List of Figures

1.1	Evolution of the generations of nuclear reactors throughout history and predictions for future [6].	3
1.2	Schematic presentation of the nuclear processes in the Universe on the chart of nuclides [30].	5
1.3	A diagram represents the basic principle of NAA	9
1.4	A sketch of the reaction flows in the vicinity of ^{113,115} In taken from Ref. [62]. Contributions from the corresponding s, r and p processes are shown. Our work is focused on proton induced reaction channels of ^{112,114} Cd	14
2.1	A collabrotive Pelletron facility of BARC-TIFR	24
2.2	Pictorial view of 6M irradiation port	25
2.3	Schematic representation of HPGe detector.	27
2.4	The linear attenuation coefficient of Ge and its basic parts [13]. \ldots	28
2.5	The γ -ray spectrum obtained from a calibrated ¹⁵² Eu reference source.	30
2.6	Measured efficiency for the HPGe detector	31
3.1	A flowchart different reaction mechanism [1]	36
3.2	A flowchart of the nuclear models of TALYS	38

3.3	A Flow-chart explains the core physics of EMPIRE [34]	46
4.1	A layout of experimental arrangement [24]	59
4.2	Efficiency vs. Energy curve of HPGe detector for ¹⁵² Eu multi γ point source used in the experiment.	61
4.3	Conventionally recorded γ ray spectra using HPGe detector for (a) Au, (b) In, (c) Th, and (d) U samples, respectively	63
4.4	(a)-(d) The neutron flux spectra obtained using $^{7}Li(p,n)$ reaction for (a) 18.8, (b) 15.0, (c) 11.0, and (d) 5.0 MeV of proton energies	65
4.5	Neutron flux correction for 197 Au(n, 2n) 196 Au reaction having 8.114 MeV of threshold energy labelled by A and maximum neutron energy labelled by B	67
4.6	Experimentally measured activation cross section data of 197 Au(n, 2n) 196 Au reaction compared with existing data of different libraries and pre- dicted data of TALYS (v. 1.9).	ли 70
4.7	Experimentally measured activation cross sections of ${}^{115}In(n, n'){}^{115m}In$ reaction compared with the EXFOR data and data obtained from TALYS (v. 1.9)	71
4.8	Experimentally measured activation cross section data of 232 Th(n, f) 97 Zr reaction compared with existing data of different libraries and predicted data of TALYS.	72
4.9	Experimentally measured activation cross section data of 238 U(n, f) 97 Zr reaction compared with existing data of different libraries and predicted data of TALYS.	73
5.1	Arrangement of the stacked foil experiment [47]	84
5.2	Proton energy degradation using MCNP 6.2 code. [50]	85

5.3	Gamma ray spectra typically obtained from the interaction of proton- Cadmium at (a) $E_p \approx 16$ MeV, (b) 7.8 MeV & (c) 16 MeV of proton energies, respectively.	86
5.4	The Coulomb penetration probability folded with the Maxwell-Boltzmann velocity distribution forms the so-called Gamow peak	91
5.5	Upper panel: Comparison of the cross sections for the 114 Cd(p, γ) 115m In reaction with three different HF calculations using the TALYS-1, TALYS-2, and TALYS-3 combinations (see §5.4.1 for details) and with the data retrieved from the literature [43]. Lower panel: The corresponding astrophysical S factors.	96
5.6	Upper panel: Comparison of the cross sections for the ¹¹⁴ Cd(p, n) ^{114m} In reaction with three different HF calculations using the TALYS-1, TALYS-2, and TALYS -3 combinations (see §5.4.1 for details) and with the data retrieved from the literature [43]. Lower panel: The corresponding astrophysical S factors.	99
5.7	Upper panel: Comparison of the cross sections for the 112 Cd(p, γ) 113m In reaction with three different HF calculations using the TALYS-1, TALYS-2, and TALYS -3 combinations (see §5.4.1 for details) and with the data retrieved from the literature [43], and TENDL data library. Lower panel: The corresponding astrophysical S factors.	100
5.8	Presently measured cross section comparison of (a) $^{110}Cd(p, n)^{110g}In$ reaction with phenomenological models, (b) $^{110}Cd(p, n)^{110g}In$ reaction with microscopic models of TALYS [1], EMPIRE [17] and ALICE [38]. The theoretical predictions of (c) $^{110}Cd(p, n)^{110m}In$, and (d) $^{110}Cd(p, n)^{110}In$ reactions using different NLDs of TALYS, EMPIRE, and de- fault NLD option of ALICE, and with the EXFOR database [43].	103
5.9	The cross section ratio of the ¹¹⁰ Cd(p, n) ^{110g} In (σ_g) to ¹¹⁰ Cd(p, n) ^{110m} In (σ_m) reaction for the previously measured experimental data with the theoretical predictions based on the TALYS, and EMPIRE code	104

- 5.10 Presently measured cross section comparison of (a) ¹¹⁰Cd(p, 2n)¹⁰⁹In reaction with phenomenological models, (b) ¹¹⁰Cd(p, 2n)¹⁰⁹In reaction with microscopic models of TALYS, EMPIRE, ALICE and with EX-FOR data. The MENDL-2 and TENDL-2019 data libraries are also included.
 106
- 6.1 Comparison of theoretical predictions with EXFOR data, and the result of Kavun's empirical formula [19] for ¹¹²Cd(d, 3n)¹¹¹In reaction. 118
- 6.2 Comparison of theoretical predictions with EXFOR data, and the result of Kavun's empirical formula [19] for ¹⁴¹Pr(d, 3n)¹⁴⁰Nd reaction. 119
- 6.3 Comparison of theoretical predictions with EXFOR data, and the result of Kavun's empirical formula [19] for ¹⁶⁷Er(d, 3n)¹⁶⁶Tm reaction. 121
- 6.4 Comparison of theoretical predictions with EXFOR data, and the result of Kavun's empirical formula [19] for ¹⁹⁷Au(d, 3n)¹⁹⁶Hg reaction. 122
- 6.5 Comparison of theoretical predictions with EXFOR data, and the result of Kavun's empirical formula [19] for ²⁰⁹Bi(d, 3n)²⁰⁸Po reaction.