

CONTENTS

Chapter No.	Sr. No.	Description	Page No.
I		Introduction, Object And Scope Of The Study	1
	1.1	Inherent Properties Of Polymers	1
	1.2	Polymer And Environment	2
	1.2.1	Environmental Issues	2
	1.2.2	Worldwide Attempts	3
	1.3	Applications Of Biopolymers	7
	1.3.1	Agricultural Mulch Film	8
	1.3.2	Shopping Bags	8
	1.3.3	Food Waste Film and Bags	8
	1.3.4	Consumer Packaging Materials	8
	1.3.5	Landfill Cover Film	9
	1.3.6	Laundry Bags For Hospitals	9
	1.3.7	Agricultural And Horticultural Applications	9
	1.3.8	Other Applications	9
	1.4	Need For Biodegradation	10
	1.5	Terminology	10
	1.5.1	Biodegradable	11
	1.5.2	Compostable	11

		1
1.5.3	Hydro-Biodegradable	11
1.5.4	Photo-Biodegradable	11
1.5.5	Bio-Erodable	11
1.5.6	Degradable Polymers	12
1.5.7	Degradation	12
1.5.8	Disintegration	12
1.5.9	Elimination	12
1.5.10	Erosion	12
1.6	Types Of Degradation	12
1.6.1	Chain Degradation	12
1.6.2	Random Degradation	12
1.7	Modes Of Polymer Degradation	13
1.7.1	Thermal Degradation	13
1.7.2	Mechanical Degradation	13
1.7.3	Degradation By Ionizing Radiation	13
1.7.4	Metal Catalyzed Degradation	13
1.7.5	Oxidative Degradation	13
1.7.6	Solar Degradation	14
1.7.7	Hydrolytic Degradation	14
1.7.8	Ultrasonic Wave And High Energy Radiation Degradation	14
1.7.9	Photo Degradation	14
1.7.10	Chemical Degradation	14

1.7.11	Bio Degradation	14
1.8	Factors Affecting Degradation	15
1.8.1	Additives	15
1.8.2	Plasticizers	15
1.8.3	The Type Of Chemical Bond	15
1.8.4	Water Uptake	15
1.8.5	Crystallinity And Molecular Weight	15
1.8.6	РН	16
1.8.7	Copolymer Composition	16
1.8.8	Enzymatic Degradation	16
1.9	Characteristics Of An Ideal Biodegradable Polymer	16
1.10	Objectives And Scope Of Study	17
1.10.1	Scope	19
1.10.2	Objectives	19
Ш	Literature Survey	20
2.1	Theory Of Biodegradation	20
2.1.1	Modifying Agents	20
2.1.2	Plasticizers	20
2.1.3	Theory Of Plasticization	21
2.1.4	Various Theories To Explain The Action Of Plasticizers	23
2.1.5	Plasticizers Susceptible To Microbial Attack	29

	2.1.6	Micro Organisms	30
	2.1.7	The Biological System	31
	2.2	Test Methods To Assess Biodegradability Of Polymers	34
	2.2.1	Standard Organizations For Testing	35
	2.2.2	American Society For Testing And Materials (ASTM)	35
	2.2.3	Growth Ratings G-21-70 And GZZ-76	42
	2.2.4	International Standards Organization (ISO)	42
	2.2.5	ISO 846 (1978)	42
	2.2.6	Compost Toxicity Tests	42
	2.2.7	Plant Phytotoxicity Testing	43
	2.2.8	Animal Toxicity Test	43
	2.2.9	Soil Burial Test BS 4618 Sec.4.5 1974	44
	2.2.10	Difference Between Standards For Biodegradation	44
	2.3	Classification Of Biodegradable Polymers	44
	2.3.1	Natural Polymers Or Biopolymers	45
	2.3.2	Synthetic Polymers	45
	2.3.3	Modified Natural Polymers	46
·	2.3.4	Naturally Produced Polymers	46

.

£

2.4	Commercially Available	47
	Biodegradable Polymers	
2.4.1	Poly Ether Ketone	47
2.4.2	Modified PET	47
2.4.3	Polyacrylate	48
2.4.4	Polyamide Enamines	48
2.4.5	Polyamides	48
2.4.6	Polyanhydrides	49
2.4.7	Polydioxanone (Polyether Ester)	49
2.4.8	Polyesters	50
2.4.9	Polyorthoesters	54
2.4.10	Polyphosphazene	54
2.4.11	Polysaccarides	55
2.4.12	Polyureas	55
2.4.13	Proteins	55
2.4.14	PUR	56
2.4.15	Starch	56
2.4.16	Starch Blends	57
2.4.17	Tyrosine Derived Polycarbonate	58
2.4.18	Vinyl Polymers	59
2.4.19	PE	60
2.4.20	Modified PE	60
2.4.21	Photo biodegradable Plastics	61

2.4.22	Controlled Degradation Additive Master Batches	61
2.4.23	Biodegradable Packaging Polymers	62
2.4.24	Thermoplastics From Low Quality Wood	62
2.5	Earlier Studies On Biodegradation	62
2.5.1	Polymers Containing Varying Amount Of Starch	62
2.5.2	Biodegradable Blends Based On Sweet Potato Starch	62
2.5.3	Starch-Based Biodegradable Blends: Morphology And Interface Properties	63
2.5.4	Study Of Degradation And Mechanical Properties Of Ldpe Mixed With Acetylated Corn Starch	63
2.5.5	Modification Of Starch By Blending With Aliphatic Polyesters	63
2.5.6	Degradable Plastic Films For Horticultural Crops Production.	64
2.5.7	Biodegradation Of An Aged Composition Of Polyethylene With Synthetic Polyester	64
2.5.8	The Characterization Of Biodegradable Polybutylene Succinate/Starch Blends Using Hdpe-G-Acrylic Acid As A Compatibilizer	65
2.5.9	Biodegradation Of Polyethylene By The Thermophilic Bacterium Brevibacillus Borstelensis	65

Tensile Properties Of Extruded Corn Protein Low-Density Polyethylene Films	65
Biodegradable Films From Mannans	66
An Investigation Into The Aging Of Biodegradable Starch Based Plastics	66
Studies On Biodegradable Poly (Hexano-6- Lactone) Fibers.	67
Polyethylene Biodegradation By A Developed Penilcillium Bacillus Biofilm	67
Patent Literature	68
U.S. Patent 3931068	68
U.S. Patent 5496895	68
U.S. Patent 20030118692	69
U.S. Patent 20040242732	69
U.S. Patent 20040122135	69
U.S. Patent 7179874	70
U.S. Patent 20020155092	70
U.S. Patent 6805876	70
U.S. Patent 20020035181	71
U.S. Patent 20050163944	71
U.S. Patent 20060258751	71
U.S. Patent 4999417	72
U.S. Patent 20030224497	72
	Corn Protein Low-Density Polyethylene Films Biodegradable Films From Mannans An Investigation Into The Aging Of Biodegradable Starch Based Plastics Studies On Biodegradable Poly (Hexano-6- Lactone) Fibers. Polyethylene Biodegradation By A Developed Penilcillium Bacillus Biofilm Patent Literature U.S. Patent 3931068 U.S. Patent 3931068 U.S. Patent 5496895 U.S. Patent 20030118692 U.S. Patent 20040122135 U.S. Patent 20040122135 U.S. Patent 20040122135 U.S. Patent 7179874 U.S. Patent 20020155092 U.S. Patent 20020035181 U.S. Patent 20050163944 U.S. Patent 20060258751 U.S. Patent 4999417

2.6.14 U.S. Patent 20040242722 72 2.6.15 U.S. Patent 20030082808 73 2.6.16 U.S. Patent 5516825 73 2.6.17 U.S. Patent 4379138 73 2.6.18 U.S. Patent 4741956 74 2.6.19 U.S. Patent 6673286 74 2.6.20 U.S. Patent 20030187149 74 2.6.21 U.S. Patent 20030187149 74 2.6.22 U.S. Patent 20030232929 75 2.6.23 U.S. Patent 20050183329 75 2.6.24 U.S. Patent 2005018329 76 2.6.25 U.S. Patent 20050112350 76 2.6.26 U.S. Patent 20050112350 76 2.6.27 U.S. Patent 6096431 77 2.6.28 U.S. Patent 5321064 77 2.6.29 U.S. Patent 5449708 78 2.6.31 U.S. Patent 5834567 78 2.6.32 U.S. Patent 5834567 78			
2.6.16 U.S. Patent 5516825 73 2.6.17 U.S. Patent 4379138 73 2.6.18 U.S. Patent 4741956 74 2.6.19 U.S. Patent 6673286 74 2.6.20 U.S. Patent 6673286 74 2.6.21 U.S. Patent 20030187149 74 2.6.22 U.S. Patent 20030187149 74 2.6.23 U.S. Patent 20030232929 75 2.6.24 U.S. Patent 20030232929 75 2.6.25 U.S. Patent 20050183329 76 2.6.26 U.S. Patent 20050112350 76 2.6.26 U.S. Patent 20050112350 76 2.6.26 U.S. Patent 20050112350 76 2.6.27 U.S. Patent 20050182204 77 2.6.28 U.S. Patent 5321064 77 2.6.30 U.S. Patent 5449708 78 2.6.31 U.S. Patent 5834567 78	2.6.14	U.S. Patent 20040242722	72
2.6.17 U.S. Patent 4379138 73 2.6.18 U.S. Patent 4741956 74 2.6.19 U.S. Patent 6673286 74 2.6.19 U.S. Patent 20030187149 74 2.6.20 U.S. Patent 20030187149 74 2.6.21 U.S. Patent 20030232929 75 2.6.22 U.S. Patent 20030232929 75 2.6.23 U.S. Patent 20050183329 76 2.6.24 U.S. Patent 20040241359 76 2.6.25 U.S. Patent 20050112350 76 2.6.26 U.S. Patent 20050112350 76 2.6.27 U.S. Patent 20050112350 76 2.6.28 U.S. Patent 20050182204 77 2.6.29 U.S. Patent 5321064 77 2.6.30 U.S. Patent 5449708 78 2.6.31 U.S. Patent 5834567 78	2.6.15	U.S. Patent 20030082808	73
2.6.18 U.S. Patent 4741956 74 2.6.19 U.S. Patent 6673286 74 2.6.20 U.S. Patent 20030187149 74 2.6.21 U.S. Patent 20030187149 74 2.6.21 U.S. Patent 5890316 75 2.6.22 U.S. Patent 20030232929 75 2.6.23 U.S. Patent 20030232929 75 2.6.24 U.S. Patent 20050183329 75 2.6.25 U.S. Patent 2005011359 76 2.6.26 U.S. Patent 20050112350 76 2.6.27 U.S. Patent 6096431 77 2.6.28 U.S. Patent 5321064 77 2.6.29 U.S. Patent 5449708 78 2.6.31 U.S. Patent 584567 78	2.6.16	U.S. Patent 5516825	73
2.6.19 U.S. Patent 6673286 74 2.6.20 U.S. Patent 20030187149 74 2.6.21 U.S. Patent 5890316 75 2.6.22 U.S. Patent 20030232929 75 2.6.23 U.S. Patent 20030183329 75 2.6.24 U.S. Patent 20050183329 75 2.6.25 U.S. Patent 20040241359 76 2.6.26 U.S. Patent 20050112350 76 2.6.27 U.S. Patent 20050112350 76 2.6.28 U.S. Patent 6096431 77 2.6.29 U.S. Patent 5321064 77 2.6.30 U.S. Patent 5449708 78 2.6.31 U.S. Patent 5834567 78	2.6.17	U.S. Patent 4379138	73
2.6.20 U.S. Patent 20030187149 74 2.6.21 U.S. Patent 5890316 75 2.6.22 U.S. Patent 20030232929 75 2.6.23 U.S. Patent 20030232929 75 2.6.24 U.S. Patent 20050183329 75 2.6.25 U.S. Patent 20040241359 76 2.6.26 U.S. Patent 20040241359 76 2.6.25 U.S. Patent 20050112350 76 2.6.26 U.S. Patent 20050112350 76 2.6.27 U.S. Patent 20050112350 76 2.6.28 U.S. Patent 6096431 77 2.6.29 U.S. Patent 5321064 77 2.6.30 U.S. Patent 5449708 78 2.6.31 U.S. Patent 5834567 78	2.6.18	U.S. Patent 4741956	74
2.6.21 U.S. Patent 5890316 75 2.6.22 U.S. Patent 20030232929 75 2.6.23 U.S. Patent 20050183329 75 2.6.24 U.S. Patent 20040241359 76 2.6.25 U.S. Patent 20040241359 76 2.6.26 U.S. Patent 20040241359 76 2.6.25 U.S. Patent 20040241359 76 2.6.26 U.S. Patent 20050112350 76 2.6.26 U.S. Patent 6096431 77 2.6.27 U.S. Patent 20050182204 77 2.6.28 U.S. Patent 5321064 77 2.6.30 U.S. Patent 5449708 78 2.6.31 U.S. Patent 5834567 78	2.6.19	U.S. Patent 6673286	74
2.6.22 U.S. Patent 20030232929 75 2.6.23 U.S. Patent 20050183329 75 2.6.24 U.S. Patent 20040241359 76 2.6.25 U.S. Patent 20040241359 76 2.6.26 U.S. Patent 20050112350 76 2.6.26 U.S. Patent 20050112350 76 2.6.27 U.S. Patent 6096431 77 2.6.28 U.S. Patent 20050182204 77 2.6.29 U.S. Patent 5321064 77 2.6.30 U.S. Patent 584567 78	2.6.20	U.S. Patent 20030187149	74
2.6.23 U.S. Patent 20050183329 75 2.6.24 U.S. Patent 20040241359 76 2.6.25 U.S. Patent 20040241359 76 2.6.25 U.S. Patent 5866634 76 2.6.26 U.S. Patent 20050112350 76 2.6.27 U.S. Patent 6096431 77 2.6.28 U.S. Patent 20050182204 77 2.6.29 U.S. Patent 5321064 77 2.6.30 U.S. Patent 5449708 78 2.6.31 U.S. Patent 5834567 78	2.6.21	U.S. Patent 5890316	75
2.6.24 U.S. Patent 20040241359 76 2.6.25 U.S. Patent 5866634 76 2.6.26 U.S. Patent 20050112350 76 2.6.27 U.S. Patent 6096431 77 2.6.28 U.S. Patent 20050182204 77 2.6.29 U.S. Patent 5321064 77 2.6.30 U.S. Patent 5449708 78 2.6.31 U.S. Patent 5834567 78	2.6.22	U.S. Patent 20030232929	75
2.6.25 U.S. Patent 5866634 76 2.6.26 U.S. Patent 20050112350 76 2.6.27 U.S. Patent 6096431 77 2.6.28 U.S. Patent 20050182204 77 2.6.29 U.S. Patent 5321064 77 2.6.30 U.S. Patent 5449708 78 2.6.31 U.S. Patent 5834567 78	2.6.23	U.S. Patent 20050183329	75
2.6.26 U.S. Patent 20050112350 76 2.6.27 U.S. Patent 6096431 77 2.6.28 U.S. Patent 20050182204 77 2.6.29 U.S. Patent 5321064 77 2.6.30 U.S. Patent 5449708 78 2.6.31 U.S. Patent 5834567 78	2.6.24	U.S. Patent 20040241359	76 *
2.6.27 U.S. Patent 6096431 77 2.6.28 U.S. Patent 20050182204 77 2.6.29 U.S. Patent 5321064 77 2.6.30 U.S. Patent 5449708 78 2.6.31 U.S. Patent 5834567 78	2.6.25	U.S. Patent 5866634	76
2.6.28 U.S. Patent 20050182204 77 2.6.29 U.S. Patent 5321064 77 2.6.30 U.S. Patent 5449708 78 2.6.31 U.S. Patent 5834567 78	2.6.26	U.S. Patent 20050112350	76
2.6.29 U.S. Patent 5321064 77 2.6.30 U.S. Patent 5449708 78 2.6.31 U.S. Patent 5834567 78	2.6.27	U.S. Patent 6096431	77
2.6.30 U.S. Patent 5449708 78 2.6.31 U.S. Patent 5834567 78	2.6.28	U.S. Patent 20050182204	77
2.6.31 U.S. Patent 5834567 78	2.6.29	U.S. Patent 5321064	77
	2.6.30	U.S. Patent 5449708	78
2.6.32 U.S. Patent 5726220 79	2.6.31	U.S. Patent 5834567	78
	2.6.32	U.S. Patent 5726220	79
2.6.33 U.S. Patent 7037983 79	2.6.33	U.S. Patent 7037983	79
2.6.34 U.S. Patent 20030109605, 20020188041, 6946506, 6890872 79	2.6.34		79
2.6.35 U.S. Patent 6984426, 20060121220 80	2.6.35	U.S. Patent 6984426, 20060121220	80

	2.6.36	U.S. Patent 5763518	80
	2.6.37	U.S. Patent 6077916	81
	2.6.38	U.S. Patent 6156929	82
anna mar a dhu thu thu ta far a da dhu a	2.6.39	U.S. Patent 6372331	82
	2.6.40	U.S. Patent 20020052445	82
	2.6.41	U.S. Patent 20040249065	83
	2.6.42	U.S. Patent 6040063	83
	2.6.43	U.S. Patent 6960374	84
	2.6.44	U.S. Patent 5679421	84
	2.6.45	U.S. Patent 6120895	85
	2.6.46	U.S. Patent 6221997	85
	2.7	Summary Of Earlier Studies On Biodegradation	85
	2.8	Limitations Of Commercial Biodegradable Polymers	87
III		Experimental Plan, Experimental Methods And Analytical Techniques	89
	3.1	Planning Of Experiments	89
	3.1.1	Selection Of Polymer Degradation Method	90
	3.1.2	Selection Of Factor Affecting Biodegradability	90
	3.1.3	Selection Of Polymer	91
	3.1.4	Selection Of Plasticizer	91
	3.1.5	Selection Of Microorganisms	91

	,		
	3.1.6	Test Methods For Assessment Of Biodegradation	92
	3.2	Experimental Work	92
	3.2.1	Specimen Preparation	93
	3.2.2	Specimen Testing	95
	3.3	Testing For Biodegradability	95
	3.3.1	Screening Of Biodegradation Of Specimen To Assess The Property Loss	96
	3.3.2	Screening Of Biodegradation Of Specimen In Open Air	99
	3.3.3	Growth Ratings Astm G – 21	102
	3.3.4	Study Of The Structure Of Various Microorganisms	103
	3.3.5	Plant Toxicity Test	103
	3.4	Factors Affecting The Test Results	104
IV		Results And Analysis	105
	4.1	Data From Test Methods For Assessment Of Biodegradation	105
	4.1.1	Results For Specimen Testing	105
	4.1.2	Analysis And Discussion For Initial Strength Of Specimen	112
	4.1.3	Result For Viscosity	113
	4.1.4	Analysis And Discussion For Initial Viscosity	115
	4.2	Results From Testing For Biodegradability	117

1

.

		·····
4.2.1	Results From Screening Of Biodegradation Of Specimen To Assess The Property Loss	117
4.2.2	Analysis And Discussion For Weight Loss	130
4.2.3	Analysis And Discussion For Loss In Tensile Strength	158
4.2.4	Analysis And Discussion For Percent Elongation Loss	165
4.2.5	Analysis And Discussion For Viscosity Loss	184
4.2.6	Observations For The Screening Of Biodegradation Of Specimen To Assess The Property Loss Results	184
4.3	Results From Screening Of Biodegradation Of Specimen In Open Air	186
4.3.1	Analysis And Discussion For Weight Loss After 16 Weeks	207
4.4	Results From Growth Ratings ASTM G – 21	208
4.4.1	Analysis And Discussion For Growth Rating	210
4.5	Study Of The Structure Of Various Microorganisms	211
4.5.1	Analysis And Discussion For Structure Of Microorganism	220
4.6	Results From Plant Toxicity Test	220
4.6.1	Analysis And Discussion For Plant Toxicity Test	224

1			
	4.7	Results Form Soil Analysis Test	224
	4.7.1	Analysis And Discussion For Soil Testing	224
· V	•	Cost Analysis	226
	5.1	Introduction	226
	5.2	Processing Data For Film	226
	5.3	The Raw Material Cost Analysis	228
	5.4	Cost For Power Consumption	229
	5.5	Conclusion	232
VI		Summary And Conclusion	233
	6.1	Introduction	233
	6.2	Objectives	233
	6.3	Planning Of Experiments	234
	6.4	Results	235
	6.4.1	Results From Property Comparison Of Polymer Films	235
	6.4.2	Results From Screening Of Biodegradation Of Specimen To Assess The Property Loss	236
	6.4.3	Results From Percent Weight Loss During Screening Of Biodegradation Of Specimen In Open Air	238
	6.4.4	Results From Percent Growth Of Microorganism On Specimen After 4 Weeks	239
	6.4.5	Results From Plant Toxicity And Soil Analysis	240

	6.5	Cost Analysis	240
	6.6	Conclusions	241
	6.7	Future Research Scope	242
VII		References	244
VIII		Appendix	269
	I	List Of Publications	269
	II	ASTM Test Methods	310
	III	Tensile Test Results From S.P. University	383
	IV	List Of Manufacturers Of Biodegradable Films In India	429
	V	List Of Manufacturers Of Biodegradable Films In World	432
	VI	Consumption Of Plastics In World And India	434

.