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5. EXPERIMENTS AND RESULT ANALYSIS 
 

This chapter covers the details of experiments carried out. The chapter is divided in two sub-

sections: one covers the experiments performed to initiate attacks like session hijacking 

through ADD_ADDR packet and another eavesdropper in initial handshake to gain the access 

of security keys which can be used to initiate other attacks. Moreover, the impact of the attacks 

on data loss is demonstrated with graph. Next subsection covers the experiments to demonstrate 

the Identity Based Encryption working and its comparision with Elliptic Curve Cryptography 

(ECC). The performance and  security evaluation of proposed model is compared with existing 

solutions.  

5.1 RESULTS AND DISCUSSION OF SESSION HIJACKING 

BY MAN-IN-THE-MIDDLE ATTACK AND 

EAVESDROPPER IN INITIAL HANDSHAKE 

In an ADD_ADDR packet session hijacking attack, the attacker first impersonates a genuine 

user to add their IP address as a different address and then uses this address to construct a sub-

flow over an existing connection to divert traffic [23] [24] [48]. The performed attack is an 

example of a non-directive active attack. The data needed to announce a new address to the 

other host in the MPTCP version (v0) are new IP address to be annouced and address ID. 

MPTCP session hijacking through a MitM attack is possible due to the lack of authentication 

when adding a new address via the ADD_ADDR packet in the initial version (v0) of the Linux 

Kernel Implementation of MPTCP. The connection can be attacked with just the source IP 

address and port or the destination IP address and port. In this case, the destination port can be 

inferred from the service operating on the server, as a specific port typically indicates this (e.g., 

port 80 for HTTP, port 443 for HTTPs, etc.). Client port assumption is a difficult task. Scapy, 

DSniff, Wireshark, and other packet manipulation tools can be used to sniff the packet and 

extract necessary data such as IP-Port pairs, Sequence numbers, ACK numbers, etc. A tool 

called SCAPY for MPTCP [59] can gather the necessary four tuples and sequence numbers to 

launch an ADD_ADDR attack. 

It just takes mentioned steps below for an attacker to perform a session hijack if they have the 

necessary information [23] [24]. 
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a) It is assumed that Alice and Bob exchange information via a sub-flow in which IP 

addresses IP-A1 and IP-B1 are used. Over here, Eve is using IP-E1 while working in a 

distant location. 

b) To initiate an attack, Eve employs packet-capturing programs like Scapy for MPTCP, 

etc., to learn the IP addresses and ports each host uses in the connection. 

c) When Eve has gathered both hosts' IP and port information, he sends Bob a faked ACK 

packet with the source address set to IP-A1, the destination to IP-B1, and the 

ADD_ADDR option set to IP-E1. Here, the ADD_ADDR selection also includes the 

Address ID, which must be distinct; therefore, any larger random number can be chosen 

to avoid collisions. 

d) Assuming that Alice has sent the ADD_ADDR request, Bob will start the new sub-flow 

by sending an SYN+ MP_JOIN request to Eve. When Eve receives a packet, she will 

alter its Source address to IP-E1 before sending it to Alice. 

e) Since Alice believes Bob wishes to start a new sub-flow using the IP-E1 address, she 

will treat this request as valid. Despite Eve changing the source address, all the 

information necessary to validate the packet from Bob is still present. Including the 

necessary parameters, Alice will transmit an SYN/ACK+MP_JOIN to IP-E1. 

f) By altering the source address, Eve can send the packet to Bob while giving the 

impression that she responded. 

g) Assuming everything has been set up correctly, Bob will transmit the FINAL 

ACK+MP_JOIN packet to establish the sub-flow towards IP-E1. 

In this manner, Eve will play the middleman between Alice and Bob. With this information, 

Eve can completely hijack the connection by reordering the priorities of the other sub-flows 

or sending an RST packet to all of the sub-flows. Figure 5.2 shows the illusionary scenario 

created by Eve vs. the real scenario.  

Linux kernel MPTCP v0  is used for performing experiments of session hijacking by MitM, 

while MPTCP v1 is used for Eavesdropper in the initial handshake. Oracle VirtualBox was 

used to develop the experimental configuration depicted in Figure 5.1. Two virtual 

machines running a Linux kernel with MPTCP support are used to simulate the assault [24]. 

When using VirtualBox, tests may be set up quickly, with high confidence in their results 

and no chance of crashing or affecting the underlying kernel. The compiled kernel and tools 

needed to set up this “client-server” configuration may be found on the MPTCP homepage 

(http://www.multipath-tcp.org). Scapy, a tool for collecting and injecting packets on the 
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network, is used to simulate the attacker host to launch both attacks. Nicolas Matre has 

made an enhanced version of Scapy available on the https://github.com/nimai/mptcp-scapy 

project, tailored specifically for MPTCP [53]. The Scapy tool has built-in features for 

sniffing, modifying, capturing, and matching the request-response necessary for launching 

an attack. 

 

Figure 5.1 Experiment setup for performing attacks 

 

Figure 5.2 Real vs. illusion for Alice and Bob during the session hijacking attack [28] 
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As shown in Figure 5.1, an MPTCP Linux kernel has been installed on the Client Virtual 

Machine (VM), the Server Virtual Machine (VM), and the Host Machine. In this MPTCP 

setup, the client must have more network interfaces, while the server only needs one or 

more. Here, to build a multi-homing environment [24], the Host Machine has been outfitted 

with three tap interfaces (virtual network interfaces), as shown in Figure 5.3. 

 

Figure 5.3 Configuration of tap interfaces 

Both a chat application and a file transfer application built with the JAVA socket API on 

the MPTCP Linux kernel v0 were subjected to a session hijacking experiment with positive 

results. On average, you'll need to capture a couple of packets to collect the necessary data, 

including source and destination IP addresses, SEQ numbers, ACK numbers, etc. The 

average number of packets sent from client to server to launch an attack is 6:3. The average 

session hijacking attack succeeds 77% of the time. 

 

Figure 5.4 Data lost analysis during different-sized file transfer with hijacking attack 

There are numerous runs of the assault done to capture a wide range of file sizes and types. 

Figure 5.4 demonstrates the Percentage of Data Lost (in Percentage) when Transferring 

Files of Varying Sizes between Client and Server. Multiple runs of the experiments are 

conducted, and the average loss is used as a proxy for statistical significance.  
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Figure 5.5 Data lost analysis in % during file transfer of different format 

The accompanying graph demonstrates that data loss grows with file size—the probability 

of losing more than 90% of one's data after a certain point increases. Multiple runs of the 

same experiment are conducted using various data formats, with the results summarized in 

Figure 5.5. Research demonstrates that, on average, data loss ranges from 95% to 96% 

across file types and formats. 

Another version of ADD_ADDR was integrated into the MPTCP Linux kernel v1 to fix 

the problem with ADD_ADDR; however, the new version is also susceptible to 

eavesdroppers during the initial handshake. The MPTCP v1 protocol is vulnerable to an 

ADD_ADDR MitM attack if an eavesdropper on the network during the initial handshake 

steals the keys. Here, the ADD_ADDR MitM attack can be carried out in the same way as 

described above once an Eavesdropper attack has been carried out using the Scapy tool to 

collect client-server keys. Figures 5.6 and 5.7 show the equivalent Wireshark capture to 

extract the keys in MPTCP v0. 

 

Figure 5.6 Wireshark capture for Eavesdropper at initial handshake capturing keys in clear form in MPTCP 

version 0 
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Figure 5.7 Extracting keys captured during the initial handshake to perform ADD_ADDR attack by using 

python script for MPTCP version 0 
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Figure 5.8 Wireshark capture for Eavesdropper at initial handshake capturing keys in clear form in MPTCP 

version 1 

 

Figure 5.9 Extracting keys captured during the initial handshake to perform ADD_ADDR attack by using 

python script for MPTCP version 1 

Session hijacking through ADD_ADDR is possible in MPTCP v0 as an off-path attack by 

avoiding the active communication channel and in MPTCP v1 as a partial-time on-path 
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attack by collecting keys while present on the communicating path for a brief time before 

returning to the off-path. The initial investigation makes it clear that neither version of the 

MPTCP Linux kernel currently available is adequate to fix the ADD_ADDR flaw. Figure 

5.6 and 5.8 shows the equivalent Wireshark capture to extract the keys in MPTCP v1. 

5.2 RESULTS AND DISCUSSION OF PROPOSED SECURE 

KEY EXCHANGE MODEL FOR MPTCP (SKEXMTCP) 

USING IDENTITY-BASED ENCRYPTION 

5.2.1 IMPLEMENTATION SETUP 

The MPTCP implementation in the Linux kernel tests the proposed system. The Oracle 

VirtualBoxes are used to build up the environment of the proposed approach by constructing 

two VMs, client and server, as shown in Figure 5.10. Both the client and server virtual machines 

have MPTCP, which is implemented with the Linux kernel. The PKG is set up on the host 

computer in this stage. The tap interfaces are utilized to establish a connection between PKG 

and host. 

For the IBE to generate system parameters and distribute private keys based on the ID of the 

host, PKG is required. The primary function of PKG is to set up the master share and system 

parameters that will be utilized for MPTCP key exchanges. Data is encrypted using IBE in the 

proposed approach without requiring the sharing of encryption keys or the need for a dedicated 

communication host. In this scenario, PKG is crucial in authenticating users and disseminating 

the master private key for identity-based private key generation. Each connection will be 

authenticated using a digital signature, and session keys will be generated using ECC in our 

suggested paradigm. 
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Figure 5.10 Experimental setup for testing the proposed work 

 

Figure 5.11 and 5.12 shows the setup of the private key generator and system parameter 

generation for IBE. Figure 5.13 shows the master key extraction from the PKG. Figure 5.14 

depicts the encyption command and step to genrate the private key correspnding to the given 

ID with the use of master key share.  

 

Figure 5.11 Setting up the private key generator (PKG) of IBE 
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Figure 5.12 Public Parameter and Security Parameter Generation of IBE 

 

Figure 5.13 Request for master key and private key share to the PKG 

 

Figure 5.14 Encryption step and combine the key share to generate private key for decryption 

5.2.2 SECURITY AND PERFORMANCE EVALUATION 

The session keys exchanged at the initial handshake are encrypted using the IBE method in the 

proposed model, SKEXMTCP. The client's IP address is used as a public key to implement 

IBE, while the server's private key is obtained via the PKG. Here, the IP address and port 

number are used for server authentication; using the PKG public key, they are encrypted before 

being digitally signed by the server. A hacker would need to defeat the encryption method and 

the hashing algorithm to discover the private key of PKG and decrypt the packet or alter the 

server's digital signature and fake the packet. So, the model's security complexity depends on 

the intricacy of the IBE and the encryption algorithm used to secure the private key request 

data. 

For asymmetric encryption schemes, the chosen-ciphertext attack (CCA) is a well-accepted 

attack concept in which attackers can decrypt plaintexts corresponding to the chosen cipher 
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text. It means that the chosen-ciphertext attack (CCA) model, which may be further classified 

as adaptive (IDA-ID-CCA) or non-adaptive, must be used to demonstrate that IBE is secure 

(IDA-CCA). However, the FullIn-dent proposed by FUSAKI-OKAMOTO is a secured chosen-

cipher text IBE, while the basic indent (IBE) proposed by BONAH and FRANKLIN was not, 

since the security of this IBE scheme relies on the bilinear Diffie-Hellman assumption (BDH) 

[44]. For encryption in SKEXMTCP, we assume that BDH is hard in groups and employ the 

FullIndent variant of safe IBE. This variant is secure in a random oracle against the chosen-

ciphertext attack [44]. 

Messages sent between PKG and the communicating node must be encrypted using a public 

key encryption strategy to ensure privacy (such as RSA, Elgamal, ECC, etc.). Despite the 

smaller key size, ECC provides the same level of protection as RSA. If the attacker needs an 

exponential amount of time relative to the key size to launch an attack, the public key 

cryptosystem is more secure. 

Among the most common approaches to solving ECC are naive exhaustive search, Baby Step 

Giant Step (BSGS), the square root, and Silver-Pohling-Hellman (SPH) [54]. The naive 

exhaustive search method solves ECC by repeatedly adding point P until it reaches Q= kP; it 

is computationally infeasible for many-step problems. Even though the BSGS is an 

improvement over the naive exhaustive search, its space and time complexity are prohibitively 

large because of the need for volatile memory for n points and additional n steps. Public key 

cryptosystems are safe from the attack since it takes an exponentially growing amount of time 

to solve ECC using the square root approach, and hence ECC can be regarded as secure against 

the square root method. In addition, the SPH is only applicable when the order of the curve is 

defined by picking the product of small prime numbers. It is because the computation time for 

SPH varies significantly for products of big prime integers, making ECC safe against SPH. The 

Pollard-p algorithm is another general-purpose approach for solving ECC; its time complexity 

is comparable to BSGS, although its space complexity is O(1). Because of the computational 

complexity of the Pollard approach, the cost to attack ECC-163 in 1 year is roughly USD 200 

million. The current stage of the ECC security breach is described as “a 112-bit key for the 

prime field and a 109-bit key for the binary field being the extreme level security breach till 

date” [54]. As a result, ECC is the most appropriate method for protecting data in transit 

between nodes and PKG. To generate a session key with a higher level of security, the HMAC 

can be utilized, as it employs a hash function. Because of its superior security complexity, 

HMAC is rarely used. 
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SKEXMTCP's proposed model employs IBE to encrypt session keys to authenticate entities 

during sub-flow creation and address broadcasting. Extra packets must be transmitted between 

communicative nodes and the PKG to retrieve the public parameters of IBE and private key; 

however, this does not increase the communication overhead when using MPTCP. In addition, 

the host is not required to have a public key to utilize IBE to encrypt the packet.  Any random 

string can be used to encrypt the messages, unlike in the case of public key cryptosystems like 

ECC, the hosts must produce the session keys before encryption. Figure 5.15 compares the 

time needed for key creation and encryption using ECC and IBE. The graph demonstrates that 

ECC takes longer because it must produce session keys for encryption, but IBE is unrestricted 

in its choice of encipherment string. The overall performance suffers because the developers 

of [31] employed ECC for session key creation and intend to use the keys for authentication. 

 

Figure 5.15 Comparison between times required for the key generation and encryption using ECC and IBE. 

The cost of the proposed model in terms of implementation can be calculated by considering: 

(i) the cost of key generation, (ii) the cost of communication between hosts and PKG, and (iii) 

the cost of the 3-way handshake. 

• Let us assume that the cost of key generation is 𝑛. 

• One needs to consider the cost of a request for a private key from a host to PKG and a 

reply from PKG to a host with a private key to obtain the cost of communication 

between the hosts and PKG. 
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• Assume that the cost of a request for a private key from a host to PKG is 𝑛1 and the 

cost of a reply from PKG to a host with a private key is 𝑛2. 

• Thus, the cost of communication between Alice and PKG to deliver a private key to 

Alice is 𝑛1 + 𝑛2, and the cost of communication between Bob and PKG to deliver a 

private key to Bob is also 𝑛1 + 𝑛2. 

• Thus, the total cost for communication between PKG and hosts is 2(𝑛1 + 𝑛2). 

• Now, let us calculate the cost of a 3-way handshake SYN, SYN+ACK, and ACK is 

𝑛3, 𝑛4, and 𝑛5respectively.  

• Thus, the overall cost is 

𝑁1 = 2 (𝑛1 + 𝑛2) + 𝑛3 + 𝑛4 + 𝑛5  

• If we consider that the overall cost of the model is Ο(𝑁) =  Ο(𝑁1), then 

𝑁1 ≪ 𝑁1 × 𝑁1  

 

Several methods have been proposed to improve MPTCP's security; these methods are 

compared in Table 5.1 regarding the number of bytes needed for key exchange and the delay 

for packet exchanges [11] [48]. You can see how different potential solutions to improve 

MPTCP's security stack up against one another regarding the number of bytes needed for key 

exchange and the absence of delays [10]. It is an example of a one-way delay, where the delay 

represents the additional packets that must be sent. Figure 5.16 illustrates how the suggested 

approach exhibits the same behavior as MPTCP regarding the number of bytes needed for the 

key exchange and the time it takes to complete. 
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Figure 5.16 Comparative study of bytes required in key exchange with various MPTCP options in security 

solutions 
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Table 5.1 Comparative evaluation of existing security solutions 

 
PROPOSED  

SOLUTION 

SCMTCP  

[43] 

SECURE 

AND 

LIGHTWE

IGHT SUB-

FLOW 

SCHEME 

[11] 

SMPTCP  

[55] 

MPTLS  

[56] 

HASH 

CHAIN [8] 

MPTCP 

[21] 

MP_CAPABLE        

− Key exchange (bytes) 32 32 32 124 7468 52 32 

− No of delay 3 3 3 4 7 3 3 

ADD_ADDR        

− Key exchange (bytes) 10 10 30 18 18 18 10 

− No of delay 1 1 3 1 1 1 1 

MP_JOIN        

− Key exchange (bytes) 12 12 12 12 12 24 12 

− No of delay 40 40 40 40 40 28 40 

MP_REMOVE        

− Key exchange (bytes) 10 10 30 18 18 18 10 

− No of delay 1 1 3 1 1 1 1 

 

Table 5.2 compares the probable security solutions of MPTCP in terms of prevention of attacks.  

Table 5.2 Comparison of probable MPTCP security solutions 

ATTACK TYPE 
PROPOSED 

SOLUTION 

SCMTCP 

[43] 

SECURE AND 

LIGHTWEIGHT 

SUB-FLOW 

SCHEME [11] 

SMPTCP  

[55] 

MPTLS  

[50] 

HASH 

CHAIN 

[8] 

MPTCP 

[21] 

Session 

hijacking 

using 

ADD_ADDR 

Vulnerability 

Off Path 

Active 

attack / 

Partial 

Time on 

Path 

Active 

attack 

Y Y Y Y Y N N 

Eavesdropper 

in the initial 

handshake 

On Path 

Attack 
Y Y N Y Y N N 

 

  


