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Abstract
Dung beetles belonging to the subfamily Scarabaeinae are ecologically important organisms that feed primarily on 
mammalian dung for their nesting and brooding. The paracoprids are characterized for their complex tunnel-making 
behaviour. The present study revealed the role of neurotransmitters in the nesting behaviour of Digitonthophagus 
gazella (Fabricius in Mantissa insectorum sistens species nuper detectas adiectis synonymis, observation ibus, 
descriptionibus, emendationibus, 1787) (Coleoptera: Scarabaeidae) under laboratory conditions. The development 
period was observed to be 31 days, comprising of four stages- egg, larva  (1st instar,  2nd instar, and  3rd instar), 
pupa, and adult. The nesting pattern of D. gazella showed a time dependent increase in the length (14.7 ± 0.1 cm, 
16.9 ± 0.1 cm and 19.8 ± 0.1 cm), and total depth (9.8 ± 0.1 cm, 12.9 ± 0.1 cm and 13.5 ± 0.1 cm) of the tunnel on 
 10th,  20th, and  30th day. Estimation of the neurotransmitters revealed that acetylcholine esterase (AChE), biogenic 
amines- 5-hydroxytryptamine serotonin (5-HT); dopamine (DA), and nitric oxide (NO) increased significantly 
(p < 0.01) in a time dependent manner in both male and female, suggesting their role in parental behaviour. These 
results provide the first evidence for a potential role of neurotransmitters in the modulation of nesting behaviour of 
the dung beetle; D. gazella.

Keywords Dung beetles · Brood morphometry · Nesting behaviour · Tunnel pattern · Acetylcholine esterase · Nitric Oxide · 
Dopamine · Serotonin

Introduction

The family Scarabaeidae (Dung beetles) is one of the larg-
est families of order Coleoptera, which contains more than 
30,000 species in the world (Banerjee 2014; Cajaiba et al. 
2017). It comprises of nearly 27,800 species worldwide 
(Chandra and Gupta 2012a, b, c, d, 2013) with two sub-
families Aphodiinae and Scarabaeinae including approxi-
mately 6,850 species worldwide (Ratcliffe and Jameson 
2001; Chandra and Gupta 2013). Earlier, the taxonomic 
studies on Indian Scarabaeinae were carried out by Arrow  

(1931), Paulian (1945, 1980, 1983), Balthasar (1963, 1974), 
Mikšić (1977), Endrodi (1985), Kuijten (1983), Chandra  
(1986, 1999), and Krikken (2009), Sabu et  al. (2011). 
Later, comprehensive work on the diversity of dung bee-
tles was conducted by Chandra and Ahirwar (2007), 
Chandra and Singh (2010), and Chandra and Gupta 
(2011, 2012a, b, c) and have recorded 124 species 
belonging to 45 genera in 11 subfamilies from Madhya  
Pradesh and Chhattisgarh. Thakkar and Parikh (2016), and  
Singhal et al. (2018) have also recorded species of dung  
beetles from Gujarat.

Dung beetles exhibit a wide range of ecological func-
tions (Kakkar and Gupta 2009; Brown et al. 2010; Gullan 
and Cranston 2010), morphological as well as behavioural 
adaptations which makes them universally distributed. 
They carry out dung decomposition by feeding on dung 
and by performing dung burial activity. Such burial activ-
ity and their pasture productivity (Hernández et al. 2011) 
have classified them into four types: Telecoprid (rollers),  
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Endocoprid (burrowers), Kleptocoprids (dwellers), and 
Paracoprid (tunellers) (Doube 1990). They feed on micro-
organism rich mammalian dung as a source of fibrous 
material to brood their larvae. Mostly dung beetles pre-
fer omnivore, then herbivore dung and least preferred is  
carnivore dung (Frank et  al. 2017). Depending upon 
soil type, and moisture (Nichols et al. 2008), dung qual-
ity (Braga et  al. 2013), and pair cooperation (Slade 
et  al. 2011), they use diverse pattern of consump-
tion and relocation of dung (De Groot  et al.  2002; 
Banerjee 2014; Tarasov and Dimitrov 2016; Singh et 
al. 2019). They are known to enhance soil fertility, soil  
permeability, plant growth, seed dispersal, control para-
sitic growth, and reducing the emission of greenhouse 
gases by utilizing the dung for food and reproduction 
(Latha and Sabu 2018). Despite of numerous ecological  
benefits it provides, a decline in dung beetle diversity  
is recently documented due to anthropogenic activities 
observed in forests and pastures (Martínez et al. 2001; 
Nichols et al. 2009; Basto-Estrella et al. 2014). These 
declines entail jeopardy for the population of dung beetles  
and the ecosystem services they provide (Nichols et al.  
2008). Therefore, it becomes imperative to carry out 
more studies on dung beetles which are an essential bio-
indicator (Salomão et al. 2020) in maintaining a healthy 
ecosystem by performing unique behaviour. Nevertheless,  
most studies have unravelled the diversity and distribution  
of these species, and the ecosystem services they provide, 
but there is a lacuna in the work done on the physiologi-
cal parameters involved in regulating behaviour of indi-
vidual dung beetles. Hence, in the present study, dung 
beetles were used to study the neuroendocrine mechanism 
involved in the behaviour pattern.

Of all the types of dung beetles, paracoprids are in 
attention due to their unique pattern of nesting. They are 
found predominantly in the forest and agri habitats (Sabu 
et al. 2006; 2007; Venugopal et al. 2012) across the globe 
(Andresen 2005). Digitonthophagus gazella (Fabricius 
1787), a paracoprid shows a unique behaviour of nesting. 
Their presence is well marked in many countries includ-
ing Africa, America, introduced in Australia (Noriega 
et al. 2020) Arabia, Madagascar, Pakistan and Sri Lanka 
(Chandra and Gupta 2013), however it has also been 
recorded in many parts of India (Sabu et al. 2011; Chandra  
et  al. 2012; Pawara et  al. 2012; Gupta et  al. 2014;  
Thakkar and Parikh, 2016) including Vadodara district 
(Singhal et al. 2018), Gujarat, which makes them a suit-
able model for the study. Adult D. gazella are yellow to 
mottled yellowish brown in colour and show a complete 
sexual dimorphism. Males have slightely curved and 
acute horns while the female have a strongly elevated 
ridge that extends between the eyes (Chandra and Gupta 
2013). These dung beetles excavate tunnels and provide 

dung to offspring in the form of brood balls at the blind 
end of each tunnel (Pulido-Herrera and Zunino 2007; 
Moczek 2009; Khadakkar et al. 2019), with only a single 
egg deposited into an egg chamber and sealed. Utilization 
of rich and ephemeral dung promotes unique behavioural 
and physiological adaptations leading to sub sociality 
and biparental behaviour (Arce et al. 2012; Panaitof et 
al. 2016).

The pervasive role of neurotransmitters in reproduc-
tive behaviour have been explored extensively in verte-
brates (Adkins-Regan 2005), however, this aspects are 
meagerly investigated in insects (Riddiford 2012). Baring  
a few reports, neurotransmitters like Acetylcholine, Sero-
tonin, Dopamine, and Nitric Oxide are reported in insects  
such as Drosophila, Manduca sexta, Anopheles gam-
biae , Anopheles stephensi  (Müller 1996; Jacklet 
1997; Charpentier et  al. 2000; Davies 2000; Bicker 
2001a, b; Vleugels et al. 2015). Biogenic amines, DA, 
and 5-HT has been extensively explored in the social 
context-dependent fighting behaviour, and territorial 
dominance in cricket, Gryllus bimaculatus (Dyakonova  
and Krushinsky 2013), fruit f ly,  Drosophila mel-
anogaster  (Alekseyenko  et al .   2014; Zwar ts  et 
al. 2012), stalkeyed fly, Teleopsis dalmanni (Bubak et 
al.  2014a, b; Casasa et  al. 2017). Further, DA, and 
5-HT have been accounted to play a vital role in cuti-
cle sclerotization, melanisation, and social interaction  
(Beggs and Mercer 2009; Andersen 2010; Vleugels et  
al. 2015; Verlinden 2018; Singhal et al. 2019). Given the  
robust links established between 5-HT and DA and the  
modulation of behavioural state, we hypothesize that the  
biogenic amines DA and 5-HT represents the most likely  
candidates for the neuromodulatory control  of  
nesting behaviour in D. gazella.

Therefore, in the present study, we have experimen-
tally evaluated the role of neurotransmitters in the nesting 
behaviour of D. gazella. We selected D. gazella because 
they showed unique pattern of tunneling, can be reared in 
laboratory and since no study has been conducted on these 
species with the present aspect.

Materials and methods

Collection, acclimatization, and rearing 
of Digitonthophagus gazella

Digitonthophagus gazella were collected from the agri-
cultural fields of Channi (22.363˚N, 73.166˚E), Sindhrot 
(22.331˚N, 73.063˚E), and Timbi (23.149˚7 N, 74.002˚E) 
of Vadodara city, located in Western India (Fig. 1). Collec-
tion of D. gazella was carried out during the time of dawn 
and dusk, in the months of June to November for three 
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years (2018–21). The dung beetles were collected by using 
the handpick method from the dung pats, and dung heaps, 
and by digging the soil under the dung pats with the help 
of shovel/trowel (30 cm), and were brought to laboratory 
for identification and rearing. Morphological identification 
was done upto the species level with the help of standard 
taxonomic keys (Arrow 1931; Balthasar 1963; Chandra 
and Gupta 2013) and by comparing with the specimens in 
Department Repository. Dung beetles (12–14 mm long, 
7–8 mm wide) were maintained under laboratory condi-
tions in earthen pots following the method proposed by 
Gaikwad and Bhawane (2015). Rearing medium in the pots 
was the sandy soil (obtained from collection sites, pH-6.8) 
and fresh dung of the cattle, used as food resource for 
the dung beetles. Fresh dung of buffalo [rich in carbohy-
drate content (Prevoius work in our lab-Unpublished)] was 
obtained from the stable with the help of trowel (30 cm), 
near the same agricultural fields of beetles’ collection, and 
a 250 g of dung was added to the pot regularly. Further, 
these earthen pots were covered with a black cloth at the 
top (Fig. 2), and placed in a large plastic tray containing 

moist sand for maintaining the temperature (22° to 26 °C), 
and humidity (70%), with a 10L:12D light regime (Bang 
et al. 2004).

Experimental setup for tunnel pattern

After acclimatization and rearing, 10 dung beetles (5 males 
and 5 females of same size and weight) were released in the 
earthen pots and were monitored for the appearance of the 
holes on the dung layer. The burrow cast were excavated at 
the end of  10th,  20th, and  30th day. The casting and measure-
ment of the tunnel was done following the method of Sinha 
(2013). Measurements of the number of openings, length, 
total depth, diameter, number of branches, and total area 
of the burrow was determined by the following formula:

where a is the length of the burrow opening, b is the width 
of burrow opening.

Area =
� × a × b

4

Fig. 1  Map represents the collection sites for D. gazella from Vadodara district of Gujarat, India. D. gazella were collected from the outskirts of 
Vadodara district such as Channi (22.363˚N, 73.166˚E), Sindhrot (22.331˚N, 73.063˚E), and Timbi (23.149˚7 N, 74.002˚E)
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Life cycle study and brood morphometry

For life cycle study and brood morphometry, five pair of adults 
(14 mm long) were released in earthen pot. The tunnel pattern 
was observed on  10th,  20th, and  30th day, and the broodballs 
formed were collected for the morphometry (length, diameter, 
and weight). At 12 h interval, broodballs were monitored for 
the development of the individuals, starting from egg up to the 
adult stage. The opening in the brood balls was immediately 
sealed after observation with the help of fresh dung. Thenafter, 
length, and weight measurements of each stage of development 
were noted with the help of vernier caliper (Zhart, India) and 
analytical balance (Wensar, PGB200, India) (Singh et al. 2019).

Estimation of neurotransmitters

After  10th,  20th, and  30th day of tunneling, each pair (of 5 pairs) 
of male and female D. gazella were sacrificed, and the brain 
was dissected in ice-cold saline (pH-7.4). Further, the rate of 
AChE activity was measured according to the method described 
earlier by Ellman et al. (1961) and NO levels were estimated 
by following the method of Miranda et al. (2001). Biogenic 
amines (DA and 5-HT) estimation was carried out following 
the method of Schlumpf et al. (1974). Similar procedure was 
followed for the non-breeding beetles (control), where male and 
female beetles were kept in separate earthen pots.

Statistical analysis

The computed data was analyzed using PRISM 6 software. 
ANOVA was used to compare between groups followed by 
DUNNETS multiple comparison tests to test the significant 
differences among the individual treatment combinations. Sta-
tistical significance was accepted at p ≤ 0.05 for the analysis.

Results

Nesting behaviour

During the period of acclimatization and rearing, the dung 
beetles spent most of the time feeding and constructing the 
nest. On the second day of their release, both male and female 
dung beetles started constructing the tunnel and carrying dung 
(brood balls) along the tunnel. Males were observed more fre-
quently on the surface of dung and females were seen occa-
sionally. Eventually, the appearance of holes over the dung 
layer was the confirmation of tunnel formation and egg-laying.

Tunnel pattern

Construction of the tunnel was carried out by both males 
and females underneath the dung. Observations of the tunnel 
obtained at three different time points  (10th,  20th, and  30th 
day) are given in Table 1. Under laboratory conditions, the 
tunnel pattern studies indicates that D. gazella constructs a 
simple tunnel over the period of time (Fig. 3A). The total 
depth, length, and area of the burrow cast were found to be 
significantly (p < 0.05) increasing with increasing period of 
time (Fig. 3B).

Brood morphometry

Tunnels were dug and the brood balls were removed. The 
average number (Mean ± SD) of the brood ball was found 

Fig. 2  Rearing medium for dung beetle. D. gazella were allowed to 
acclimatize in the convinient size earthen pot placed in the mud tray. 
Temperature (26 °C) and humidity (70%) was maintained within this 
medium

Table 1  Observation of burrow cast of D. gazella on  10th,  20th and 
 30th day

NBO Number of Burrow Openings, L Length (cm), TD Total Depth 
(cm), D Diameter of burrow (cm), Area  (cm2), NOB Number of 
Branches of burrows

Sr. no Observations 10 days 20 days 30 days

1 NBO 1 1 1
2 L 14.7 16.9 19.8
3 TD 9.8 12.9 13.5
4 DOB 1.11 1.11 1.16
5 Area 12.8 14.72 18.02
6 NOB 3 4 4
7 Pattern Simple Simple Simple
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to be 10 ± 2 to 34 ± 0.69 from 7 to 30 days. Brood mor-
phometry showed that the brood balls were spherical with 
strongly stacked dung containing a single egg at the centre 
of the ball (Fig. 4A). Cylindrical shaped brood masses 
(Mean ± SD; n = 15) had a length of 33.72 ± 5.89 mm, 
a width of 7.8 ± 0.89 mm, and weighed 745 ± 1.34 mg 
(Table 2).

Life cycle

The duration of different developmental stages are presented 
in Fig. 4B (Table I of the Supplementary data). The life cycle 
of D. gazella comprised of 4 stages, i.e., egg, larva  (1st instar, 
 2nd instar, and  3rd instar), pupa, and adult (Fig. 4C). The total 
development period was found to be of 31 days (Supplemen-
tary table I). Further, the length, diameter, and weight of all 
the developing stages were recorded (Table 2). Each elongated, 
cylindrical brood ball showed a single egg laid in the central 
chamber in a vertical position. The eggs were elongated, cylin-
drical, and creamy white. After 2–4 days, the larva was transpar-
ent, with only the tips of the mandibles being dark brown. The 
first instar larvae had its characteristic hump, which was used as 
a pivot when fed on the dung. The second instar larva showed 

characteristic mandibles.  3rd instar was observed to comprise 
of the highest length and weight where as the highest diameter 
was found to be of pupa (Fig. 4D). The newly developed pupa 
was creamy white and shiny, sexual dimorphism was evident 
in the pupa. The pupae of male had two horns on the head and 
a median projection, whereas the female had only a median 
projection. The pupal stage lasted for 25–27 days, followed 
by its transformation into adult. After the emergence from the 
brood mass, adults showed pigmentation and maturation within 
2–3 days and its longevity period was 60–82 days. Complete 
sexual dimorphism was observed in adults where in males had 
vertical, elongated horns between the eyes and protibia was 
found to be slightly curved medially; females had a strong ele-
vated ridge between eyes on the head with less slightly curved 
protibia.

Alterations in neurotransmitter levels during nesting 
behaviour

To have an insight into whether there is any significant role of 
the neurotransmitters in the nesting behaviour of D. gazella, 
brain levels of AChE, 5-HT, DA, and NO were biochemically 
analyzed. A significant time-dependent increase in all the 
neurotransmitters was observed on the  10th,  20th, and  30th day 
of introduction of D. gazella into the experimental setup as 
compared to control (Fig. 5). The lowest level of neurotrans-
mitters was recorded for the control group and the maximum 
increase in the levels of neurotransmitters was found to be on 
the  30th day in male and female D. gazella. 5-HT was found to 
be higher in males compared to females, whereas the levels of 
DA were more in females compared to males.

Discussion

Digitonthophagus gazella is best known for its behaviour of 
removing the dung from the pat and compacting it in tun-
nels for provisioning to their offspring. The present study 
has proved that the nesting behaviour (tunnel formation, 
broodmass formation, and parental care) by D. gazella is 
similar to other Onthophagus species (Huerta and García-
Hernández 2013; Arellano et al. 2017; Sane et al. 2020); 
however, there are few differences observed. In the present 
study, a time-dependent complexity in the formation of tun-
nel was observed. On  10th day, the tunnel consisted of only 
3 branches which was found to increase on  20th and  30th 
day resulting into 4 branches, housing linearly arranged 
brood masses. A time-dependent increase in the length and 
total depth was also observed. Sane et al. (2020) in their 
studies of structural diversity and behavioural principles 
on insect architecture have reported the tunnel pattern of 
many insects, proposed the process of nesting architecture 
by insects, and have opined that the dung beetles follow the 

Fig. 3  The tunnel pattern of D. gazella is shown. A  The tun-
nel formed at the end of the  10th,  20th, and  30th day is shown 
(scale = 2  cm). B  The graph represents the key measures of tunnel 
formation. The length (1), depth (2), and diameter (3) of the tunnel 
were observed to increase significantly (p < 0.001) with the increas-
ing number of days  (10th,  20th, and 30.th day). Here, p < 0.001*** was 
obtained from statistical analysis done using two-way ANOVA (n = 3) 
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process of Markovian-building as it helps them to construct 
a larger and deeper pit lined with steeper walls which protect 
the broods. Earlier, it has been reported that the width of 
the tunnel is directly proportional to the beetle's body size 
(Klingenberg and Monteiro 2005). However, in the present 
study, similar-sized dung beetles were selected and therefore 
no difference was observed in the length and diameter of the 
tunnel (Bertossa 2011; Macagno et al. 2016).

Tunnelers make nests and lay spherical, cylindrical brood 
masses by sexual co-operation. Once the egg is laid, female 
seals the broodball with dung and soil for protecting the 
growing larvae and pupa. As the brood turns into an adult, it 
comes out of the brood ball and undergoes sexual maturation 

(Huerta and García-Hernández 2013). In natural conditions, 
D. gazella digs a simple and deeper nest and forms several 
brood masses in a single tunnel (Moczek 2010; Hernández et 
al. 2011; Hanski and Cambefort 2014). Conversely, in the pre-
sent study, although D. gazella dug deeper tunnel, the num-
ber of brood masses formed were not as high as described in 
natural conditions. The reduced number of brood masses is 
perhaps due to the restricted area provided in the laboratory 
conditions. However, the brood morphometry did not show 
any alterations, our observations are in accordance with the 
earlier work (Moczek 2010; Singh et al. 2019).

Dung beetle’s larvae are known to continously restructure 
and physically modify their brood ball environment for the 

Fig. 4  Study on brood masses and life cycle of D. gazella. A Brood 
morphometry. Brood balls of almost similar measures were noted 
(2, 3, 4) and each brood ball contains one egg (1). B  Compara-
tive account on the duration of the different stages in the life cycle 
of D. gazella. C The stages of the life cycle starting from egg, larva 

 (1st,  2nd, and  3rd instar), pupa and adult are observed. D  Compara-
tive account of brood length, diameter, and weight of different stages 
of the life cycle of D. gazella. Brood length, diameter, and weight 
increase with higher developmental stage except that the  3rd instar 
larva shows the maximum length and weight. Here, n = 5 
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benefit of their growth and subsequent adult fitness. Previ-
ous research suggests that the relatively small Onthopha-
gus taurus is considerably more dependent on such brood 
ball modifying behaviour than the much larger D. gazella 
(Schwab et al. 2017). In the present study, the brood ball 
morphometry was also observed throughout the life cycle, 
there was no difference in the morphometry of the brood 
ball. Thus, our observation are in agreement that D. gazella 
being larger in size compared to O. taurus does not restruc-
ture or modify the broodball environment (Kishi 2014;  
Rohner and Moczek 2021).

Neurotransmitters play a critical role in regulating many 
aspects of insect physiology and biochemistry. They also 
coordinate larval growth and maturation and ensure nor-
mal individual development (Di Bari et al. 2016; Trang and  
Khandar 2020). Previous studies have revealed that brain 
activity of AChE increases just after eclosion and remains 
at this stage throughout life in Apis mellifera, Tribolium 
castenum, Drosophila melanogaster  (Hao et al. 2021).  
Further, precedent observations have revealed an appar-
ent correlation between physical activity and levels of 
AChE in active insects such as houseflies, honeybees, 
ants, and cockroaches than in less active insects such as 
lepidopterous larvae (Grünewald and Siefert 2019). The 
increased AChE in adult male and female dung beetle 
accounted in the present study is thus self-explanatory 
and in agreement with the earlier work done (Palestrini  
and Rolando 2001). Further, a distinct difference in 
the level of AChE in males and females validates more  
physical activity for tunnel making and broodball formation.

Biogenic amines are neuroactive substances which 
controls responses of sensory neurons, activities of neu-
rons, and movements of muscles, resulting in modifica-
tion of behaviour (Watanabe and Sasaki 2021; Sasaki and 
Watanabe 2022). The ubiquitous biogenic amines, 5-HT 
and DA activate neural circuitry to regulate behaviour 
(Libersat and Pflueger 2004; Bergan 2015). Conserved 
aminergic circuits (Barron et al. 2010; Perry et al. 2016) 
and patterns of receptor expression (Blenau and Thamm 
2011) control behaviour in diverse species across insect 
orders. The principle biogenic amines (DA and 5-HT) 

interact with hormone signalling pathways to elicit dis-
tinct behavioural and developmental responses (Pfaff and 
Joels 2016). Dung beetles show multiple occurrences of 
the evolution of familial sociality, including biparental 
care (Costa and Costa 2006; Cunningham et al. 2015; 
Panaitof et al. 2016). Burying beetles possess a astonish-
ing neuroendocrine control with reference to their repro-
ductive strategies, which includes tunnel pattern, brood-
ball making, and parental care of their young ones (Hunt 
and Simmons 2002; Harano et al. 2008). In the present 
study in an attempt to have an insight for the role of bio-
genic amines, a significant elevation of DA and 5-HT 
in males and females on the  10th,  20th, and  30th days of 
tunneling is implying the probable role of these neuro-
transmitters in nesting behaviour (Misof et al. 2014; Song 
et al. 2015; Kamhi et al. 2017). A marginal high titer of 
5-HT in males compared to females (Trumbo 2019) can 
be correlated to the social context-dependent aggression 
in males during copulation (Stevenson and Schildberger 
2013; Alekseyenko and Kravitz 2014). Parallel to the 
increase in 5-HT, an increased level of DA in males and 
females further reflects and proves the mitigating role of 
DA and its delicate adjustments in reinforcing the nesting 
activities (Rillich and Stevenson 2014; Guerra et al. 2016; 
Bhatt et al. 2018; Auletta 2019).

The insect olfactory system has evolved several modulatory 
systems to maximize foraging efficiency for resources. Foraging 
behaviour is reported to be maximally sensitive to olfactory cues 
in many insects (Kloppenburg and Mercer 2008; Mizunami et al. 
2009; Verlinden 2018; Linn et al. 2020; Chatterjee et al. 2021). In 
insects, mating triggers changes in the behaviour and physiology 
of females, such as increasing oviposition and re-mating (Avila 
et al. 2011; Al-Wathiqui et al. 2016). Oviposition is known to be 
elicited by peptides and proteins transferred from male accessory 
glands through mating (Carmel et al. 2016) and by physical stim-
ulation by males during mating (Li et al. 2020). The increased 
level of DA in the present study is thus in response to the olfac-
tory stimuli as well as mating during the nesting.

Being a comparatively recently discovered neurotransmit-
ter, the functions of nitric oxide in the nervous system are 
still only partially known. NO has been proved to promote 
habituation and has been implicated in modifying diverse 
neuronal circuits, such as increasing the digging rhythms of 
ovipositing and sensitivity of the taste receptors to chemi-
cals (Cano et al. 2017). NO has been described to act as a 
retrograde neurotransmitter and plays an important role in 
reproduction, learning, and memory (Strauss 2002; Popov 
et al. 2005; Wessnitzer and Webb 2006; Ridgel et al. 2007). 
NO has a potent role in the signalling mechanism of the 
insect nervous system and participates by controlling behav-
iour at various levels such as perception of external stimuli, 
integration, selection of appropriate action and adaptive per-
formance by neuron-muscular and neurosecretory systems 

Table 2  Brood morphometry of Different developmental stages 
(Mean ± SD) of D. gazella 

Stage Length (mm) Diameter (mm) Brood weight (mg)

Egg 2.49 ± 0.08 1.47 ± 0.09 6 ± 0.67
1st instar 3.63 ± 0.56 1.36 ± 0.06 18 ± 0.56
2nd instar 5.78 ± 0.94 1.75 ± 0.74 127 ± 0.83
3rd instar 20.64 ± 1.98 2.38 ± 0.56 326 ± 0.43
Pupa 11.36 ± 2.39 6.3 ± 0.83 136 ± 0.58
Adult 14.67 ± 1.78 6.9 ± 1.49 139 ± 0.16
Brood ball 33.72 ± 5.89 7.8 ± 0.89 745 ± 1.34
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(Heinrich and Ganter 2007; Weinrich et al. 2008). Foraging  
behaviour has been well explored in Drosophila larvae and  
Bombyx mori (Seki et  al. 2005), experience-dependent 
fighting in crickets (Aonuma et al. 2004) and for sound pro-
duction in grasshopper (Wenzel et al. 2005). In the present 
study, a significant increase in NO was observed in both 
male and female dung beetles which partially uncover the 
contribution of NO in above mentioned behaviour. However, 
a detailed analysis of the NO and its associated signalling 
molecules will help us in understanding and uncovering the 
exact role of NO in the dung beetles.

As this study was done only for D.gazella, we need to 
extrapolate it to the other species like Heliocopris gigas  
etc.which will help us to understand the species specific 
differences if any. Additionally, field based experimental 
regimes can be employed, that will throw more light in 
understanding the underlying phenomena i.e. the roles of 
neurotranmitters and extrapolating the obtained results in 
the controlled conditions. Thus, the findings will help us to 
understand the complexity of behaviour and will ultimately 
open up new dimensions for the further research.

Conclusion

Dung beetles provide several ecosystem services and are 
ideal bio-indicators since they are useful in studying the 
effects of urbanization or anthropogenic activities like habi-
tat destruction, fragmentation, and edge effect on biodi-
versity. So, the conservation of dung beetles is necessary 
as the quality of these ecosystem services depends solely 
on their diversity, abundance and biomass. However, little 
is known about the reproductive strategies and the under-
lying neuroendocrine mechanism that individual body 
contains over such services. Hence, deeper understanding 
of the physiological basis of ecosystem services provided 
by dung beetles as well as individual-based perspective of 
D. gazella endows a better understanding on its ecology 
and biology. Therfore, the present study throws a light on 
the role of neurotransmitters in the nesting behaviour of 
dung beetle. It was observed that the reproduction pattern 
mainly depends on their tunnel pattern, which are habitu-
ally lined with dung, and they construct “brood balls” from 
dung where in they lay egg. The significant elevation of 
AChE, DA, 5-HT, and NO levels, in the brain of dung bee-
tles on the  10th,  20th day, and  30th day is intriguing to link 

neurotransmitters with nesting behaviour in D. gazella. 
Further, our findings suggest that of all the neurotransmit-
ters, DA and 5-HT have a prominent role in the behavioural 
transitions associated with the initiation of tunnel patterns. 
To our knowledge, this is the first study exploring the link 
between neurotransmitters and the nesting behaviour of D. 
gazella. However, the molecular mechanism responsible for 
the upregulation of the neurotransmitters will further help 
us in understanding the exact role of neurotransmitters and 
is under investigation.

Abbreviations DA: Dopamine; 5-HT: 5- Hydroxytryptamine (Serotonin); 
AChE: Acetylcholine esterase; ACh: Acetylcholine; NO: Nitric oxide; 
CNS: Central Nervous System
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Scarabaeidae with Elateridae. The barcoding of interactions 
between insect pests and agricultural crops were also per-
formed with COI and trnL markers, where species-specific 
homology modeling accurately deciphered the phylogeny 
and unraveled intraspecies and interspecies divergence 
nucleotide distance.

Keywords Coleopteran pests · Host-pest interaction · 
Molecular markers · Species-specific pest-crop association

Introduction

Insects are taxonomically diverse group having a wide-rang-
ing distribution and a complex evolutionary history (Sahney 
et al. 2010; Speight 2017). They are renowned in areas of 
agricultural pests, major disease vectors, pollinator of crops, 
parasites of other insects, and bio-indicator of environmental 
changes (Price et al. 2014; Mandal et al. 2014; Bouchard 
et al. 2017). With an estimated 1.5 million different species 
of beetles, Coleoptera make up over 40% of all described 
arthropod species (Stork et al. 2015).

The taxonomical studies of any organisms are a chal-
lenging mission and require experts in the concerned field. 
The study often involves complicated procedures and it 
is time-consuming. It does not always provide resolution 
at the species level (Pentinsaari et al. 2014; Behura 2015; 
Karthika et al. 2016). The DNA barcoding, the nucleotide-
based taxonomic classification, is found to be helpful in the 
taxonomical identification of species (Navarro et al. 2010; 
García-Robledo et al. 2013; Syfert et al. 2017). The deter-
mination of phylogenetic relationships of organisms is done 
through the combination of the morphological and molec-
ular analysis based methods. The phylogenetic studies by 
using molecular markers are important as well as dominant 

Abstract Coleopterans are adapted to a diversified range 
of environments and ecosystems. But there is a wide gap 
between systematic and genetic information of Coleopteran 
pests and their relation to agricultural crop hosts. There-
fore, in the present research, an attempt was made to study 
the diversity of Coleoptera in agriculture fields of Vadodara 
district, Gujarat. The study sites (Ajwa, Channi, Karjan and 
Padra) were visited twice a month and sampling was car-
ried out twice a day (dawn and dusk) for 2 years (August 
2017–2019). Morphological as well as molecular identifi-
cation using DNA sequencing of COI and 16srRNA was 
done. A total of 69 Coleopteran species belonging to 16 
families were collected, and barcodes of 16 species were 
successfully submitted to Gene bank. Further, phylogeny 
was resolved using Neighbour-Joining cluster and Maxi-
mum Likelihood analysis methods, and concordant results 
were obtained: Chrysomelidae was found closest to Ceram-
bycidae, while Curculionidae was closest to Meloidae, and 
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ABSTRACT

The present study evaluates the insecticidal activity of two essential Oil (EOs) mint (Mentha arvensis), 
and ajwain (Carum capyicum) against pulse beetle (Callosobruchus chinensis) (L). Contact toxicities of 
these were evaluated using parameters of lifecycle like total development period, numbers of eggs laid, 
adult emergence and adult longevity. Along with these detoxification enzyme inhibition activities of acetyl 
cholinesterase (AChE), alkaline phosphatase (ALP), transaminases enzymes- aspartate aminotransferases 
(AST) and  alanine aminotransferases (ALT) and total protein were estimated. EOs were observed showing 
toxicity (mint LC50 = 5.9 µl/ ml and ajwain LC50= 7.02 µl/ ml). Exposure of EOs altered the lifecycle 
parameters significantly (p<0.01). The detoxification enzyme inhibition activities were also significant 
(p<0.01). Thus, it is concluded that these EOs can be recommended as safe and ecofriendly alternatives.

Key words: Callosobruchus chinensis, essential oils, Mentha arvensis, Carum capyicum, lifecycle, acetyl 
cholinesterase, alkaline phosphatase, transaminases enzymes, inhibition

India is one of the leading producers of food in 
the world and it produces more than a billion tonnes 
of agricultural product. 58% of India’s population 
is dependent on agriculture as its primary source of 
livelihood. In India, advancement of technology has 
increased the production of grains; however, improper 
storage has resulted in huge loss and has been reported 
to be around INR 926 billion loss annually (Singh and 
Khanna, 2019; Sirohi et al., 2021).  Infestation of stored 
grain by many insects, mite and fungi degrade the 
quality and quantity of grains (Lal et al., 2017; Jerbi et 
al., 2021). The total productivity of agricultural crops 
of India is 3 tonnes/ha; out of which loss due to insect 
pest is about 26 % (Lal et al., 2017), like the lesser grain 
borer, R. dominica’s larva and adult infests the grains 
and declines its quality (Jerbi et al., 2021). Rice pest S. 
oryzae, causes qualitative and quantitative loss (Saad et 
al., 2018). C. chinensis a major pest of stored pulses and 
is reported to cause 32-64% loss under storage condition 
(Femeena et al., 2018). After discovery of DDT, Insect 
pests are mainly controlled by synthetic pesticides (Lal 
et al., 2017; Demeter et al., 2021). WHO has reported 
that every year two lakhs people die due to pesticide 
poisoning owing to its carcinogenic and teratogenic 
properties (Sarwar, 2016). Use of synthetic pesticide 
is a easy and quick solution for controlling insect pests 
but pose a potential risk not only to humans but also to 
the  environment as  their residues have been reported 

to be present in soil, air and water (Said and Pashte., 
2015; Lal et al., 2017). The repeated uses of synthetic 
insecticide for decades has disrupted biological control 
by natural enemies and has led to outbreaks of other 
insect species and at times have resulted in resistance 
of pesticides in insect pest (Hill et al., 2017; Hawkins et 
al., 2019). Hence, there is need for alternative solution 
which environment friendly does not harm other non-
target species. Plants and their derivatives have been 
proved to be a viable alternative as more than 2000 
plant species have been recorded to possess insecticidal 
properties and possess low health risks (Pavela, 2016; 
Jerbi et al., 2021). EOs are naturally produced by plants 
as secondary compounds which are volatile, but as 
natural products protects the stored grains from pest 
attack (Omar, 2020). EOs has multiple components 
mixture and causes toxicity by interfering with various 
aspects of insect’s physiology and biochemistry (Kiran 
et al., 2017).  Present work evaluates the insecticidal 
potential of the two EOs M. arvensis and C. capyicum 
against C. chinensis (pulse beetle) adults. 

MATERIAL AND METHODS

The adult insects were collected from the infested 
grains from the granary and were reared on 500 g 
green gram (variety - Sabarmati PS 16) maintained in 
laboratory at Department of Zoology, The Maharaja 
Sayajirao University of Baroda. A culture of C. chinensis 
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ABSTRACT

Dung beetles play a major role in the pasture ecosystem. The manure recycling activity of dung beetles 
is linked to their tunneling behavior. The present study was designed to analyze the tunnel pattern and 
nutrient mobilization by dung beetles, Onthophagus taurus (Schereber, 1759) in different soil types. A 
simple type of tunnel pattern was observed in all the four types of soil after 30th day of their introduction 
(10 pairs of male and female) into the experimental setup. However, the maximum number of tunnels was 
observed in the sandy and sandy clay loam (no. of openings- 15), followed by loamy soil (no. of openings- 
13). The physical (texture, water holding capacity, porosity, moisture content) and chemical parameters 
(pH and nutrients) of all the four types of soils were evaluated. Soil texture analysis revealed the texture to 
be of sandy (yellow soil), sandy clay loam (red and black soil), and loamy sand (brown soil) types. Water 
holding capacity and the soil porosity were recorded highest in the sandy soil, whereas moisture content 
was found maximum in the sandy clay loam. Soil nutrient analysis illustrated a significant increase in the 
amount of nitrogen (N), phosphorus (P), calcium (Ca), sulfur (S), sodium (Na), potassium (K), organic 
carbon and organic matter. Thus, the present study confirms that tunneling activity of O. taurus enhances 
the soil nutrients by carrying out dung decomposition.  

Key words: Dung beetle, Onthophagus taurus, nesting, tunneling, nutrients, soil parameters, texture, water 
holding capacity, porosity, moisture, nutrients, sandy, clay, loam, red and black soils

Arthropods are one of the most successful and 
cosmopolitan group of animals on earth. Their ability 
to adapt to the changing environment makes them the 
most successful and diverse group of animals (Giribet, 
2019). Among the arthropods, class Insecta is the largest 
group and the order Coleoptera is the leading order of 
the animal kingdom constituting almost 25% of all the 
living organisms and it includes around 3,50,000 species 
worldwide and among these around 15,088 species are 
present in India. Among 25% of insect species, 40% 
are beetles (Thakkar, 2016). Scarab beetles commonly 
known as dung beetles of the family Scarabaeidae 
have approximately 30,000 species of beetles (Cajaiba 
et al., 2017). They exhibit a wide range of ecological, 
morphological as well as behavioral adaptations which 
makes them universally distributed. Mostly dung beetles 
prefer to be omnivore, than herbivore dung, and the 
least preferred is carnivore dung (Frank et al., 2017, 
unpublished data).  Mandibles and maxillae of adult 
dung beetles have a fine outer edge which helps in 
modifying and filtering out the content of dung (Shukla 
et al., 2016). Further, tibia of forelegs have spines and 
spurs which helps them in digging and forming the 
tunnel. Tibial spur number varies among the species 

which helps taxonomist to classify the dung beetles 
(Linz et al., 2019). In addition, head of the dung beetles 
has a hard, scoop like structure which helps in rolling 
the dung balls for their nesting (Ix-Balam et al., 2018). 
Onthophagus taurus (Schreber), as a tunneler makes 
“multimedia galleries” (tunnels) deep into the soil 
for laying eggs in the brood balls. These tunnels can 
be formed by both male and female or only by single 
parent. Brood balls are placed into the blind end of the 
tunnel. Single branch of these complex tunnels may 
contain one or multiple brood balls (Tonelli, 2021). This 
behavioral aspect enhances their ecological efficiency 
for dung decomposition, bioturbation, seed dispersal, 
parasite suppression, fly control and nutrient recycling 
(Shahabuddin et al., 2017). Further, tunneling activity 
makes the continuous movement of the soil and thereby 
increases soil aeration and its water holding capacity 
(Nichols et al., 2008; Doube, 2018). Dung produced by 
livestock are source of many greenhouse gases such as 
nitrous oxide (N2O), methane (CH4), and carbon dioxide 
(CO2) which is reduced by dung beetles by reducing 
organic matter from the dung by their relocation into 
the soil (Piccini et al., 2017). 
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Evaluation of insecticidal potential 
of organochemicals on SF9 cell line
Nishi Pandya1, Bhumi Thakkar1, Parth Pandya2 and Pragna Parikh1*  

Abstract 

Background: Organophosphates and Pyrethroids are the most widely used pesticides worldwide and are known to 

have significant toxicity on the nervous system of the target pest. Assessment for combined toxicity of Organophos-

phate and Pyrethroid on Sf9 (Spodoptera frugiperda) cells is less explored. The present study demonstrates and com-

pares the two organochemicals whose trade names are Ammo and Profex, for its cytotoxic potential on the insect Sf9 

cells. Ammo and Profex were selected as the test chemicals as toxicity of these insecticides at molecular and cellular 

level is poorly understood.

Results: The results of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay demonstrated that 

Ammo and Profex exhibited significant cytotoxicity to Sf9 cells in a time- and dose-dependent manner. In our study, 

the  IC50 value was obtained by MTT assay and the sub-lethal concentrations  (IC50/20-17.5 μg/ml,  IC50/10-35 μg/ml, 

and  IC50/5–70 μg/ml for Ammo and  IC50/20-20 μg/ml,  IC50/10-40 μg/ml, and  IC50/5-80 μg/ml for Profex) were selected 

for further tests. Acridine orange/ethidium bromide staining proved the apoptotic cell death on exposure of both 

the insecticides confirming its toxic potential. Furthermore, antioxidant status was assessed using DCF-DA staining 

and both the insecticides resulted into an increased reactive oxygen species (ROS) generation. A dose- and time-

dependent significant (p < 0.05) alterations in lipid peroxidase (LPO), glutathione (GSH) and catalase (CAT) activity 

were observed.

Conclusion: The results showed that both Ammo and Profex triggered apoptosis in Sf9 cells through an intrinsic 

mitochondrial pathway via the generation of ROS. Of the two insecticides, Ammo was found to be more toxic com-

pared to Profex. The present study is important to evaluate the environmental safety and risk factors of Organochemi-

cals’ exposure to crops and livestock.

Keywords: Sf9 cell line, Organophosphate, Profex, Ammo, Apoptosis, ROS, LPO, GSH, CAT 
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Background
Organophosphate (OP) insecticides are among the most 
common class of pesticides that are mainly used to con-
trol the insect pest populations. They are the group of 
insecticides whose key target is to inhibit Acetylcho-
line esterase (AChE) which is responsible for hydrolysis 
of Acetylcholine. The OPs phosphorylate the  hydroxyl 
group of a serine residue on AChE in the central nervous 

system. It has been reported that excessive use of these 
insecticides in the public health and agriculture leads to 
environmental pollution causing a number of acute and 
chronic poisoning events (Lukaszewicz-Hussain, 2010). 
However, the prolonged use of insecticides has been 
known to reduce its effectiveness among the target insect 
pests. Thus, the need to search for novel insecticides with 
better efficacy or a new mode of action becomes evident.

Nowadays, mixed pesticides are in great demand for 
agricultural use because of their efficiency, convenience, 
and rapid actions (Zhou et  al., 2011). One of the pesti-
cides widespread in use is the combination of Organo-
phosphate and Pyrethroid due to its low mammalian 
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Dung beetle species compete for dung and the resources are utilized for food and nesting for 
adults and larvae. The development of the adult depends mainly on the quantity and quality 
of resources consumed during the larval period. During parental care, they show preference 
for dung of greater nutritional quality, which in tum, impact their assemblage and tunneling 
behaviour. In the present study an attempt is made to explore the dung preference in 
three species of Scarabaeinae: Onthophagus taurus (0. taurus), Digitonthophagus gazella 
(D. gazella}, and Heliocopris gigas (H. gigas) from Vadodara district, Gujarat. Of all the selected 
dungs, Buffalo (Bubalus bubalis) and Cow dung (Bos indicus) was the most preferred dung. 
Further, biomolecular estimations were performed to check the nutritional content of the 
dung, which revealed that amongst all, carbohydrate content was highest in the dung of Cow 
(0.018mg/ml) and Bufffalo (0.0137mg/ml). The nesting pattern of all the tunnelers showed 
a distinct pattern which is probably dependent on the body size of the beetle. 0. taurus and 
H. gigas formed a complex nest while D. gazella made a simple nest. In addition, to evaluate
the ecological role of the dung beetles, an attempt was made to check the nutritional
enrichment of the soil, and it was reported that H. gigas and D. gazella significantly (p<0.05)
increased the inorganic content: Nitrogen (N), Phosphorus (P), Potassium (K), Calcium (Ca) 
and Magnesium (Mg) as well as organic carbon and organic matter into the soil. These 
varied patterns of consumption and relocation of dung by beetles drive a series of ecological 
processes such as nutrient cycling, soil aeration, and secondary seed burial. Hence, it
can be concluded that the ecological role of the dung beetles is well dependent on the
nutritional content of the dung for performing their beneficial services to the agroecosystem.

Keywords: Dung, Dung Beetles, Scarabaeidae, Tunnel Pattern, Ecological Role, 

Nutritional Content. 
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