LIST OF TABLES

• ••

Table No.		Page No.
		, .
1.	Essential amino acid content of various cereals and legumes.	3
2.	Protein quality of various legumes.	5
3.	Essential amino acid composition of cereal-legume combinations.	. 6
4.	Nutrient content of cereal-legume combination.	7
5.	Relative efficiency of vegetable foods and animal foods as suppliers of nutrients.	9
6.	Antinutritional factors and toxins in cereals and legumes.	10
7.	Distribution of flatulence producing oligosaccha- rides in seeds of various legumes and cereals.	, 21
8.	Naturally occuring toxic amino acids and derivati- ves in leguminosae.	31
9.	The four stages of neurolathyrism.	33
10.	Different toxic factors present in Lathyrus sativus.	. 36
11.	Effect of ODAP administration into different animals	• 41
12.	Mechanisms of ODAP toxicity.	45
13.	Proximate principles, minerals and vitamins of L. sativus compared to common legumes.	52
14.	Amino acid composition of <u>L. sativus</u> seed meal and protein concentrate.	53
15.	Antinutritional factors and toxins present in <u>L. sativus</u> seeds.	55
16.	Effect of different food processing on neurotoxin content of L. sativus.	56
17.	Effect of processing on the nutritive values of cereals and legumes.	61
18.	Ingredients used and microorganisms involved in legume based fermented foods.	64

· ,

contd..

Table No.		Page No.
19.	Chemical changes during fermentation of Indian fermented foods.	- 7
20.	Effect of fermentation on some antinutritional compounds and toxins of cereals and legumes.	7
21.	Ability of various microorganisms to bring about changes observed during fermentation.	70
22.	Microorganisms producing \sim -galactosidase.	8
23.	Molecular forms and properties of some plant L-galactosidases.	90
24.	Molecular forms and properties of some plant invertases.	93
25.	Properties of some conjugative and non-conjugative plasmids.	103
26.	Phenotype traits exhibited by plasmid-carried genes.	105
27.	Degradative plasmids in bacteria.	106
28.	Properties of some natural plasmids used for cloning DNA.	113
29.	Foreign proteins produced in microorganisms.	114
30.	Microorganisms identified in Indian fermented foods.	119
31.	Bacterial flora of fermented batters.	121
32.	Microbial population of ingrédients used for prepara- tion of Indian fermented foods. of	123
338.	List/chemicals used for experiments.	129
33b.	List of reagents and standards used for experiments.	132
34.	Composition of APT agar.	138
35.	Composition of potato Dextroge agar.	139
36.	Composition of GYE agar.	140
37.	Composition of the medium for maintenance of lactic cultures.	140
38.	Composition of raffinose broth.	142
39.	Composition of ODAP broth.	144

, · · ·

andra (1996) Angelen andre en angelen Angelen andre en angelen	Tables (Contd)	·
Table <u>No.</u>		Page lo.
40,	Composition of MRS agar.	14
47.	Differential medium for lactic streptococci.	14
42.	Composition of Sodium azide agar.	14
43.	Composition of the medium for indole production.	14
44.	Composition of medium for carbohydrate ferment- ation.	-15
45.	Composition of medium for aesculin hydrolysis.	15
46.	Composition of medium for citrate utilization test.	15
47.	Tests for catalase and oxidase detection.	15
48.	Composition of medium for litmus milk test.	15
49.	Composition of the medium for nitrate reduction test.	15
50.	Composition of Gelatin medium.	15
51.	Composition of the medium for 'MR' and 'VP' test.	15
52.	Composition of the medium for H2S production.	15
53.	Composition of the medium for phenylalanine deaminase test.	15
54.	Composition of the medium for urease test.	16
55.	Composition of the medium for Arginine hydrolysis.	16
56.	Composition of the medium for malomate utilization test.	16
57.	Composition of Thigglycollate medium.	163
58.	Composition of Gibson's semisolid medium.	164
59.	Starch agar medium composition.	16
60.	Composition of 'LB' medium.	16
61.	Composition of 'DAPA' broth.	166
62.	Composition of oxalate broth.	16

.

.

Table <u>No.</u>		Page No.
63.	Details of assay system for \prec -galactosidase and invertase.	187
64.	Details of essay system for ODAP hydrolysing enzymes.	205
65.	List of reagents used for Genetics experiments.	206
66.	Composition of M9 medium.	213
67.	Composition of medium for cultivation of E. coli K12-C600.	214
68.	Injection protocol for immunization of animals, against -C -galactosidese from <u>Bacillus</u> sp. I.	237
69.	Bleeding schedule for immunization of animals against \checkmark -galactosidase from <u>Becillus</u> sp. I.	238
70.	Characteristics of a fermented product from L. sativus dhal.	242
71.	Changes in bacterial counts during sosking and fermentation of <u>L. sativus</u> dhal.	244
72.	Characteristics of bacterial isolates from fermented L. sativus dhal.	245
73.	Changes in bacterial population of <u>L. sativus</u> dhal batter during fermentation.	249
74.	Characteristics of bacterial isolates from stored grains.	254
75.	Recovery of sugars by TLC method.	264
76.	Distribution of oligosaccharides and simple sugars in seeds of <u>L. sativus, Glycine max</u> and <u>Cicer arietinum</u> analysed by T.L.C. method.	267
77.	Distribution of oligosaccharides and simple sugars in unfermented and fermented <u>L. sativus</u> dhal analysed by TLC.	268
78.	Detector response of TMS derivatives of sugars on UCW-98 column in GC.	271
79.	Distribution of oligosaccharides and simple sugars in processed food samples of <u>L. sativus</u> ahal.	275
80.	Distribution of oligosaccharides and simple sugars in processed food samples of <u>L. sativus</u> seeds.	278

.

contd..

.

-

Table <u>No.</u>		Page No.
81.	Percentage loss or gain in the content of oligo- saccharides and simple sugars during processing of L. sativus dhal/seeds.	279
	Capacity of various bacterial isolates to degrade raffinose.	286
83.	Growth of <u>Bacillus</u> <u>sp.</u> I in raffinose broth and degradation of raffinose.	291
	Growth of <u>Bacillus</u> <u>sp.</u> I in stachyose broth and degradation of stachyose.	292
85.	Growth of <u>Bacillus</u> sp. I in melibiose broth and degradation of melibiose.	293
86,	Growth of <u>Bacillus</u> <u>sp.</u> I in sucrose broth and degradation of sucrose.	294
87.	Detection of raffinose hydrolysing enzymes in the cell free extract of <u>Bacillus</u> sp. 1.	- 301
88.	Optimum conditions for the activities of ∞ -galacto- sidage and invertage of <u>Bacillus</u> sp. I.	303
	Effect of mercaptoethanol on the stability of raffinose hydrolysing enzymes of <u>Recillus sp.</u> I.	309
	Effect of initial pH of the medium on growth and production of raffinose hydrolysing enzymes of <u>Bacillus sp.</u> I.	311
91.	Effect of inoculum size on growth and production of raffinose hydrolysing enzymes of <u>Bacillus</u> sp. 1.	312
	Effect of period of incubation on growth and production of raffinose hydrolysing enzymes of <u>Bacillus sp.</u> I.	313
_	Effect of raffinose concentration in the medium on growth and production of raffinose degrading enzymes of <u>Hacillus sp.</u> I.	314
94.	Effect of aeration on growth and production of raffinoge hydrolysing enzymes of <u>Bacillus sp.</u> 1.	315
	Effect of different concentrations of glucose on growth and production of raffinose hydrolysing enzymes of <u>Bacillus sp</u> . I.	317
	Effect of different sugars on growth and production of raffinose hydrolysing enzymes of <u>Bacillus sp.</u> I.	318

contd..

.

Table No.		Page No.
97.	Effect of different nitrogen sources on growth and production of raffinose hydrolysing enzymes of <u>Bacillus sp.</u> I.	319
98.	Effect of different vitamins on growth and production of raffinose hydrolysing enzymes of <u>Bacillus</u> sp. I.	321
99.	Effect of different amino acids on growth and produ- ction of raffinose hydrolysing enzymes of <u>Bacillus</u> sp. I.	322
100.	Purification of \propto -galactosidase from the cell free extract of <u>Bacillus</u> sp. I.	346
101.	Purification of invertage from the cell free extract of <u>Bacillus</u> <u>sp.</u> I.	347
102.	Effect of various sugars on $\[mathcal{L}$ -galactosidase activity of <u>Bacillus</u> sp. I.	372`
103.	Substrate specificity of 00 -galactosidase from Bacillus sp. 1.	378
104.	Km and Vmax values of L-galactosidase from various sources.	380
105.	Effect of various inhibitors on catalytic activity of purified \sim -galactosidase from <u>Bacillus</u> sp. I.	383
106.	Effect of various inhibitors on the catalytic acti- vity of purified invertage from <u>Bacillus</u> sp. T.	387
107.	Comparison of characteristics of invertese from various sources.	393
108.	Comparison of characteristics of ∞ -galactosidases from various sources.	400
109.	Recovery of radioactivity during conversion of $14_{\rm C}$ -oxalic acid into $14_{\rm C}$ -dimethyl oxalate.	405
110.	Recovery of radioactivity during conversion of 14 _C -dimethyl oxalate into oxalyl labelled ODAP.	406
111.	Characteristics of ODAP prepared by different methods.	409
112.	Effect of intraperitoneal injection of ODAP on rats.	410
113.	Capacity of various bacterial isolates to breakdown synthetic ODAP.	413
114.	Capacity of various isolates to breakdown ODAP from seeds.	414
	CC	mtd

.

contd...

	· · · · · · · · · · · · · · · · · · ·	
Table <u>No.</u>		Fage No.
115.	Changes in physical characteristics and neurotoxin (CDAP) content in <u>L. sativus</u> batter during natural a experimental fermentations of <u>L. sativus</u> dhal with pure cultures.	nd 421
116.	Detection of ODAP hydrolysing enzyme system in bacterial isolates.	425
117.	Measurement of ODAP hydrolase activity of <u>Strepto-</u> <u>coccus sp.</u> I in terms of oxalate liberated.	427
118,	Analysis of products formed when cell free extract of <u>Streptococcus</u> <u>sp.</u> I incubated with ODAP as substrate.	430
119.	Optimum conditions for the activity of ODAP hydro- lysing enzymes of <u>Streptococcus</u> sp. I.	437
120.	Effect of dialysis and pyridoxal phosphate Λ on ODAP hydrolysing enzymes of <u>Streptococcus</u> sp. 1.	440
121.	Effect of compounds which bind carbony Myrcups or metal ions on ODAP hydrolysing enzymes of <u>Streptococcus sp.</u> 1.	441
122.	Effect of sulfhydryl binding reagents on catalytic activity of ODAP hydrolysing enzymes of <u>Streptococcus sp.</u> 1.	443
123.	Effect of some organic and inorganic compounds on catalytic activity of ODAP hydrolysing enzymes of <u>Streptococcus sp.</u> I.	444
124.	Comparison of characteristics of hydroleses from various sources.	447
125.	Comparison of properties of PLP dependent lyases from various sources.	452
126.	Effect of initial pH on growth, degradation of ODAP and production of ODAP hydrolysing enzymes of <u>Streptococcus</u> sp. I.	454
127.	Effect of inoculum size on growth and degradation of ODAP and production of ODAP hydrolysing enzymes by <u>Streptococcus sp.</u> I.	456
128.	Effect of concentration of ODAP in the medium on growth and production of ODAP hydrolysing enzymes by <u>Streptococcus sp. I.</u>	457

.

	Table <u>No.</u>		Page No.
	129.	Effect of aeration on growth, degradation of ODAP and production of ODAP hydrolysing enzymes by <u>Streptococcus sp.</u> I.	458
	130.	Effect of different concentration of glucose on growth, degradation of ODAP and production of ODAP hydrolysing enzymes by <u>Streptococcus</u> sp. I.	461
	131.	Effect of different sugars on growth, ODAP degra- dation and ODAP hydrolysing enzymes by <u>Streptococcus</u> <u>sp. 1.</u>	462
	132.	Effect of different vitamins on growth, ODAP degra- detion and production of ODAP hydrolysing enzymes by <u>Streptococcus</u> sp. I.	463
	133.	Effect of different amino acids on growth, degra- dation and production of ODAP hydrolysing enzymes by <u>Streptococcus</u> sp. 1.	464
	134.	Effect of other toxic/antinutritional factors of L. sativus on growth, ODAP degradation and product- ion of ODAP hydrolysing enzymes by <u>Streptoccus sp</u> .I.	466
,	135.	Production of ODAP hydrolysing enzymes during growth of <u>Streptococcus</u> <u>sp.</u> I in presence of different carbon sources.	468
	136.	Plasmids encoding degradation of some halogenated compounds.	476
	137.	List of some Streptococcal plasmids.	477
	138.	Bacillus plasmids developed as cloning vehicles.	480
	139.	MIC of different curing agents tried for <u>Streptococcus</u> sp. I.	483
	140.	Frequency of loss of neurotoxin degrading ability of <u>Streptococcus</u> <u>sp.</u> I by different usin curing agents.	483
	141.	MIC of different curing agents tried for the growth of <u>Bacillus sp.</u> I.	486
	142.	Frequency of loss of raffinose degrading ability of <u>Eacillus</u> sp. I by curing agents.	487
	143.	Viability of cells (<u>Bacillus sp.</u> I) at elevated temperature during their growth with acriflavine.	488

contd..

/

Table No.		Page No.
144.	\sim -Galactosidase activity of crude extract from cured and parental strains of <u>Bacillus</u> sp. I grown on different substrates.	490
145.	Comparison of melibiose induced and raffinose induced \propto -galactosidase of <u>Bacillus sp.</u> I.	498
146.	Comparison of α -galactosidases coded by 'Raf' plasmid D1021 and by E. coli K12.	503

1 .

, .

.