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3. LITERATURE REVIEW 
 

To resolve the issues of MPTCP related to security, researchers have made many attempts in 

the last few years, and many probable solutions have been proposed. This section discusses the 

research work done in the area of MPTCP security. The following subsections discuss major 

security issues with MPTCP, available solutions, and their limitations.  

There are two ways through which an attacker can get access to an MPTCP session: One by 

intercepting the ongoing MPTCP sub-flows as an eavesdropper and another by forging the 

MPTCP packet to deceive the receiver into thinking it came from a legitimate MPTCP host. 

We initially classify the different attack kinds according to the attackers' location and action to 

comprehend the attacks over MPTCP [23] [46]. Based on the intruder's location when initiating 

an assault, there are three categories of intruders: off-path attackers, partial-time on-path 

attackers, and on-path attackers. The attackers can also be divided into active and passive 

categories based on their impact or action as shown in Figure 3.1. 

 

Figure 3.1 Attack Classification 

For the lifespan of the connection, on-path attackers can snoop on any of the paths between the 

talking hosts. In contrast to on-path attackers, off-path attackers are never dependent on any of 

the MPTCP pathways during the lifetime of the connection. Attackers with partial time-on-

path capabilities can spend at least some time on any of the paths connecting the 

communicating hosts. While a passive attack allows an attacker to capture and read a packet, 
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it does not allow the packet to be altered, delayed, or destroyed inside the same session. Sub-

flows in MPTCP can travel in either direction. During an active attack, the MPTCP packets 

belonging to the same session may be corrupted, dropped, or delayed. Additionally, it may be 

moving along the MPTCP path(s) in either direction (forward or backward). 

3.1 REVIEW OF MAJOR SECURITY ISSUES WITH MPTCP 

The major security concerns on MPTCP Linux kernel implementation identified by IETF in 

their draft RFC7430 are ADD_ADDR attack, DoS attack on MP_JOIN, SYN Flooding 

Amplification, Eavesdropper in initial handshake, and SYN/JOIN attacks [23]. Another class 

of attacks that can be carried out by leveraging the MPTCP option vulnerabilities are traffic 

diversion attack, data sequence manipulation, etc. In this section, the major security threats to 

MPTCP are focused on. 

3.1.1 ADD_ADDR ATTACK 

As the name suggests, the attacker can carry out these attacks using the MPTCP ADD_ADDR 

option, classified as off-path active attacks, which affects the confidentiality of the connection 

[23]. An attacker can initiate the attack by forging an authorized user's IP address into the 

ADD_ADDR packet as an additional IP address while claiming to be the authorized user. 

Establishing a sub-flow over a secure connection to the same IP address is a guaranteed way 

to hijack a session or reroute traffic on the compromised path. The host must send the 

ADD_ADDR packet with the additional IP address and address identification to advertise the 

additional IP address. 

Let's consider an ongoing MPTCP connection between two hosts, Alice and Bob, indicating 

that they have previously exchanged the necessary security information to initiate a new sub-

flow; attacker Eve attempted to initiate a MitM attack, as shown in Figure 3.2. Firstly, Eve will 

forge an ACK packet with the ADD_ADDR option, indicating that Bob generated and sent the 

packet to Alice by listing Bob's address as the source and Alice's address as the destination. 

As shown in the ADD_ADDR option header format of MPTCP, the address used to promote 

can be entered in the ADD_ADDR parameter. This parameter can be used by Eve to publicize 

her address. After receipt of the ACK packet, Alice presumed that this ACK packet with the 

ADD_ADDR option originated from the legitimate host Bob, so Alice sent an SYN+MP_JOIN 

packet with Eve's address as the destination address to start a new sub-flow between Alice and 

Bob. Alice sends the hash value of bob with the SYN+MP_JOIN packet, which was previously 
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shared in the initial key exchange. Hence, Eve receives the security information required to 

connect Eve and Bob with the SYN packet. Eve creates a new SYN+MP_JOIN packet with 

her address as the source address, Bob's address as the destination address, and the hash value 

of Bob acquired from Alice's SYN+MP_JOIN packet as the payload. Bob assumed that this 

SYN+MP_JOIN packet came from the genuine host Alice and responded to the message with 

SYN/ACK+MP_JOIN using HMAC generated from Alice's key and a random value. Alice 

received this information from Eve and assumed that it came from Bob. Alice responds the 

same using ACK+MP_JOIN and their own HMAC. When Bob received the ACK+MP_JOIN 

from Eve, Bob confirmed that Eve was on another sub-flow over the connection between Alice 

and Bob. Figure 3.2 depicts the whole scenario of the ADD_ADDR attack. 

 

Figure 3.2 ADD_ADDR attack scenario [24] [27] 

3.1.2 DoS ATTACK ON MP_JOIN 

This assault can be considered under a category of an off-path active attack which affects the 

availability of resources [23]. As discussed in the previous section, a new sub-flow between 

two hosts can be created using the MP_JOIN option in MPTCP. The security information 

required to establish the new sub-flow is shared during the initial handshake, which will be 
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used during the SYN + MP_JOIN to identify the MPTCP. Upon receiving the SYN+MP_JOIN 

packet, the host establishes the state as the authentication token, and the nonce is not resent 

with the ACK packet.  Hence, the attacker sends numerous SYN+MP_JOIN requests to the 

host, which creates numerous states on the server machine that exhausts the server by launching 

numerous partially open sessions. The situation prevents the server from initiating fresh sub-

flow on the already established connection. According to the implementation, a host can only 

keep a certain number of half-open connections. The host becomes worn out when that 

threshold is crossed; this is how the attacker can use MP_JOIN to launch a DoS attack. 

3.1.3 SYN FLOODING ATTACK 

This kind of attack is an off-path active attack that affects the availability of resources to 

legitimate users. The attacker initiates the numerous half-open connections by sending SYN 

packets to the ports, which will occupy the servers' resources, and legitimate users will be 

prevented from opening the connection due to the lack of resources. Here, the attacker tries to 

exhaust the server with fake requests to make the service unavailable to genuine users [23].  

The SYN packet can be processed without establishing the state using the SYN cookies. 

However, SYN + MP_JOIN requires establishing a state during sub-flow establishment, which 

causes a flood of requests for sub-flow establishment at the server using a wide range of IP 

addresses and port pairs. The attacker will only occupy one TCP connection while the server 

has to create a state for every half-open sub-flow connection request from the attacker.  

3.1.4 EAVESDROPPER IN THE INITIAL HANDSHAKE 

Exchanging keys in plain text during the initial 3-way handshake is a major security concern 

of MPTCP. By staying present during the initial key exchange, the attacker gets access to the 

keys, which they can use to start up new sub-flows or hijack the session through the MP_JOIN 

option or ADD_ADDR option[6]. These keys facilitate the attacker's full control of the 

connection, including the ability to eject reliable hosts. This exploit qualifies as a partial-time 

on-path attacker, which may affect the availability, integrity, or confidentiality by initiating the 

various attacks using information gained.  
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3.1.5 CROSS-PATH INFERENCE AND TRAFFIC DIVERSION 

ATTACK 

Due to the multihoming support of MPTCP, the performance of additional MPTCP sub-flows 

can be determined by an attacker listening on one of the MPTCP sub-flows and the 

transmission path of data changed by using MP_PRIO option by inferring one of the sub-flows. 

When an attacker examines the local and global sequence numbers (GSN) encoded in MPTCP 

headers, they can extrapolate the performance of the non-eavesdropped sub-flow. Although 

they appear to be independent, the MPTCP connection's sub-flows are intrinsically intertwined 

with one another in reality because they transmit the same MPTCP connection's data. For 

instance, MPTCP connection has two sub-flows so data will be transmitted through both the 

sub-flows and the destination host must collect the packets from all the sub-flows and 

incorporate them into the MPTCP connection [47]. MPTCP uses two types of sequence 

numbers: a global sequence number combines packets coming from all the sub-flows over same 

MPTCP connection to ensure reliable transmission over a sub-flow. In contrast, a local 

sequence number is the traditional sub-flow sequence number encoded in the TCP sequence 

field. An attacker can learn the performance of the conncection and the performancr of sub-

flow by passively intercepting one sub-flow. 

Furthermore, an adversary can block an MPTCP sub-flow by sending forged packets that 

designate it as the backup using the backup flag in the MP_PRIO option [25]. The sender will 

stop providing data after getting a control packet such as MP_PRIO, and the throughput of the 

associated sub-flow will decrease to zero. Sadly, unlike MP_JOIN, such a control packet does 

not require authentication. An attacker controlling only one path can use the correct address ID 

to designate any sub-flow as a backup. An attacker on one path of a multipath MPTCP 

connection could cause the backup sub-flow to be established by sending a fake MP_PRIO 

packet with the address ID of one of the other paths. Using the backup flag vulnerability, an 

attacker can switch the communication between sub-flows [25]. 

3.1.6 DATA SEQUENCE SIGNAL MANIPULATION 

As discussed earlier, MPTCP uses two distinct levels of sequence spaces:  One level of 

sequence spaces is used by MPTCP at the connection level, which is shared by all sub-flows, 

and the other level is used for each TCP sub-flow. The standard TCP header will be included 

in each segment sent through a sub-flow, with the sequence and acknowledgment numbers 

specific to that sub-flow. Data sequence and acknowledgment numbers make up the new 
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connection-level sequence space in MPTCP. The primary purpose of this component is to 

maintain the records of distribution of application data over various sub-flows and preserve a 

global mapping (across all sub-flows) of how packets are divided among sub-flows and for 

transmission and to reunited the packets coming from sub-flows in appropriate order before 

passing it on to the application [26]. 

Combining TCP optimistic ACKing with DSS manipulation, in which the DSS's Data ACK is 

changed intentionally, can have negative effects, such as generating non-responsive traffic and 

maliciously-induced bursts [26]. 

Table 3.1 Major Security threats to MPTCP 

Attack Category * 
Active/ 

Passive 

Refere

nces 

Security 

Goals 

Impacted # 

Remarks 

Eavesdropper 

in the initial 

handshake 

P Active [23] C 

The session keys are 

transmitted in the plain format 

during the 3-way handshake, 

which can be used in a later 

SYN+MP_JOIN DoS attack 

or ADD_ADDR attack. 

ADD_ADDR 

attack 
F Active [23] C, I, A 

To create a sub-flow between 

the authenticated host and the 

attacker across a lawful 

connection, an attacker can 

forge a packet and deliver it to 

the genuine user while 

masquerading as a legitimate 

source. 

ADD_ADDR2 

attack 
F Active [27]  C, I 

An attacker can accomplish 

this attack by listening to a 

conversation between two 

hosts during the initial 

handshake. Using the keys 

obtained from the 

conversation, HMAC can be 

figured out. 

DoS attack on  

MP_JOIN 
F Active [23] A 

If the server becomes too busy 

processing fake SYN+MP 

JOIN requests from malicious 

users, the legitimate users will 

be unable to start new sub-

flows. 
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Attack Category * 
Active/ 

Passive 

Refere

nces 

Security 

Goals 

Impacted # 

Remarks 

SYN Flooding 

attack 
F Active [23] A 

The SYN packet causes the 

server to become overloaded, 

which prevents the client from 

being served. 

Traffic 

diversion attack 
F Active [25] C, A 

A malicious actor can use 

cross-path inference to keep 

tabs on one of the sub-flows 

and then use a spoofed 

MP_PRIO packet to reroute 

all traffic to their controlled 

sub-flow. 

Cross-path 

inferences 

attack 

F Active [47] C, A 

Side channels allow attackers 

to deduce an unmonitored 

path's attributes and sensitive 

information, which 

undermines MPTCP's original 

design intentions. 

SYN/JOIN 

attack 
P Active [23] C, I, A 

During the exchange of 

SYN/JOIN messages, an 

attacker positioned 

strategically can add any 

addresses to create a new sub-

flow over the connection. 

Data Sequence 

signal 

manipulation 

F Active [26] A 

On top of TCP optimistic 

ACKing, the connection level 

ACK is altered, resulting in a 

very effective attack scenario 

like DoS, flood, etc. 

Keys: * Category: O, on-path; F, off-path; P, partial-time-on-path. # Security Goals: C, 

confidentiality; I, integrity; A, availability. 

3.2 REVIEW OF EXISTING SECURITY SOLUTIONS FOR 

MPTCP 

Numerous ways exist to strengthen MPTCP's security by thwarting various assaults like session 

hijacking, traffic diverting, DoS attacks, etc. To uncover the unexplored avenues for MPTCP 

security research, the various solutions are discussed and assessed in this section.  A major 

security concern with MPTCP to satisfy the fundamental security requirements 

(confidentiality, integrity, and availability) is to protect the keys communicated at the time of 

connection establishment process (3-way handshake) from eavesdroppers. The attacker can use 
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these keys to launch additional attacks. To address the various security concerns of MPTCP, 

many researchers have offered various methods to enhance security, which can be classified as 

encryption-based, hashing-based solutions, opportunistic encryption-based solutions, and so 

on, as shown in Table 3.1. Still, MPTCP uses the TCP header in which only 64-bit space is 

available for key exchange. 

Table 3.2 Cryptographic solutions for MPTCP 

Cryptographic 

Technique 

Reference Working with MPTCP Limitations 

Elliptic curve 

cryptography 

[48] The points required to plot the 

Elliptic curve are shared in a clear 

format during the initial four-way 

handshake. 

One extra packet is 

required to share all 

four points to generate 

the keys.  

Vulnerable to time-

shift attack. 

Hash Chain-

based 

Encryption 

[8] During the initial handshake, the 

random value will be exchanged, 

which will be used to produce the 

chain of hash by applying the 

hashing function for the 

authentication while adding sub-

flows and advertisement of new 

Internet Protocol (IP) Address 

(network interface). 

Vulnerable to session 

hijacking using 

ADD_ADDR Attack. 

Sum Chain-

based 

encryption 

[9] It uses a mathematical equation to 

create a chain instead of the 

normal hash function.  

Vulnerable to 

eavesdroppers in initial 

handshake attack. 

Asymmetric 

Key 

Cryptography 

[6] [7] Public key cryptography can be 

used to avoid the key exchange 

during the initial handshake. 

tcpcrypt and TLS use asymmetric 

key cryptography. 

Computational cost 

increases the overhead 

of MPTCP. Moreover, 

the TCP header option 

size is also limited. 

Authentication 

using Hash-

based Message 

Authentication 

Code (HMAC) 

[21] The truncated HMAC calculated 

from the keys communicated at 

the time of connection 

establishment will authenticate 

the user during ADD_ADDR and 

MP_JOIN. 

Vulnerable to 

eavesdroppers in the 

initial handshake.  
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3.2.1 ENCRYPTION-BASED SOLUTIONS 

However, the fact that MPTCP exchanges the keys in plain text format during the initial 

handshake poses the biggest security risk for MPTCP. However, one of the best solutions for 

resolving this security issue of MPTCP is using asymmetric key cryptography to secure keys 

from unauthorized access during the initial handshake; the space and computation cost of 

asymmetric key cryptography is much higher [48]. MPTCP uses the TCP packet header; only 

64 bits are allocated for exchanging keys during the initial handshake. The space restriction of 

the TCP header as well as the complex computation of public key cryptography made applying 

asymmetric key encryption to encrypt the initial keys challenging.  

Kim and  have suggested using the Elliptic curve Diffie-Hellman key exchange to resolve the 

issue [48]. Elliptic curve usage reduced the space needed, necessitating the TCP payload to 

deliver the essential data. However, a 4-way handshake was required instead of the standard 

TCP 3-way handshake for the crucial negotiation phase as shown in Figure 3.3. In order to 

generate the shared key using elliptic curve cryptography, two points on the curve need to be 

exchanged. Assume that hosts Alice and Bob want to communicate using MPTCP. To initiate 

the connection using MPTCP, Alice sends his point x on the curve with SYN + MP_CAPABLE 

packet. In reply to this packet, Bob sends his point x with ACK + MP_CAPABLE. Bob sends 

another SYN packet with his point y, and in reply to the packet, Alice sends ACK with his 

point y. Communicating hosts can exchange points by using the mentioned four-way 

handshake. The hosts generate their shared key using the exchanged points over an elliptic 

curve, which will be used during MP_JOIN for authentication. Here, the points over the curve 

are communicated in clear form, which can pave the way for a future time-shifted attack.  
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Figure 3.3 Elliptic Curve Cryptography-based solution [48] 

3.2.2 HASHING-BASED SOLUTIONS 

Authors proposed one hashing-based solution to address the issue of session hijacking using a 

MitM attack [8]. The hash chain approach used by the authors is based on recursive hash 

algorithm execution to produce a list of chained hash values. In this case, we will assume a 

seed value and use it to generate i hash values, H0-Hi, by iteratively running the hash algorithm. 

Both hosts will trade their initial random numbers during the handshake, and the host will need 

to submit chained values for authentication during the subsequent sub-flow establishment as 

shown in Figure 3.4 [8]. 

 

Figure 3.4 Hash Chain-based initial handshake 
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Hi  = Hash (seed)                  Here, seed= random value 

Hi-1 = Hash (Hi) 

… 

H1  = Hash (H2) 

H0 = Hash (H1) == Anchor value 

Hash Chain = H0, H1, H2,… Hi-1, Hi 

As shown in Figure 3.4, communicating hosts exchange their respective anchor values, H0 and 

MP_CAPABLE. The next hash chain value will be used to authenticate the upcoming sub-flow 

establishment process, which the peer host can verify by matching the same with the stored 

hash chain value. The last chain value can be replaced with the new chain as well.  When a 

hash chain is about to reach its limit, a new one can be generated (using a new random number 

as the seed). A special message is sent with the following information to join the two chains 

together: the penultimate value of the old hash chain (old)Hn-1; the anchor value, new H0 of the 

new hash chain, authenticated by (old)Hn-1; and a keyed-HMAC to prevent the insertion of a 

forged hash chain. With this HMAC, the new anchor is incorporated, and the previous hash 

chain's final value (old)Hn-1  serves as the key. 

However, it doesn't offer protection against attackers who might drop the genuine MP_JOIN 

request during the first handshake. In addition, new hosts can be authenticated using hash 

values; however, the ADD_ADDR vulnerability is not addressed. Moreover, hashing 

algorithms demand high computation power.  

Another hashing-based solution that uses mathematical approaches to generate new sum chain-

based solutions have been proposed to address the issues of memory and computation power 

related to the hash chain-based approach [9].  

Picking a big number (S0) and a big enough prime (p) yields the sum chain. Then, two random 

numbers, a0 and b0 are created. In this case, the initial link in the sum chain would be S0. After 

summing S0, a0, and b0 and dividing that total by p, the residual is S1, the next element in the 

sum chain. New values for a and b are generated for the sum chain. It is possible to give a 

mathematical expression for the procedure, which goes as follows: 
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S0    = large random number 

a0, b0 are random numbers &  S0 < a0, b0 

p is a large prime number 

S1= (S0 + a0 + b0) mod p 

In general, 

Si+1= (Si+ ai+ bi) mod p 

Although the suggested approach may handle low memory requirements, it is susceptible to 

integrity time-shifting attacks. Both of these techniques have been proposed to improve 

MPTCP's security. Still, neither can prevent an eavesdropper from listening in on the protocol's 

initial handshake, which can open the door to other assaults.  

3.2.3 OPPORTUNISTIC SECURITY SOLUTIONS 

tcpcrypt (an extension of TCP) [7] and Secure Multipath Key Exchange (SMKEX) [49] are 

opportunistic security protocols that use asymmetric key cryptography with the help of 

certificate authorities to enhance the security of MPTCP. tcpcrypt offers cryptographic security 

for session data and enables MPTCP to distinguish between individual TCP sub-flows using a 

“session-id” not dependent on an IP-Port combination. tcpcrypt employs an asymmetric 

cryptosystem to avoid key disclosure throughout the handshake, necessitating an additional 

message for key exchange. To some extent, tcpcrypt is more secure, but a MitM can attack it 

because of the first handshake [7].  

To provide some protection against active MitM attack, SMKEX employs the DH key 

exchange protocol. Multiple channels allow the parties to communicate the security key [49]. 

However, it doesn't work when synchronized active attackers are on every path. Transport 

layers opportunistic security solutions like tcpcrypt and SMKEX rely heavily on RSA and DH, 

which require a lengthy key to exchange the security key. Techniques using the DH paradigm 

are equally vulnerable to the MitM attack. It takes a lot of work to calculate the security 

parameters while exchanging a long security key between communicating hosts; hence the 

packet header must be large. 

3.2.4 MPTCPSec 

To safeguard application-level data and to identify and recover from packet injection attacks, 

MPTCP Secure (MPTCPSec) was proposed [41]. They structured the protocol into three phases 
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to accomplish these goals. The three phases include encryption suite negotiation, a secure 

handshake, and protecting data and control. One of the fundamental activities of the original 

MPTCP is key negotiation. However, they found that the primary problem with MPTCPsec 

was sending keys in MP_CAPABLE. To negotiate the encryption parameters between the 

nodes, they altered MP_CAPABLE by removing the keys and adding a new option called 

MPTCPesn [41]. The keys and session IDs were generated using the chosen secure protocol 

and MPTCPesn. Another use of MPTCPsec is data protection using AHEAD methods. Many 

TCP options were used in MPTCP. MPTCPsec calculated an authentication tag and added it to 

the TCP payload to safeguard these TCP options' integrity. Therefore, verifying whether the 

middleboxes have changed the TCP options' content is possible. 

3.2.5 ADD_ADDR2  

In MPTCP, the ADD_ADDR option is used to communicate the accessible interfaces hosts. 

Attackers can take advantage of a MitM attack on MPTCP connections by choosing this option. 

The format of the ADD_ADDR option is changed to the ADD_ADDR2 option as a remedy to 

lessen this vulnerability as shown in Figure 3.5 [24] [21]. The suggested remedy is to include 

a new field with an HMAC value at the time of advertisement of address for the authentication 

as shown in header format in Figure 3.6. The key used in the original key exchange is the 

HMAC key. Even if the attacker intercepts the initial key exchange, they may still be able to 

use this attack. 

 

Figure 3.5 ADD_ADDR2 Packet exchange 
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Figure 3.6 ADD_ADDR2 Option 

3.2.6 OTHER SOLUTIONS 

I. Use of external keys 

One of the solutions proposed by researchers to authenticate the MPTCP connection is to use 

external keys, such as Secure Socket Layer (SSL) or Transport Layer Security (TLS), already 

negotiated in the application layer. A technique for transferring keys from the application layer 

to the two MPTCP socket types has been proposed [50]. An MPTCP ENABLE APP KEY or 

MPTCP KEY can notify the MPTCP protocol that application-level keys are being used for 

authentication. An MPTCP KEY can supply the MPTCP layer with the application-level key. 

Additionally, Multipath Transport Layer Security (MPTLS) proposes combining TLS with 

MPTCP to fix MPTCP's security flaws [51] [6]. As a result of the adjustments made to the 

MPTCP and TLS, the two protocols are now more tightly coupled. TLS has been tested to 

function with MPTCP without affecting performance [6]. However, MPTCP needs to support 

message mode service instead of the byte stream, and keys generated by TLS must be used 

with the MAC approach to authenticate messages and a new sub-flow. 

II. Use of ADD_ADDR packet confirmation 

An attacker persistently forges an ADD_ADDR option to generate bogus sub-flows and then 

hijacks the connection between the MPTCP endpoints is one of the attacks considered for the 

proposed ADD_ADDR packet confirmation-based solution [11]. A digital signature-based 

system is a foolproof and easy way to verify the authenticity of previously transmitted 

ADD_ADDR. A backward address confirmation-based solution is proposed to eliminate the 

issue of key leakage during the initial handshake. Upon receiving the ADD_ADDR2 option, a 

host retransmits the packet back to the peer host to verify that the peer host received the 

ADD_ADDR2 option [11]. Figure 3.7 shows the packet confirmation sequence. Suppose we 

assume that Host Eve could overhear the original handshake and learn the keys of 

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3  4  5  6  7 8  9 0 1

E Address IDKind   Length   Subtype

   Address (IPv4 - 4 octets / IPv6 - 16 octets)

(rsv)

 Port (2 octets, optional)

Truncated HMAC (8 octets, if length > 10 octets)
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communicating hosts, KeyA and KeyB. Host Eve generates an acceptable HMAC and sends it 

to Host Bob along with the ADD_ADDR2 packet. Without verifying the integrity of the 

received ADD_ADDR2 option, Host Bob sends it through connection IP A1 to the connected 

Host Alice. If the received address matches the one supplied in the ADD_ADDR2 option, Host 

Alice sends Host Bob a signed ACK0 message. Otherwise, Host Alice will deliver a Warning 

message if the two addresses do not match. Upon receiving the Ack from Host Alice, Host Bob 

will initiate the new sub-flow. 

 

Figure 3.7 Secure and lightweight solution based on packet confirmation [11] 

III. Key exchange using Software Defined Network (SDN) 

One of the rising networking paradigms, Software Defined Network (SDN), consists of three 

layers: application, control plane, and data plane; it enables programmability, flexibility, 

manageability, and centralized control logic that delivers a global network perspective for 

security benefits. These features of SDN can be utilized to secure the initial key exchange by 

securely distributing the keys between communicating hosts over multiple paths.  The SDN 

controller plays a vital role as the intelligence and complexity of whole network is being 

manged by it, and it also configures network nodes according to predetermined rules. At the 

same time, Data plane devices in SDN are reduced to generic packet forwarding nodes [10]. 
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A third-party security module (python) for distributing session keys among communication 

hosts runs atop an SDN controller, taking advantage of the control plane's centralization. The 

module listens for controller packets seeking a session key, authenticates MPTCP users, 

requires receiver confirmation, and transfers keys after receiving a request [10]. 

Figure 3.8 demonstrates the process of session key distribution [10] among communicating 

hosts.  

 

Figure 3.8 Session Key Distribution using SDN [10] 

Host Alice first requests Ks from the controller. The request packet contains IP addresses IPA 

and IPB of Host Alice and Host Bob, as well as a nonce N1 to protect the request packet from 

a replay attack. In the next step, the security module transmits a “Forward-Request” packet 

with the two hosts' IP addresses and a new nonce N2 to Host Bob. In the next step, Host Bob 

sends a “Confirm” packet which includes the IPA, IPB, and N2 protocols. In step four, the 

security module generates a 64-bit session key and encrypts data packets destined for Host 

Alice (PUA) and Host Bob (PUB) with their respective public keys. The security module signs 

the payload, which is only encrypted with public keys. The module's signature is an encrypted 

version of the session key that was generated using the private key PRC of the security module. 
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Finally, the security module stores IP addresses, session keys, request times, and delivery times 

in its database for forthcoming usage. Thus, the security module manages user authentication 

and record-keeping databases. 

Hence, the connection can be established by following 3-way handshake procedure only after 

getting the session key Ks. the value calculated by XORing the session key and user ID will be 

communicated with SYN+MP_CAPABLE packet. In this method, the sender's and receiver's 

identities are concealed from eavesdroppers on the same sub-flow. Thus, the user-specific 64-

bit IDs will not be inserted as plaintext but instead sent after encryption.  

Hence, using SDN, numerous assaults, such as the “Eavesdropper in the Initial Handshake” 

attack, can be avoided by encrypting “user-specific” IDs and keeping the ciphertext to a 

maximum of 64 bits [10]. 

Table 3.3 Probable Security Solutions proposed by various researchers 

Reference Year Solution Category Remarks 

[8] 2011 
Hash chain-based 

solution 
Hashing based 

Unfortunately, it does not 

protect against on-path 

active threats. 

[7] 2014 Tcpcrypt Opportunistic 

Because it does not 

perform public key 

authentication, it leaves 

itself open to assaults 

involving MitM. 

[6] 2016 

MPTLS 
Asymmetric key 

cryptography 

It generates computation 

overhead during the initial 

handshake. We need to 

modify the packet 

sequence.  

[51] 2015 

[48] 2016 
Modified initial 

handshake 

Asymmetric key 

cryptography 

Expenses are incurred 

during the first handshake 

due to computation. It 

demands altering the 

packet's sequence. 

[9] 2017 
Sum chain-based 

solution 
Hashing based 

Vulnerable to time-shifted 

attack. 

[52] 2017 
Data Scrambling 

technique for privacy 
 

The suggested model is 

limited to concentrating 

on the eavesdropper on 

untrusted routes and thus 

does not function in the 



 

55 
 

traditional sense. In 

addition to this, there is no 

assurance that the data will 

not be altered. 

[21] 2018 ADD_ADDR2 ADD_ADDR 
Vulnerable to time-shifted 

attack. 

[10] 2019 
Key exchange through 

SDN 
Other Single point of failure.  

[43] 2020 

Secure connection 

Multipath TCP 

(SCMTCP) 

Other 

It produces a distinct key 

for each available choice 

for every new connection 

request, increasing the 

work needed. 

[11] 2019 

Secure and lightweight 

connection 

establishment scheme 

Other 

It's insecure against 

eavesdropping during the 

initial handshake, adds 

unnecessary overhead to 

every packet it sends, and 

confirms the new address.  

 

The main obstacle to delivering robust encryption-based security in MPTCP is the maximum 

length of the TCP option field. Numerous solutions, including those based on hashes, sum 

chained hashes, elliptic curves for transferring keys, etc., have been put forth and implemented, 

but they still fall short of expectations and are susceptible to other types of attacks. 

 

 

 

  


