduction in bulk on food intake per meal and number of meals required to meet 60% of energy requirements in children 1 year of age.	88
11.	Composition of control and experimental slurries for starch.	93
12.	Composition of control and experimental starch slurries used for viscosity reduction studies.	96
13.	Composition of gruels prepared from cereal + pulse mix.	106
14.	Composition of gruels prepared from cereal + pulse mix and donated foods.	107

-

.

•

-Contd...

15.	Composition of control and experimental gruels prepared from plain mix and ARF added mix.	108
16.	Composition of gruels prepared from commercial baby food.	109
17.	Effect of steeping period on percentage germination in wheat, corn, pearl millet and sorghum.	115
18.	Effect of period of germination on the liquifying power of ARF prepared from wheat, sorghum, pearl millet and corn.	118
19.	Effect of period of steeping on percentage germination in greengram, bengal gram and soyabeen.	120
20.	Effect of period of germination on amylase activity and liquifying power of begume ARFs.	122
21.	Effect of concentration of ARFs on viscosity reduction.	126
22.	Effect of wheat alpha and beta-amylase on starch slurries during bread dough making.	127
23.	Temperature optima for malt-amylases from various cereal sources.	131
24.	Effect of period of germination on HCN content (ppm) of ARF with sprouts from various cultivars of sorghum.	134
25.	HCN contents (ppm) of ARF with vegetative portion from various cultivars of sorghum.	136
26.	Effect of period of germination on distribution of HCN (ppm) in (a) the grain from various cultivars of sorghum.	142
27.	Effect of period of germination on the distribution of HCN (ppm) in (b) the vegetative portion from various cultivars of sorghum.	143

a.

.

.

/

-Contd...

,

28.	Effect of heat treatment on HCN content (ppm) of ARF with vegetative portion from various cultivars of sorghum.	147
29.	Effect of heat treatment on HCN content (ppm) of ARF without vegetative portion from various cultivars of sorghum.	148
30.	Microbial load contributed by various constituents of the gruel.	152
31.	Total viable count, E coli and yeast and mould count of raw and cooked gruels with ARF stored for 0-6 months.	154
32.	Change in microbial profile of cooked gruels with and without ARF during storage.	157
33.	Effect of total solid contents on the viscosity of gruels prepared from cereal + pulse mix.	160
34.	Percentage change in viscosity of cereal gruels on addition of pulse flour, oil, salt and jaggery.	162
35.	Energy density of selected gruels from cereal + pulse with added oil and jaggery and oil and salt.	165
36.	Viscosity reduction in gruels on addition of pearl millet ARF at 4% solid contents.	168
37.	Viscosity reduction in gruels from CSM, CSB and energy food on addition of ARF before and during cooking.	171
38.	Total solid content, energy density and viscosity of commercial weaning foods on reconstitution.	173
39.	Maximum solid content attainable for commercial weaning gruels on incorporation of ARF.	174
40.	In vitro starch digestibility of raw versus cooked gruels.	177
41	Effect of addition of ARF on in vitro starch digestibility of gruels.	179

.