Table of content

Sr. No	Content	Page No.
1	Acknowledgement	i
2	List of Abbreviations	v
3	Introduction	1
4	Chapter 1: Brood morphometry and digging behaviour	19
	1.1 Introduction	19
	1.2 Material and Methodology	25
	1.3 Results	33
	1.4 Discussion	47
	1.5 Conclusion	51
	Chapter 2: Understanding the nesting behaviour of	
5	Digitonthophagus gazella: Role of	52
	neurohormones	
	2.1 Introduction	52
	2.2 Material and Methodology	59
	2.3 Results	65
	2.4 Discussion	73
	2.5 Conclusion	79
	Chapter 3: Toxic effects of Deltamethrin on	
6	biochemical and histological alterations	80
	in Digitonthophagus gazella	
	3.1 Introduction	80
	3.2 Material and Methodology	85
	3.3 Results	93
	3.4 Discussion	118
	3.5 Conclusion	126
	Chapter 4: Neurophysiological alterations in the	
7	nesting behaviour of Digitonthophagus	127
	gazella on exposure to Deltamethrin	
	4.1 Introduction	127
	4.2 Material and Methodology	130
	4.3 Results	137
	4.4 Discussion	157
	4.5 Conclusion	165
8	General Consideration	166
9	Bibliography	184
10	Publication	XX
11	Conferences certificates	XX

Table no.	Title	Page No.
Table 1.1	Primers of COI genes obtained	20
Table 1.2	PCR reaction mixture	30
Table 1.3	Reverse transcription cycling program for cDNA	31
	synthesis	
Table 1.4	Real Time PCR mix	31
Table 1.5	Real time PCR conditions	31
Table 1.6	Real time PCR primer sequences of digging genes	31
Table 1.7	Morphological characters for the identification of D.	33
	gazella	
Table 1.8	Observation of tunnel pattern of <i>D. gazella</i> on 10 th ,	37
	20 th and 30 th day	
Table 1.9	Morphological traits of brood balls and shield layers	40
	of D. gazella	
Table 1.10	The developmental period for various stages of life	42
	cycle of <i>D. gazella</i>	
Table 1.11	Brood morphometry of different developmental stages	42
	of <i>D. gazella</i>	
Table 1.12	The fold change in dll and ems in the males and	45
	females	
Table 2.1	PCR reaction mixture	61
Table 2.2	Reverse transcription cycling program for cDNA	61
	synthesis	
Table 2.3	Real Time PCR mix	62
Table 2.4	Real time PCR conditions	62
Table 2.5	Real time PCR primer sequences of neurotransmitter	63
	synthesizing enzymes (NTEs)	
Table 2.6	Real time PCR primer sequences of neuropeptides	64
	(NPs)	
Table 2.7(a)	The level of DA in the brain of <i>D. gazella</i>	66
Table 2.7(b)	The level of 5-HT in the brain of <i>D. gazella</i>	66

List of Table

Table 2.7(c)	Rate of AChE activity in the brain of <i>D. gazella</i>	67
Table 2.7(d)	The NO content in the brain of D. gazella	68
Table 2.8	The fold change in the expression of ddc and 5-htpdc	69
Table2.9	The fold change in the level of neuropeptides in male	71
	and female <i>D. gazella</i>	
Table 3.1	Insecticide (Source: PPDB)	81
Table 3.2	PCR reaction mixture	90
Table 3.3	Reverse transcription cycling program for cDNA	90
	synthesis	
Table 3.4	Real Time PCR mix	91
Table 3.5	Real time PCR conditions	91
Table 3.6	Real time PCR primer sequences of neurotransmitter	91
	synthesizing enzymes	
Table 3.7	Probit Mortality obtained after 48 hours of exposure to	93
	Deltamethrin	
Table 3.8	LC50 value obtained and the sub-lethal doses selected	93
	for further studies	
Table 3.9	Values obtained for the level of SOD, CAT, GSH and	99
	LPO after exposure to the sub-lethal concentrations	
	(LD, MD, and HD) of Deltamethrin.	
Table 3.10	CYP gene expressions after exposure to the sub-lethal	104
	concentrations (LD, MD, and HD) of Deltamethrin	
Table 3.11	Representation of histological alteration in brain of D.	112
	gazella on exposure to deltamethrin	
Table 3.12	Representation of histological alteration in gut region	112
	of D. gazella on exposure to deltamethrin	
Table 3.13	Representation of histological alteration in testis of D.	112
	gazella on exposure to deltamethrin	
Table 1.14	Representation of histological alteration in ovarian	113
	follicles of D. gazella on exposure to Deltamethrin	
Table 4.1	PCR reaction mixture	133
Table 4.2	Reverse transcription cycling program for cDNA	134
	synthesis	

Table 4.3	Real Time PCR mix	134
Table 4.4	Real time PCR conditions	134
Table 4.5	Real time PCR primer sequences of neurotransmitter	135
	synthesizing enzymes	
Table 4.6	Real time PCR primer sequences of neuropeptides	135
Table 4.7	Brain neurotransmitter levels in the male and female	138
	D. gazella on exposure to Deltamethrin after (a) 10 (b)	
	20 and (c) 30 days	
Table 4.8	Fold change expression of NTEs in the male and	145
	female D. gazella, after exposure to Deltamethrin on	
	$10^{\text{th}}, 20^{\text{th}} \text{ and } 30^{\text{th}} \text{ day}$	
Table 4.9	Fold change expression of neuropeptides in the male	151
	and female D. gazella on exposure to Deltamethrin	
	after 10 th , 20 th , and 30 th day	

List of Figures

Figure No.	Title	PageNo
Figure 1.1	Dung beetles classified based on their dung relocation	2
	strategies.	
Figure 1.2	Nesting patterns I, II, and III (Halffter and Edmonds, 1982)	22
Figure 1.3	Collection sites of <i>D. gazella</i> from Vadodara district,	2
	Gujarat, India. D. gazella were collected from the outskirts	
	of Vadodara district	
Figure 1.4	Collection of <i>D. gazella</i> from the selected sites. Burrow	20
	opening indicated their presence. The burrow was carefully	
	dug with the help of shovel to collect the beetles.	
Figure 1.5	Rearing medium for dung beetle. D. gazella were allowed	2
	to acclimatize in the convenient size earthen pot placed in	
	the mud tray.	
Figure 1.6	Observation of tunnel making in rearing medium; arrow	2
	points the tunnel formed and the circle represents the	
	branch formed near the blind end of tunnel into which the	
	brood balls are placed	
Figure 1.7	Morphological features of D. gazella	3.
Figure 1.8	Results of Agarose Gel Electrophoresis	3
Figure 1.9	Barcode of COI gene in D. gazella	3
Figure 1.10	Nesting behaviour of D. gazella.	3
Figure 1.11	The tunnel pattern of <i>D. gazella</i> .	3
Figure 1.12	Brood balls formed by D. gazella (a) Spherical shaped	3
	brood balls (b) Number of brood balls formed at the end of	
	10^{th} , 20^{th} and 30^{th} day	
Figure 1.13	Morphological traits in brood balls formed by D. gazella	4
Figure 1.14	Study on life cycle of <i>D. gazella</i> .	4
Figure 1.15	Comparative account of (a) brood length, (b) brood	4
	diameter, and (c) brood weight of different stages of the life	
	cycle of D. gazella.	
Figure 1.16	The fold change in digging genes in male and female dung	40
	beetle (a) dll (b) ems	

Figure 2.1	Insect brain structure includes mushroom bodies with	53
	neurosecretory cells on its periphery and neurpiles inside it	
Figure 2.2(a)	Dopamine levels on the 10 th , 20 th , and 30 th day of	66
	introduction of male and female into the experimental	
	setup	
Figure 2.2(b)	Serotonin (5-HT) levels on the 10 th , 20 th , and 30 th day of	67
	introduction of male and female into the experimental	
	setup	
Figure 2.2(c)	Rate of AChE activity (with the unit mmol/mL/min x 10^{-4}	67
	per g of tissue) on the 10 th , 20 th , and 30 th day of	
	introduction of male and female into the experimental	
	setup	
Figure 2.2(d)	Nitric Oxide levels on the 10 th , 20 th , and 30 th day of	68
	introduction of male and female into the experimental	
	setup	
Figure 2.3	Neurotransmitters synthesizing enzyme gene expressions	70
	(a) ddc (b) 5-htpdc (b) chat (d) nos	
Figure 2.4	Fold change expression of neuropeptide gene (a) npf (b)	73
	npfr (c) it (d) itr (e) mip in D. gazella	
Figure 3.1	Dose response curve for the LC_{50} determination of	93
	Deltamethrin after 48 hours of exposure	
Figure 3.2a	Fluorescence intensity of the DCFHDA staining, in the	94
	single cell suspension of the brain tissue of male D. gazella	
	after exposure to sub-lethal doses (LD, MD, and HD) of	
	Deltamethrin, in comparison to control	
Figure 3.2b	Fluorescence intensity of the DCFHDA staining, in the	95
	single cell suspension of the brain tissue of female D.	
	gazella after exposure to sub-lethal doses (LD, MD, and	
	HD) of Deltamethrin, in comparison to control	
Figure 3.3	Effects of sub-lethal concentrations of Deltamethrin (LD,	96
	MD and HD) in comparison to control, for the generation	
	of ROS in single cell suspension of brain tissue of male D.	
	gazella were determined by DCFH-DA staining (10X,	

	scale=100µm)	
Figure 3.4	Effects of sub-lethal concentrations of Deltamethrin (LD,	97
	MD and HD) in comparison to control, for the generation	
	of ROS in single cell suspension of brain tissue of female	
	D. gazella were determined by DCFH-DA staining (10X,	
	scale=100µm)	
Figure 3.5	SOD activity after exposure to sub-lethal concentrations of	100
	Deltamethrin in comparison to control for 10 th , 20 th and	
	30 th days	
Figure 3.6	CAT activity after exposure to sub-lethal concentrations of	101
	Deltamethrin in comparison to control for 10 th , 20 th and	
	30 th day	
Figure 3.7	GSH levels after exposure to sub-lethal concentrations of	102
	Deltamethrin in comparison to control for 10 th , 20 th and	
	30 th day	
Figure 3.8	LPO levels after exposure to sub-lethal concentrations of	103
	Deltamethrin in comparison to control for 10 th , 20 th and	
	30 th day	
Figure 3.9	cyp4q4 mRNA gene expression after exposure to sub-lethal	105
	concentrations of Deltamethrin in comparison to control	
	for 10^{th} , 20^{th} and 30^{th} day	
Figure 3.10	cyp6bq9 mRNA gene expression after exposure to sub-	106
	lethal concentrations of Deltamethrin in comparison to	
	control for 10 th , 20 th and 30 th day	
Figure 3.11	cyp4g7 mRNA gene expression after exposure to sub-lethal	107
	concentrations of Deltamethrin in comparison to control	
	for 10^{th} , 20^{th} and 30^{th} day	
Figure 3.12a	Brain somatic index of D. gazella after exposure to sub-	108
	lethal concentrations of Deltamethrin in comparison to	
	control for 10 th , 20 th and 30 th day	
Figure 3.12b	Gut somatic index of D. gazella after exposure to sub-	108
	lethal concentrations of Deltamethrin in comparison to	
	control for 10 th , 20 th and 30 th day	

Figure 3.12c	Gonad somatic index (male) of D. gazella after exposure to	109
	sub-lethal concentrations of Deltamethrin in comparison to	
	control for 10 th , 20 th and 30 th day	
Figure 3.12d	Gonad somatic index (female) of D. gazella after exposure	109
	to sub-lethal concentrations of Deltamethrin in comparison	
	to control for 10 th , 20 th and 30 th day	
Figure 3.13	Histological sections of D. gazella brain stained with	114
	hematoxylin and eosin, after 10 th , 20 th and 30 th day of	
	exposure to Deltamethrin.	
Figure 3.14	Histological sections of D. gazella midgut stained with	115
	hematoxylin and eosin, after 10 th , 20 th and 30 th day of	
	exposure to Deltamethrin.	
Figure 3.15	Transverse sections of D. gazella testis stained with	116
	hematoxylin and eosin, after 10 th , 20 th and 30 th day of	
	exposure to Deltamethrin	
Figure 3.16	Transverse sections of D. gazella ovaries stained with	117
	hematoxylin and eosin, after 10^{th} , 20^{th} and 30^{th} day of	
	exposure to Deltamethrin	
Figure 4.1	The association of neuroendocrine regulation in the nesting	130
	behaviour of D. gazella on exposure to Deltamethrin	
Figure 4.2	Number of brood balls formed by <i>D. gazella</i> after 10 th , 20 th	137
	and 30 th day of exposure to Deltamethrin	
Figure 4.3	Brain DA levels in the male and female D. gazella on	140
	exposure to Deltamethrin after (a) 10 days (b) 20 days and	
	(c) 30 days	
Figure 4.4	Brain 5-HT levels in the male and female D. gazella on	141
	exposure to Deltamethrin after (a) 10 days (b) 20 days and	
	(c) 30 days	
Figure 4.5	Brain AChE activity in the male and female D. gazella on	142
	exposure to Deltamethrin after (a) 10 days (b) 20 days and	
	(c) 30 days	
Figure 4.6	Brain NO levels in the male and female D. gazella on	143
	exposure to Deltamethrin after (a) 10 days (b) 20 days and	

(c)	30	davs

	(-)	
Figure 4.7	ddc fold change in the brain of male and female D. gazella	146
	on exposure to Deltamethrin after (a) 10 days (b) 20 days	
	and (c) 30 days	
Figure 4.8	5-htpdc fold change in the brain of male and female D.	147
	gazella on exposure to Deltamethrin after (a) 10 days (b)	
	20 days and (c) 30 days	
Figure 4.9	chAt fold change in the brain of male and female D.	148
	gazella on exposure to Deltamethrin after (a) 10 days (b)	
	20 days and (c) 30 days	
Figure 4.10	nos fold change in the brain of male and female D. gazella	149
	on exposure to Deltamethrin after (a) 10 days (b) 20 days	
	and (c) 30 days	
Figure 4.11	npf fold change in the brain of male and female D. gazella	152
	on exposure to Deltamethrin after (a) 10 days (b) 20 days	
	and (c) 30 days	
Figure 4.12	npfr fold change in the brain of male and female D. gazella	153
	on exposure to Deltamethrin after (a) 10 days (b) 20 days	
	and (c) 30 days	
Figure 4.13	it fold change in the brain of male and female D. gazella on	154
	exposure to Deltamethrin after (a) 10 days (b) 20 days and	
	(c) 30 days	
Figure 4.14	itr fold change in the brain of male and female D. gazella	155
	on exposure to Deltamethrin after (a) 10 days (b) 20 days	
	and (c) 30 days	
Figure 4.15	mip fold change in the brain of male and female D. gazella	156
	on exposure to Deltamethrin after (a) 10 days (b) 20 days	
	and (c) 30 days	