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5.1 Identification of biosynthetic gene clusters (BGCs) in host-specific

strains of M. oryzae

In this investigation, we employed a dataset comprising of 68 M. oryzae genomes, which
were sourced from six distinct host plants, namely rice (Oryza sativa), finger millet
(Eleusine coracana), foxtail millet (Setaria sp.), wheat (Triticum aestivum), perennial
ryegrass (Lolium sp.) and weeping lovegrass (Eragrostis curvula) (Fig. S.1A, Table 5.1).
This dataset encompasses an earlier sequenced 15 field isolates, collected from different
parts of India (Fig. S.1A, Table 5.1). The remaining 53 genomes were obtained from
publicly available genome sequences. Furthermore, we incorporated sequence data from
three M. grisea strains, previously isolated from crabgrass (Digitaria sp.), to be used as
control (Table 5.1). Sixteen out of the publicly available assemblies were derived from
long-read sequencing technology, resulting in highly contiguous datasets. Subsequently,
gene predictions were performed on all 71 assemblies and analysis of BUSCO genes
indicated robust gene prediction quality and assembly completeness, with a BUSCO score
exceeding 90% (Table 5.1).

Utilizing a set of 2655 BUSCO genes found within the 68 M. oryzae genomes, we
constructed a phylogenomic tree. The resulting topology of the species tree confirms the
existence of multiple genetic lineages within M. oryzae, each specialized on different host
plants, including Oryza, Setaria, Eleusine, Eragrostis, Triticum and Lolium (Fig. 5.1B).
This phylogenetic arrangement aligns with the previously reported population structure
(Gladieux, Condon, et al., 2018). A similar phylogenomic assessment was conducted using
an additional three genomes from M. grisea (Digitaria isolates), reaffirming the divergence
of M. grisea as a distinct species from M. oryzae, as in accordance with prior findings (Fig.
5.2; Gladieux et al., 2018).

Our methodology involved the utilization of a comprehensive pipeline to discern the
biosynthetic diversity within various lineages of M. oryzae (Fig. 5.3). This approach
encompassed the initial identification of biosynthetic gene clusters (BGCs) responsible for
secondary metabolite (SM) production within genomic regions, followed by a subsequent
analysis employing similarity networks to explore the genetic variations among the

predicted BGCs.
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Figure 5.1: M. oryzae worldwide populations are organized in host-specific lineages. A)
Geographic distribution of sequenced M. oryzae strains. The color-coded dots denote the
host plant of origin of the strains. B) Phylogenetic tree constructed based on concatenation

of 2655 BUSCO genes present in all 68 M. oryzae genomes used in this study. Colored
shapes in the background depict different host-specific genetic lineages.
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Figure 5.2: M. oryzae and M. grisea are evolutionarily distinct species adapted to different hosts. Maximum likelihood tree constructed based
on concatenation of a total 2557 BUSCOs present in all 71 genomes of M. oryzae and M. grisea strains used in the study. Colored branches depict
different host-specific genetic lineages of M. oryzae.
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Table 5.1: M. oryzae and M. grisea genomes used in this study.
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Strains Synonyms Host of Isolation Country/Region Year of Phylogenetic  Assembly Accession  References BUSCO
Collection lineage IDs (%)

70-15 Oryza sativa n/a - Oryza GCF_000002495 .2 Dean et al. 2005 98.6

Arcadia Setaria viridis Lexington, Kentucky, 1998 Setaria GCA_002925445.1 Rahnama et al. 2021  95.7
USA

AV1-1-1 Oryza sativa Ghana: Aveyime 2015 Oryza GCA_011799965.1 *  Zhong et al. 2020 97.1

B157 Oryza sativa India: Maruteru, 1989 Oryza GCA_000832285.1 Gowda et al. 2015 95.8
Andhra Pradesh

B2 Triticum aestivum Bolivia: Okinawa 2011 Triticum GCA_002218465.1 Rahnama et al. 2021  96.5
Uno

B51 Eleusine indica Bolivia: Quirusillas 2012 Eleusine GCA_002925415.1 Farman et al. 2017 96.7

B71 Triticum aestivum Bolivia: Okinawa 2012 Triticum GCA_004785725.2 %  Penget al. 2019 97.1
Uno

BdBar BdBarl16-1 Triticum aestivum Bangladesh: Barisal 2016 Triticum GCA_001675615.1 Rahnama et al. 2021  91.5

BdJes BdJes16-1 Triticum aestivum  Bangladesh: Jessore 2016 Triticum GCA_001675595.1 Rahnama et al. 2021  93.7
district

BdMeh BdMeh16-1  Triticum aestivum  Bangladesh: Mehepur 2016 Triticum GCA_001675605.1 Rahnama et al. 2021  96.9
district

BR0032 BR32 Triticum aestivum Brazil 1991 Triticum GCA_900474545.3 *  Langner et al. 2021 97

Br130 Triticum aestivum Brazil: Mato Grosso 1990 Triticum GCA_002925325.1 Rahnama et al. 2021 94.6
do Sul

BR29 Digitaria Brazil - Digitaria BR29 Chiapello et al. 2015 97.2

Br7 Triticum aestivum Brazil: Parana 1990 Triticum GCA_002925335.1 Rahnama et al. 2021 97

Br80 Triticum aestivum Brazil 1991 Triticum GCA_002925345.1 Rahnama et al. 2021 969

CD156 CDO0156 Eleusine indica Ivory Coast, 1989 Eleusine GCA_9004744753 *  Langner et al. 2021 97.2
Ferkessedougou

CHRF Lolium perenne Siler Springs, MD, 1996 Lolium GCA_002925295.1 Rahnama et al. 2021  97.1

USA
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* Denotes assemblies obtained using long-read next generation sequencing technologies

115



Chapter 5
In silico analyses of Secondary Metabolite Biosynthetic Gene Clusters (BGCs)

N Prediction of BGCs
Geno:llie fungiSMASH Similarity network
asseT e —| ¢ d ;GCs | — analysis & Visualization Comparison of BGCs
urate witl . .
Gene predictions T BiG-SCAPE clinker
Augustus e Cvtoscape
MIBIG
Extract sequences Core gene phylogeny Tree visualization
specifictoSMclass |— t’:/:ranf;tl - & annotation
H i AR iTO L
BGCToolKit T . e

Figure 5.3: Workflow for exploring fungal biosynthetic diversity.

The process of pinpointing genomic regions harboring SM BGCs was executed across all
71 genomes using fungiSMASH (Blin et al., 2019). This investigation yielded a total of
4224 BGCs predictions, with an average of approximately 59 BGCs per strain. These
projected BGCs were categorized based on their core biosynthetic genes, such as genes
encoding polyketide synthases (PKSs), non-ribosomal peptide synthetases (NRPSs) or
terpene cyclases (TCs). It is noteworthy that all lineages specific to particular host plants
exhibited a similar number of BGCs across various BGC classes, with type I PKSs being
the most prevalent (Fig. 5.4). Overall, these analyses underscore the substantial potential of
M. oryzae to synthesize SMs, some of which might play pivotal roles in virulence and/or

host specialization.

5.2 Similarity network analyses to identify biosynthetic diversity in

host-specific lineages

To ascertain whether any potential biosynthetic gene cluster (BGC) is linked to the ability
to infect specific host plants, we performed a network similarity analysis using BiG-SCAPE

(Navarro-Mufioz et al., 2019). This analysis encompassed a dataset of the 4224 predicted
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Figure 5.4: Occurrence of BGCs associated with specific classes of SM in individual
genomes of M. oryzae and M. grisea. Area of a given circle is directly proportional to the
total number of BGC associated with a class of specific product in a particular genome.
Color of a given circle denotes the host-specific lineage it belongs to.

BGCs, complemented by 277 characterized BGCs sourced from the MIBiG database
(Kautsar et al., 2019) for reference purposes. This resulted in a total of 4501 BGCs, which
were subsequently clustered into 283 gene cluster families (GCFs) or subnetworks, of which
180 represents singletons. Among these, 160 belonged to the reference characterized BGCs
(Fig. 5.5). Our BiG-SCAPE analysis unveiled that, while the majority of the BGCs,
regardless of their SM classification, are distributed across various lineages specific to
different host plants (multi-colored closed circles grouped together; Fig. 5.5), only a limited
number of GCFs or subnetworks exhibited similarities with reference BGCs derived from
the MIBiG database. This observation implies that a significant portion of these BGCs
remains uncharacterized.

The likely products associated with a specific BGC can be inferred through the examination
of homology with reference BGCs known to encode pathways for SMs, particularly those

identified in different fungi. As a result of our analysis, we have identified a subset of BGCs
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Figure 5.5: Similarity network analysis of biosynthetic gene clusters (BGCs) from M.
oryzae and M. grisea. A BiG-SCAPE analysis with a cutoff c0.5 depicts similarity of 4224
BGCs from M. oryzae or M. grisea with 277 reference BGCs from MIBiG database. Each
dot represents a BGC and is color-coded according to the lineage. Gene cluster families
(GCF; subnetworks) marked with green boxes share significant homology with reference
MIBiG BGCs (grey-colored circle). GCFs marked with red boxes are found to be unique to
host-specific lineages. The length of the gray lines is proportional to the genetic distance
between BGCs. Singletons are shown as individual dots at the bottom.

that are likely associated with the synthesis of SMs such as melanin, cytochalasans,
epipyriculol, squalestatin, Fusarin, fujikurin, alternapyrone, cercosporin, ACT-ToxinlII, and
pyranonigrin, in M. grisea and/or different lineages of M. oryzae (green boxes; Fig. 5.5).

Within the 91 GCFs present in Magnaporthe strains, twelve GCFs were found to comprise
characterized BGCs, primarily associated with the production of DHN melanin,
epipyriculol, alternapyrone, squalestatin and cytochalasans in M. oryzae, and betaneone in
M. grisea (Fig. 5.5-5.10). Nonetheless, the majority of the remaining BGCs studied here,
did not display any homology with the known/reference BGCs in other fungi. Forty-four
GCFs are found in several M. oryzae lineages as well as in M. grisea, most of them remain
uncharacterized. Interestingly, 13 GCFs were specific to M. grisea, while 14 GCFs appeared
to be exclusive to M. oryzae, hinting at their potential roles in pathogenesis on Digitaria and
other relevant host plants (Fig. 5.5). Taken together, our comprehensive analyses strongly
indicate that certain SM BGCs exhibit significant diversity among various M. oryzae

lineages adapted to specific host plants and/or geographical locations.

5.3 Gene Cluster Families unique to host-specific lineages

Within the set of GCFs specific to M. oryzae, three GCFs could potentially be associated
with host specialization. Specifically, BGC-O1 and BGC-O2 exhibited a predominant
presence within the Oryza lineage, while BGC-TLE was unique to the Tritici, Lolium,
Eleusine and Eragrostis lineages (Fig. 5.5). These lineages shared a common ancestry and
diverged from the Oryza and Setaria lineages (Fig. 5.1). BGC-O1 encompasses genes
encoding a Type 1 reducing polyketide synthase (rPKS) and tailoring enzymes (Fig. 5.14),
whereas BGC-O2 is restricted to a solitary T1 PKS gene (Fig. 5.11).
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In the case of BGC-TLE, although the standalone core biosynthetic NRPS gene therein is
present in all the strains, there were notable differences in the gene structure (Fig.5.12).
Through manual curation of the NRPS gene, it was discerned that the Triticum and Lolium
lineages had a deletion of 557 bps, corresponding to second exon observed in the Eleusine
lineage (CD156 strain). Furthermore, the presence of a stop codon within the Amp-binding
domain of the NRPS gene in the Triticum and Lolium lineages suggested pseudogenization
of the NRPS gene and, consequently, the possible non-functionality of the corresponding
BGC in those strains (Fig. 5.13). It is conceivable that BGC-TLE may either play a pivotal
role in virulence exclusively on Eleusine host plants, or its product could serve an avirulence
effector-like function in Triticum and Lolium hosts. In response to an evolutionary arms-
race, pathogen from the Triticum and Lolium lineages have likely undergone adaptations
leading to the loss of a functional NRPS gene, allowing them to continue infecting these
hosts. Therefore, among the three candidate BGCs, our further exploration has focused on

BGC-01, as it holds the potential for involvement in specialization on the rice host.

5.4 Identification of a novel reducing polyketide synthase BGC unique

to Oryza lineage

BGC-O1 was detected in 23 out of the 24 strains belonging to Oryza lineage that were
employed in this study, as well as in a single strain from the Eragrostis lineage (Fig. 5.14).
This GCF seems to encompass two distinct networks, and a comparative analysis of the
genomic loci indeed clearly distinguishes between two potential BGCs - one conserved
across all the lineages, while the other, BGC-O1 is specifically found in the Oryza and
Eragrostis lineages (Fig. 5.14). BGC-O1 comprises a novel core biosynthetic gene, a
reducing type I polyketide synthase (rPKS) gene, encoded by MGG_08236, along with
adjacent tailoring genes. These tailoring genes include one methyl transferase
(MGG_15107), one Co-A transferase (MGG_15108) and two cytochrome P450
monooxygenases (MGG_12496 and MGG_12497).

The predominance of BGC-O1 in the Oryza-specific lineage strongly suggests that the
product generated by the core PKS might play a role in specialization or adaptation to the
rice host. Crucially, it is noteworthy that BGC-O1 did not exhibit any similarity with any of
the reference BGCs present in the MIBiG database.
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Figure 5.14: BGC-O1 is predominantly present in Oryza lineage of M. oryzae. BiG-
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from Eragrostis lineages. Conservation of the BGC in selected strains is depicted using
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and gray dashed boxes separate BGC-O1 and BGC-O1-like clusters, respectively.

This observation suggests that BGC-O1 represents a distinctive gene cluster likely involved
in the biosynthesis of a novel secondary metabolite, associated with the specialization on
the rice host.

We were curious to determine whether the specificity of the BGC-O1 cluster region was
exclusive to the Oryza lineage, and thus consequently we assessed the conservation or
variability of the flanking genomic regions surrounding BGC-O1 in different lineages. To
achieve this, we aligned representative high-quality genome assemblies from each lineage
against the reference genome assembly of the 70-15 strain, which belongs to the Oryza
lineage. This allowed us to evaluate synteny at a global level. Our analysis revealed that

BGC-O01 is situated in the sub-telomeric region of chromosome 2 (NC_017850.1) and is
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located approximately 528 kb downstream of the ACE! gene cluster in the reference strain
70-15. When comparing the macrosynteny between 70-15 and GUY 11, both strains from
the Oryza lineage, we observed conservation of ~134 kb upstream and ~117 kb downstream
flanking regions, encompassing the BGC-O1 cluster (Fig. 5.15A). Notably, the immediate
flanking regions, which span ~10 kb, exhibited a translocation between the GUY11 and 70-
15 genomes (blue lines crossing over within the orange band; black arrowhead; Fig. 5.15A).
A similar comparison between 70-15 and FR13 strains displayed partial conservation with
~14 kilobases of the BGC-O1 region retained in the FR13 strain, while an approximately
9.5 kilobase segment from the BGC-O1 region in the 70-15 strain was relocated further
downstream on the same contig in the FR13 strain (red arrowhead; Fig. 5.15A).
Furthermore, although ~102 kilobases of the upstream flanking region remained syntenic
between 70-15 and FR13, the downstream flanking region exhibited several structural
rearrangements (Fig. 5.15A).

In contrast, when comparing with non-Oryza lineages, such as Eleusine and Setaria, a
significant loss of synteny was observed in the sub-telomeric region of chromosome 2.
While the upstream flanking region located ~97 kb upstream of BGC-O1 in 70-15 strain,
exhibited synteny with a corresponding genomic locus in MZ5-1-6, CD156 and US71, the
BGC-O1 cluster and downstream sequences were either missing or exhibited limited
conservation in the genomes of these lineages (Fig. 5.15B).

Further, in order to understand the genetic diversity in these SM-BGCs, we looked for
overall synteny between the two genomes (70-15 and MZ5-1-6) with chromosome-level
assemblies. The orthologous gene-pairs, among all the genes present in SM-BGCs, were
investigated using a Bi-directional Best Blast Hit approach, where we identified 529
orthologous SM gene pairs between the two isolates (Table 5.2). Whereas, we identified
638 orthologous gene pairs, when SM genes of MZ5-1-6 were compared with total genes of
70-15. This suggests that the orthologs of 109 SM-BGC genes of MZ5-1-6 are likely located
in the regions outside of the predicted SM-BGCs in the 70-15 genome, likely due to

differential rearrangements in these two genomes.
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Figure 5.15: Genomic localization of BGC-O1 and synteny between the Oryza and non-
Oryza lineages. A) Synteny analysis using pairwise comparison within Oryza lineage.
Genomes of GUY11 and FR13 aligned individually with reference genome 70-15. The
syntenic BGC-O1 locus (orange) and the flanking regions (blue) on chromosome 2 of 70-
15 are depicted. The differential lengths of BGC-O1 in different isolates are marked with a
bar and corresponding length in kilobases. The black arrowhead depicts genomic
rearrangement (swapping) in the flanking ~10 Kb region. The red arrowhead marks the
rearrangement of ~9 Kb region of the BGC-O1 in FR13. B) Synteny analyses of
representative genome assemblies belonging to Setaria (US71), Eleusine (MZ5-1-6 and
CD156) and Oryza (70-15) lineages. The BGC-O1 locus (orange) and flanking region (blue)
sequences from US71, MZ5-1-6 and CD156 aligned with that of 70-15 are depicted.

The Circos plots were constructed to determine the synteny of these orthologous SM-genes
between the genomes of the rice isolate (70-15) and finger millet isolate (MZ5-1-6) (Fig.
5.16). While, most of the genes were highly syntenic, a total of 36 SM-gene pairs located
on to different chromosomes in the two genomes. Notably, 30 out of 36 SM-genes, which
located on the chromosome 6 of MZ5-1-6, were rather found on chromosome-1 of 70-15.
Such large chromosomal translocation events have been reported earlier for MZ5-1-6 and
70-15 (Luciano et al. 2019). Thus, the differential genomic rearrangement, especially with
respect to the genes involved in secondary metabolism, in the rice and millet isolates might

have some evolutionary role in adaptation to a specific host plant.

Table 5.2: Summary of ortholog pairs between the genomes of millet isolate (MZ5-1-6) and
rice isolate (70-15).

Pairs Total Genes MZ5 SM-genes vs| MZ5 SM-genes vs
MZS vs 70-15 | 70-15 total genes | 70-15 SM- genes

Total number of orthologs 10813 638 529

Total number of orthologs 671 84 36

rearranged

Total number of orthologs 549 50 30

rearranged between MZ5_Chr6
and 70-15_Chrl
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Figure 5.16: Circos plots showing synteny among SM related genes between representative strains from Oryza and Eleusine lineages. The
orthologous gene pairs represented by connecting links between (A) SM-genes of both MZ5-1-6 and 70-15 and (B) SM-genes of MZ5-1-6 and
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on the chromosomes; Track D, histogram showing orthologous gene-pairs between the two
genomes, with color codes according to those of the chromosomes of 70-15; and Track E,
links representing orthologous gene-pairs between the two genomes, with color codes same
as those for the 70-15 chromosomes.

5.5 Evolutionary history of the novel polyketide synthase gene

In our quest to unravel the evolutionary history of BGC-O1, we embarked on a search for
orthologous and closely related counterparts of the MGG_08236 rPKS protein within the
Pezizomycotina group from the MycoCosm repository (Grigoriev et al., 2014;).
Interestingly, only two closely resembling homologues were identified from the fungus
Colletotrichum eremochloae. Employing a phylogenetic analysis, it became evident that the
rPKS 670826 from C. eremochloae is a true orthologue of MGG_08236 rPKS, being in the
adjacent clade to the M. oryzae lineage (Fig 5.17A). Meanwhile, the other paralogue in C.
eremochloae, 679399, falls within a clade restricted to the Colletotrichum genus and
constitutes a sister clade to the MGG_08236 rPKS clade. Upon conducting a comparative
analysis of the genomic loci encompassing both homologues in C. eremochloae and BGC-
Ol in M. oryzae, it was revealed that these two clusters shared the rPKS and two cytochrome
P450 genes with BGC-O1. However, the methyltransferase and Co-A transferase genes
were found as single copies elsewhere within the C. eremochloae genome (Fig. 5.17B).
Notably, the orthologous BGC in C. eremochloae shares an average nucleotide identity of
76% when compared to the M. oryzae BGC. Intriguingly, both BGCs in C. eremochloae

share only 50% nucleotide identity with each other.

5.6 BGC-O1 genes are expressed specifically during host invasion

In our study, we conducted PCR targeting the open reading frame (ORF) region of the rPKS
gene MGG_08236, using genomic DNA extracted from M. oryzae strains from rice and
finger millet host plants (Fig. S.18A). The MGG_08236 gene was found to be present in all
the examined Oryza strains studied, except for MOS3, which was stood out as the sole Oryza

lineage strain lacking the BGC-O1 as investigated by our in-silico analysis.
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Figure 5.17: Evolutionary origin of the reducing polyketide synthase (PKS)
MGG_08236 gene. A) Maximum-likelihood phylogenetic tree using protein sequences of
reducing PKS genes from BGC-O1 and related gene cluster families, as well as homologues
retrieved from MycoCosm repository. Tip labels depicting sequences from Oryza and
Eragrostis-specific clade are marked with blue and pink background, respectively. The
Colletotrichum eremocloae ortholog (jgi.p_Colerl_670826), closer to MGG_08236, is
denoted with pink label; whereas the more distant paralogue (jgi.p_Colerl_679399) is
shown in orange. Gray shaded triangles denote collapsed clades with distant sequences.
Branches were supported by > 95% Bootstrap values indicated with gray circles at the
nodes. The tree is rooted at midpoint. B) Comparative analysis, using Clinker tool, of the
BGC-O1 or BGC-O1-like loci from three Oryza-specific and C. eremochloae genomes.

The MGG_08236 ORF was notably absent in all the Eleusine strains investigated, as well
as in the MOS1 and MOS4 strains, both of which are placed outside of Oryza lineage
according to our phylogenetic analysis (Fig. 5.1B and 5.18A).

Subsequently, we delved into the investigation of the expression profiles of the rPKS genes
(MGG_08236) and three associated tailoring genes, namely methyl transferase
(MGG_15107), CoA-transferase (MGG_15108) and cytochrome P450 (MGG_12496), all
of which are members of the BGC-O1 locus. This was achieved through semi-quantitative
RT-PCR analysis conducted at different stages of infection. Total RNA was isolated from
fungal vegetative mycelia cultured in complete medium, barley leaves inoculated with M.
oryzae strain and incubated for different time intervals, and uninoculated barley leaves as
mock samples. These assays were conducted to assess the transcript levels of the
aforementioned genes relative to those of B-Tubulin, serving as an endogeneous control.
Our finding indicated that the expression of the core rPKS gene was either undetected or
barely seen during vegetative growth — mycelium and pre-invasive stage - 12 hours post
inoculation (hpi), respectively. However, transcript accumulation commenced during the
progression of pathogenesis, with a substantial increase in expression at 24 hpi, followed by
a consistent, albeit gradual, rise in expression levels until 72 hpi (Fig. 5.18B and 5.18C).
The expression patterns of MGG_15107 and MGG_15108 tailoring genes displayed partial
correlation with that of rPKS, albeit with a lower expression level (Fig. 5.18B and 5.18C).
In contrast, MGG_12496 exhibited a different expression pattern with its highest expression

levels observed in mycelium and at 48 hpi during infection (Fig. 5.18B and 5.18C).
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Figure 5.18: BGC-O1 genes are specifically expressed during pathogenic development.
A) Gel electrophoresis of PCR products displaying presence or absence of ORF region of
rPKS MGG_08236 from genomic DNA of the indicated M. oryzae strains. B157, MOS?2,
MOS3 and MOSS5 belong to the Oryza lineage; whereas, the MOS1, MEC1, MEC4, MECS,
MEC6 and MEAI belong to the Eleusine lineage. * - the only Oryza strain that lacked the
BGC-O1 in in-silico analysis. ** - the Oryza strains placed outside Oryza lineage.
Arrowheads corresponds to the 1 Kb size of band from Marker. B) RT-PCR gel depicting
expression of genes MGG_08236 (Polyketide synthase), MGG_15107 (Methyl transferase),
MGG_15108 (Co-A transferase) and MGG_12496 (Cytochrome P450) in Oryza-specific
strain B157 at different stages of barley infection (12 to 96 hpi) and during vegetative growth
(mycelium) in complete medium. C) Quantification of the expression of BGC-O1 genes.
The intensity of each band was measured using ImageJ, and relative gene expression was
calculated relative to that of B-tubulin (MGG_00604) as an endogenous control. The data
on expression of MGG_08236 represents mean =+ standard deviation of mean (SDM) from
three independent biological experiments. Data on expression of the tailoring genes
(MGG_15107, MGG_15108 and MGG_12496) represent observation from a single
experiment.

These results indicate that the MGG_08236 PKS gene is specifically expressed during
pathogenesis and potentially has a key role to play during host colonization. Additionally,
our findings suggest that the BGC-O1 likely comprises only two co-regulated tailoring

genes.
Altogether, our in-silico analyses identified a novel PKS gene cluster in the Oryza-specific

lineage, which likely played a key role in shaping specialization of the blast fungus to rice

host.
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