Chapter 5

Results:

In silico analyses of secondary metabolite biosynthetic gene clusters in different host-specific lineages of the blast fungus

5.1 Identification of biosynthetic gene clusters (BGCs) in host-specific strains of *M. oryzae*

In this investigation, we employed a dataset comprising of 68 *M. oryzae* genomes, which were sourced from six distinct host plants, namely rice (*Oryza sativa*), finger millet (*Eleusine coracana*), foxtail millet (*Setaria sp.*), wheat (*Triticum aestivum*), perennial ryegrass (*Lolium sp.*) and weeping lovegrass (*Eragrostis curvula*) (**Fig. 5.1A, Table 5.1**). This dataset encompasses an earlier sequenced 15 field isolates, collected from different parts of India (**Fig. 5.1A, Table 5.1**). The remaining 53 genomes were obtained from publicly available genome sequences. Furthermore, we incorporated sequence data from three *M. grisea* strains, previously isolated from crabgrass (*Digitaria sp.*), to be used as control (**Table 5.1**). Sixteen out of the publicly available assemblies were derived from long-read sequencing technology, resulting in highly contiguous datasets. Subsequently, gene predictions were performed on all 71 assemblies and analysis of BUSCO genes indicated robust gene prediction quality and assembly completeness, with a BUSCO score exceeding 90% (**Table 5.1**).

Utilizing a set of 2655 BUSCO genes found within the 68 *M. oryzae* genomes, we constructed a phylogenomic tree. The resulting topology of the species tree confirms the existence of multiple genetic lineages within *M. oryzae*, each specialized on different host plants, including *Oryza*, *Setaria*, *Eleusine*, *Eragrostis*, *Triticum* and *Lolium* (Fig. 5.1B). This phylogenetic arrangement aligns with the previously reported population structure (Gladieux, Condon, et al., 2018). A similar phylogenomic assessment was conducted using an additional three genomes from *M. grisea* (*Digitaria* isolates), reaffirming the divergence of *M. grisea* as a distinct species from *M. oryzae*, as in accordance with prior findings (Fig. 5.2; Gladieux et al., 2018).

Our methodology involved the utilization of a comprehensive pipeline to discern the biosynthetic diversity within various lineages of *M. oryzae* (Fig. 5.3). This approach encompassed the initial identification of biosynthetic gene clusters (BGCs) responsible for secondary metabolite (SM) production within genomic regions, followed by a subsequent analysis employing similarity networks to explore the genetic variations among the predicted BGCs.

Figure 5.1: *M. oryzae* worldwide populations are organized in host-specific lineages. A) Geographic distribution of sequenced *M. oryzae* strains. The color-coded dots denote the host plant of origin of the strains. B) Phylogenetic tree constructed based on concatenation of 2655 BUSCO genes present in all 68 *M. oryzae* genomes used in this study. Colored shapes in the background depict different host-specific genetic lineages.

different host-specific genetic lineages of M. oryzae. on concatenation of a total 2557 BUSCOs present in all 71 genomes of M. oryzae and M. grisea strains used in the study. Colored branches depict Figure 5.2: M. oryzae and M. grisea are evolutionarily distinct species adapted to different hosts. Maximum likelihood tree constructed based

CHRF	CD156	Br80	Br7	BR29	Br130	BR0032	BdMeh	BdJes	BdBar	B71	B51	B2	B157	AV1-1-1	Arcadia	70-15	Strains
	CD0156					BR32	BdMeh16-1	BdJes16-1	BdBar16-1								Synonyms
Lolium perenne	Eleusine indica	Triticum aestivum	Triticum aestivum	Digitaria	Triticum aestivum	Triticum aestivum	Triticum aestivum	Triticum aestivum	Triticum aestivum	Triticum aestivum	Eleusine indica	Triticum aestivum	Oryza sativa	Oryza sativa	Setaria viridis	Oryza sativa	Host of Isolation
Siler Springs, MD, USA	Ivory Coast, Ferkessedougou	Brazil	Brazil: Parana	Brazil	Brazil: Mato Grosso do Sul	Brazil	Bangladesh: Mehepur district	Bangladesh: Jessore district	Bangladesh: Barisal	Bolivia: Okinawa Uno	Bolivia: Quirusillas	Bolivia: Okinawa Uno	India: Maruteru, Andhra Pradesh	Ghana: Aveyime	Lexington, Kentucky, USA	n/a	Country/Region
1996	1989	1991	1990	I	1990	1991	2016	2016	2016	2012	2012	2011	1989	2015	1998	I	Year of Collection
Lolium	Eleusine	Triticum	Triticum	Digitaria	Triticum	Triticum	Triticum	Triticum	Triticum	Triticum	Eleusine	Triticum	Oryza	Oryza	Setaria	Oryza	Phylogenetic lineage
GCA_002925295.1	GCA_900474475.3 *	GCA_002925345.1	GCA_002925335.1	BR29	GCA_002925325.1	GCA_900474545.3 *	GCA_001675605.1	GCA_001675595.1	GCA_001675615.1	GCA_004785725.2 *	GCA_002925415.1	GCA_002218465.1	GCA_000832285.1	GCA_011799965.1 *	GCA_002925445.1	GCF_000002495.2	Assembly Accession IDs
Rahnama et al. 2021	Langner et al. 2021	Rahnama et al. 2021	Rahnama et al. 2021	Chiapello et al. 2015	Rahnama et al. 2021	Langner et al. 2021	Rahnama et al. 2021	Rahnama et al. 2021	Rahnama et al. 2021	Peng et al. 2019	Farman et al. 2017	Rahnama et al. 2021	Gowda et al. 2015	Zhong et al. 2020	Rahnama et al. 2021	Dean et al. 2005	References
97.1	97.2	96.9	97	97.2	94.6	97	96.9	93.7	91.5	97.1	96.7	96.5	95.8	97.1	95.7	98.6	BUSCO (%)

Table 5.1: *M. oryzae* and *M. grisea* genomes used in this study.

Chapter 5 In silico analyses of Secondary Metabolite Biosynthetic Gene Clusters (BGCs)

CHW DsLIZ		Lolium perenne Digitaria	USA: Annapolis, MD Lexington, Kentucky,	1996	Lolium Digitaria	GCA_002925285.1 GCA_002925245.1 *	Rahnama (et al. 2021 et al. 2021
DsLIZ EI9411		Digitaria Eleusine indica	Lexington, Kentucky, USA China,Fujian	2000 1994	Digitaria Eleusine	GCA_0029252 GCA_0015487	245.1 * 175.1	75.1 Rahnama et al. 2021 Zhong et al. 2016
EI9604		Eleusine indica	China,Zhejiang	1996	Eleusine	GCA_001548	3785.1	3785.1 Zhong et al. 2016
FH		Lolium perenne	USA: Hagerstown, MD	1997	Lolium	GCA_00292	5225.1	5225.1 Rahnama et al. 2021
FJ72ZC7 -77		Oryza sativa	China: Fujian	1992	Oryza	GCA_01179	9905.1 *	99905.1 * Zhong et al. 2020
FJ81278		Oryza sativa	China: Fujian	1981	Oryza	GCA_0023	68475.1 *	68475.1 * Bao et al. 2017
FJ98099		Oryza sativa	China: Fujian	1998	Oryza	GCA_0117	799925.1 *	799925.1 * Zhong et al. 2020
FR13	FR0013	Oryza sativa	France	1990	Oryza	GCA_900-	474655.3 *	474655.3 * Langner et al. 2021
G17	K76-79	Eragrostis curvula	Japan	1976	Eragrostis	GCA_002	925205.1	2925205.1 Rahnama et al. 2021
G22	WGG-FA40	Eleusine coracana	Japan	1976	Eleusine	GCA_003	2925165.1	2925165.1 Gladieux et al. 2018
GG11		Lolium perenne	USA: Lexington, KY	1997	Lolium	GCA_002	2925155.1	2925155.1 Rahnama et al. 2021
GRF52		Setaria viridis	Lexington, Kentucky, USA	2001	Setaria	GCA_002	2925145.1	2925145.1 Rahnama et al. 2021
GY11	GY0011, Guy11	Oryza sativa	French - Guyana	1988	Oryza	GCA_00	2368485.1 *	2368485.1 * Bao et al. 2017
HO		Lolium perenne	USA: Richmond, PA	1996	Lolium	GCA_00	2925105.1	2925105.1 Rahnama et al. 2021
IA1	ARB114	Oryza sativa	Arkansas, USA	2009	Oryza	GCA_00)2925085.1	02925085.1 Rahnama et al. 2021
IB33		Oryza sativa	Texas, USA	I	Oryza	GCA_0	02925065.1	02925065.1 Rahnama et al. 2021
IB49	ZN61	Oryza sativa	AR, USA	1992	Oryza	GCA_0	02925045.1	02925045.1 Rahnama et al. 2021
IC17	ZN57	Oryza sativa	AR, USA	1992	Oryza	GCA_0	02925025.1	02925025.1 Rahnama et al. 2021
IE1K	TM2	Oryza sativa	AR, USA	2003	Oryza	GCA_0	02924985.1	02924985.1 Rahnama et al. 2021
LpKY97	LpKY97-1	Lolium perenne	USA	1997	Lolium	GCA_01	2272995.1 *	2272995.1 * Rahnama et al. 2021
MEA1		Eleusine africana	GKVK, Bengaluru, KA, India	2015	Eleusine			This study
MEC1		Eleusine coracana	Waghai, Dangs, GJ, India	2015	Eleusine			This study

Chapter 5 *In silico* analyses of Secondary Metabolite Biosynthetic Gene Clusters (BGCs)

113

PH0014 rn	P3	P131	NI907	MZ5-1-	MSI2	MSI1	MOS6	MOS5	MOS4	MOS3	MOS2	MOS1	ML33	MG01	MEC6	MEC5	MEC4	MEC3	MEC2
- PH0014, PH14				6															
Oryza sativa	Triticum durum	Oryza sativa	Digitaria	Eleusine coracana	Setaria Italica	Setaria Italica	Oryza sativa	Oryza sativa	Oryza sativa	Oryza sativa	Oryza sativa	Oryza sativa	Oryza sativa	Oryza sativa	Eleusine coracana	Eleusine coracana	Eleusine coracana	Eleusine coracana	Eleusine coracana
Philippines	Paraguay: Canindeyu	Japan	Japan:Tochigi	Japan,Miyazaki	GKVK, Bengaluru, KA, India	GKVK, Bengaluru, KA, India	Geysing, West Sikkim, SK, India	Upper Lingthem, North Sikkim, SK, India	Kanyakumari, TN, India	Hazaribag, JH, India	Waghai, Dangs, GJ, India	Waghai, Dangs, GJ, India	Mali	India: Mandya	South Sikkim, SK, India	Dentam, west sikkim, SK, India	GKVK, Bengaluru, KA, India	GKVK, Bengaluru, KA, India	Waghai, Dangs, GJ, India
I	2012	1976	1974	1976	2015	2015	2015	2015	2015	2010	2013	2013	1995	2011	2015	2015	2015	2015	2015
Oryza	Triticum	Oryza	Digitaria	Eleusine	Setaria	Setaria	Oryza	Oryza	Oryza	Oryza	Oryza	Eleusine	Oryza	Oryza	Eleusine	Eleusine	Eleusine	Eleusine	Eleusine
PH14-rn	GCA_002924885.1	GCA_000292605.1	GCF_004355905.1 *	GCA_004346965.1 *									GCA_002924965.1	GCA_000969745.1					
Chiapello et al. 2015	Rahnama et al. 2021	Xue et al. 2012	Gomez Luciano et al. 2019	Luciano et al 2019	This study	This study	This study	This study	This study	This study	This study	This study	Rahnama et al. 2021	Gowda et al. 2015	This study	This study	This study	This study	This study
96.6	97	96.7	97.3	97.1	96.7	96.8	96.9	97	97.1	96.9	97	97	97	95.4	96.8	96.4	96.8	96.8	96.9

Chapter 5 In silico analyses of Secondary Metabolite Biosynthetic Gene Clusters (BGCs)

114

PH42 PL2-1		Eleusine coracana Lolium multiflorum	Philippines Pulaski Co, KY, USA	1983 2002	Eleusine Lolium	GCA_002924865.1 GCA_002924835.1	Pieck et al. 2 Rahnama et <i>a</i>
PL3-1		Lolium multiflorum	Pulaski Co, KY, USA	2002	Lolium	GCA_002924825.1	
RMg-Dl		Oryza sativa	India: Madhubani, Bihar	2012	Oryza	GCA_001853415.2 *	
Sar-2-20- 1		Oryza sativa	Suriname: Saramacca	2013	Oryza	GCA_011799915.1 *	
Sv9610		Setaria viridis	China,Zhejiang	1996	Setaria	GCA_001548845.1	
Sv9623		Setaria viridis	China,Zhejiang	1996	Setaria	GCA_001548855.1	N1
T25		Triticum aestivum	Brazil: Parana	1988	Triticum	GCA_002924745.1	
US0071	US71	Setaria spp.	USA	1998	Setaria	GCA_900474175.3 *	
WHTQ		Triticum aestivum	Brazil	ı	Triticum	GCA_002924665.1	-
Y34		Oryza sativa	China: Yunnan	1982	Oryza	GCA_000292585.1	

Chapter 5 In silico analyses of Secondary Metabolite Biosynthetic Gene Clusters (BGCs)

* Denotes assemblies obtained using long-read next generation sequencing technologies

Figure 5.3: Workflow for exploring fungal biosynthetic diversity.

The process of pinpointing genomic regions harboring SM BGCs was executed across all 71 genomes using fungiSMASH (Blin et al., 2019). This investigation yielded a total of 4224 BGCs predictions, with an average of approximately 59 BGCs per strain. These projected BGCs were categorized based on their core biosynthetic genes, such as genes encoding polyketide synthases (PKSs), non-ribosomal peptide synthetases (NRPSs) or terpene cyclases (TCs). It is noteworthy that all lineages specific to particular host plants exhibited a similar number of BGCs across various BGC classes, with type I PKSs being the most prevalent (**Fig. 5.4**). Overall, these analyses underscore the substantial potential of *M. oryzae* to synthesize SMs, some of which might play pivotal roles in virulence and/or host specialization.

5.2 Similarity network analyses to identify biosynthetic diversity in host-specific lineages

To ascertain whether any potential biosynthetic gene cluster (BGC) is linked to the ability to infect specific host plants, we performed a network similarity analysis using BiG-SCAPE (Navarro-Muñoz et al., 2019). This analysis encompassed a dataset of the 4224 predicted

Figure 5.4: Occurrence of BGCs associated with specific classes of SM in individual genomes of *M. oryzae* and *M. grisea*. Area of a given circle is directly proportional to the total number of BGC associated with a class of specific product in a particular genome. Color of a given circle denotes the host-specific lineage it belongs to.

BGCs, complemented by 277 characterized BGCs sourced from the MIBiG database (Kautsar et al., 2019) for reference purposes. This resulted in a total of 4501 BGCs, which were subsequently clustered into 283 gene cluster families (GCFs) or subnetworks, of which 180 represents singletons. Among these, 160 belonged to the reference characterized BGCs (**Fig. 5.5**). Our BiG-SCAPE analysis unveiled that, while the majority of the BGCs, regardless of their SM classification, are distributed across various lineages specific to different host plants (multi-colored closed circles grouped together; **Fig. 5.5**), only a limited number of GCFs or subnetworks exhibited similarities with reference BGCs derived from the MIBiG database. This observation implies that a significant portion of these BGCs remains uncharacterized.

The likely products associated with a specific BGC can be inferred through the examination of homology with reference BGCs known to encode pathways for SMs, particularly those identified in different fungi. As a result of our analysis, we have identified a subset of BGCs

Chapter 5 In silico analyses of Secondary Metabolite Biosynthetic Gene Clusters (BGCs) **Figure 5.5:** Similarity network analysis of biosynthetic gene clusters (BGCs) from *M. oryzae* and *M. grisea*. A BiG-SCAPE analysis with a cutoff c0.5 depicts similarity of 4224 BGCs from *M. oryzae* or *M. grisea* with 277 reference BGCs from MIBiG database. Each dot represents a BGC and is color-coded according to the lineage. Gene cluster families (GCF; subnetworks) marked with green boxes share significant homology with reference MIBiG BGCs (grey-colored circle). GCFs marked with red boxes are found to be unique to host-specific lineages. The length of the gray lines is proportional to the genetic distance between BGCs. Singletons are shown as individual dots at the bottom.

that are likely associated with the synthesis of SMs such as melanin, cytochalasans, epipyriculol, squalestatin, Fusarin, fujikurin, alternapyrone, cercosporin, ACT-ToxinII, and pyranonigrin, in *M. grisea* and/or different lineages of *M. oryzae* (green boxes; **Fig. 5.5**). Within the 91 GCFs present in *Magnaporthe* strains, twelve GCFs were found to comprise characterized BGCs, primarily associated with the production of DHN melanin, epipyriculol, alternapyrone, squalestatin and cytochalasans in *M. oryzae*, and betaneone in *M. grisea* (**Fig. 5.5-5.10**). Nonetheless, the majority of the remaining BGCs studied here, did not display any homology with the known/reference BGCs in other fungi. Forty-four GCFs are found in several *M. oryzae* lineages as well as in *M. grisea*, most of them remain uncharacterized. Interestingly, 13 GCFs were specific to *M. grisea*, while 14 GCFs appeared to be exclusive to *M. oryzae*, hinting at their potential roles in pathogenesis on *Digitaria* and other relevant host plants (**Fig. 5.5**). Taken together, our comprehensive analyses strongly indicate that certain SM BGCs exhibit significant diversity among various *M. oryzae* lineages adapted to specific host plants and/or geographical locations.

5.3 Gene Cluster Families unique to host-specific lineages

Within the set of GCFs specific to *M. oryzae*, three GCFs could potentially be associated with host specialization. Specifically, BGC-O1 and BGC-O2 exhibited a predominant presence within the *Oryza* lineage, while BGC-TLE was unique to the *Tritici*, *Lolium*, *Eleusine* and *Eragrostis* lineages (**Fig. 5.5**). These lineages shared a common ancestry and diverged from the *Oryza* and *Setaria* lineages (**Fig. 5.1**). BGC-O1 encompasses genes encoding a Type 1 reducing polyketide synthase (rPKS) and tailoring enzymes (**Fig. 5.14**), whereas BGC-O2 is restricted to a solitary T1 PKS gene (**Fig. 5.11**).

Figure 5.6: Homology of melanin-associated *M. oryzae* and *M. grisea* gene cluster family with reference BGCs in MIBiG database. The map depicts comparison of BGC loci with reference BGCs associated with melanin or melanin-like SM product in MIBiG. The shaded area between any two arrows denotes degree of homology (0 to 100%; white to black, respectively) between the two sequences.

denotes degree of homology (0 to 100%; white to black, respectively) between the two sequences. Figure 5.7: Analysis of homology between ACE1 gene cluster family in M. oryzae and M. grisea and reference BGCs in MIBiG database. The map depicts comparison of BGC loci with reference BGCs associated with pyrichalasin H in MIBiG. The shaded area between any two arrows

Chapter 5 In silico analyses of Secondary Metabolite Biosynthetic Gene Clusters (BGCs)

Figure 5.8: Analysis of homology between putative epipyriculol-associated gene cluster family in *M. oryzae* and *M. grisea* and reference BGCs in MIBiG database. The map depicts comparison of BGC loci with reference BGCs associated with epipyriculol in MIBiG. The shaded area between any two arrows denotes degree of homology (0 to 100%; white to black, respectively) between the two sequences.

Figure 5.9: Homology of putative Squalestatin S1-associated *M. oryzae* and *M. grisea* **gene cluster family with reference BGCs in MIBiG database.** The map depicts comparison of BGC loci with reference BGCs associated with Squalestatin S1 in MIBiG. The shaded area between any two arrows denotes degree of homology (0 to 100%; white to black, respectively) between the two sequences.

Figure 5.10: Analysis of homology between Tenuazonic acid-associated gene cluster families in host-adapted *M. oryzae* and *M. grisea* isolates. The shaded area between any two arrows denotes degree of homology (0 to 100%; white to black, respectively) between the two sequences.

In the case of BGC-TLE, although the standalone core biosynthetic NRPS gene therein is present in all the strains, there were notable differences in the gene structure (**Fig.5.12**). Through manual curation of the NRPS gene, it was discerned that the *Triticum* and *Lolium* lineages had a deletion of 557 bps, corresponding to second exon observed in the *Eleusine* lineage (CD156 strain). Furthermore, the presence of a stop codon within the Amp-binding domain of the NRPS gene in the *Triticum* and *Lolium* lineages suggested pseudogenization of the NRPS gene and, consequently, the possible non-functionality of the corresponding BGC in those strains (**Fig. 5.13**). It is conceivable that BGC-TLE may either play a pivotal role in virulence exclusively on *Eleusine* host plants, or its product could serve an avirulence effector-like function in *Triticum* and *Lolium* lineages have likely undergone adaptations leading to the loss of a functional NRPS gene, allowing them to continue infecting these hosts. Therefore, among the three candidate BGCs, our further exploration has focused on BGC-O1, as it holds the potential for involvement in specialization on the rice host.

5.4 Identification of a novel reducing polyketide synthase BGC unique to *Oryza* lineage

BGC-O1 was detected in 23 out of the 24 strains belonging to *Oryza* lineage that were employed in this study, as well as in a single strain from the *Eragrostis* lineage (**Fig. 5.14**). This GCF seems to encompass two distinct networks, and a comparative analysis of the genomic loci indeed clearly distinguishes between two potential BGCs - one conserved across all the lineages, while the other, BGC-O1 is specifically found in the *Oryza* and *Eragrostis* lineages (**Fig. 5.14**). BGC-O1 comprises a novel core biosynthetic gene, a reducing type I polyketide synthase (rPKS) gene, encoded by MGG_08236, along with adjacent tailoring genes. These tailoring genes include one methyl transferase (MGG_15107), one Co-A transferase (MGG_15108) and two cytochrome P450 monooxygenases (MGG_12496 and MGG_12497).

The predominance of BGC-O1 in the *Oryza*-specific lineage strongly suggests that the product generated by the core PKS might play a role in specialization or adaptation to the rice host. Crucially, it is noteworthy that BGC-O1 did not exhibit any similarity with any of the reference BGCs present in the MIBiG database.

denotes degree of homology (0 to 100%; white to black, respectively) between the two sequences. the BGCs specifically present in 11 genomes from Oryza lineage and one genome from Triticum lineage. The shaded area between any two arrows Figure 5.11: BGC-O2 is predominantly present in Oryza-specific lineage of M. oryzae. BiG-SCAPE analysis showing BGC-O2 GCF with all

Figure 5.12: BGC-TLE is predominantly present in *Triticum*, *Lolium* and *Eleusine*specific lineages of *M. oryzae*. BiG-SCAPE analysis showing BGC-TLE GCF with all the BGCs specifically present in 12, 8, and 9 genomes from *Triticum*-, *Lolium*- and *Eleusine*specific lineages, respectively. The shaded area between any two arrows denotes degree of homology (0 to 100%; white to black, respectively) between the two sequences.

corresponds with the second exon of CD156_10559 NRPS gene. * in AMP-binding domain of NRPS gene. Yellow arrows represent the gene models in B2 in accordance with the one in CD156, whereas blue arrows in B2 strain represents the earlier predicted gene model by Augustus. Red box displays the deletion of 557 bps in B2 strains, which lineage. Alignments between representative strains CD156 (Eleusine) and B2 (Triticum) shows the presence of premature stop codon depicted as Figure 5.13: Comparison of core biosynthetic gene region of BGC-TLE shows the pseudogenization in NRPS gene belonging to Triticum

Figure 5.14: BGC-O1 is predominantly present in *Oryza* **lineage of** *M. oryzae*. BiG-SCAPE network showing BGC-O1 present in 23 genomes from *Oryza* and one genome from *Eragrostis* lineages. Conservation of the BGC in selected strains is depicted using Clinker. Vertical bars besides the name of strain are colored according to the lineages. Red and gray dashed boxes separate BGC-O1 and BGC-O1-like clusters, respectively.

This observation suggests that BGC-O1 represents a distinctive gene cluster likely involved in the biosynthesis of a novel secondary metabolite, associated with the specialization on the rice host.

We were curious to determine whether the specificity of the BGC-O1 cluster region was exclusive to the *Oryza* lineage, and thus consequently we assessed the conservation or variability of the flanking genomic regions surrounding BGC-O1 in different lineages. To achieve this, we aligned representative high-quality genome assemblies from each lineage against the reference genome assembly of the 70-15 strain, which belongs to the *Oryza* lineage. This allowed us to evaluate synteny at a global level. Our analysis revealed that BGC-O1 is situated in the sub-telomeric region of chromosome 2 (NC_017850.1) and is

located approximately 528 kb downstream of the *ACE1* gene cluster in the reference strain 70-15. When comparing the macrosynteny between 70-15 and GUY11, both strains from the *Oryza* lineage, we observed conservation of ~134 kb upstream and ~117 kb downstream flanking regions, encompassing the BGC-O1 cluster (**Fig. 5.15A**). Notably, the immediate flanking regions, which span ~10 kb, exhibited a translocation between the GUY11 and 70-15 genomes (blue lines crossing over within the orange band; black arrowhead; **Fig. 5.15A**). A similar comparison between 70-15 and FR13 strains displayed partial conservation with ~14 kilobases of the BGC-O1 region retained in the FR13 strain, while an approximately 9.5 kilobase segment from the BGC-O1 region in the 70-15 strain was relocated further downstream on the same contig in the FR13 strain (red arrowhead; **Fig. 5.15A**). Furthermore, although ~102 kilobases of the upstream flanking region remained syntenic between 70-15 and FR13, the downstream flanking region exhibited several structural rearrangements (**Fig. 5.15A**).

In contrast, when comparing with non-*Oryza* lineages, such as *Eleusine* and *Setaria*, a significant loss of synteny was observed in the sub-telomeric region of chromosome 2. While the upstream flanking region located ~97 kb upstream of BGC-O1 in 70-15 strain, exhibited synteny with a corresponding genomic locus in MZ5-1-6, CD156 and US71, the BGC-O1 cluster and downstream sequences were either missing or exhibited limited conservation in the genomes of these lineages (**Fig. 5.15B**).

Further, in order to understand the genetic diversity in these SM-BGCs, we looked for overall synteny between the two genomes (70-15 and MZ5-1-6) with chromosome-level assemblies. The orthologous gene-pairs, among all the genes present in SM-BGCs, were investigated using a Bi-directional Best Blast Hit approach, where we identified 529 orthologous SM gene pairs between the two isolates (**Table 5.2**). Whereas, we identified 638 orthologous gene pairs, when SM genes of MZ5-1-6 were compared with total genes of 70-15. This suggests that the orthologs of 109 SM-BGC genes of MZ5-1-6 are likely located in the regions outside of the predicted SM-BGCs in the 70-15 genome, likely due to differential rearrangements in these two genomes.

Figure 5.15: Genomic localization of BGC-O1 and synteny between the *Oryza* and non-*Oryza* lineages. A) Synteny analysis using pairwise comparison within *Oryza* lineage. Genomes of GUY11 and FR13 aligned individually with reference genome 70-15. The syntenic BGC-O1 locus (orange) and the flanking regions (blue) on chromosome 2 of 70-15 are depicted. The differential lengths of BGC-O1 in different isolates are marked with a bar and corresponding length in kilobases. The black arrowhead depicts genomic rearrangement (swapping) in the flanking ~10 Kb region. The red arrowhead marks the rearrangement of ~9 Kb region of the BGC-O1 in FR13. B) Synteny analyses of representative genome assemblies belonging to *Setaria* (US71), *Eleusine* (MZ5-1-6 and CD156) and *Oryza* (70-15) lineages. The BGC-O1 locus (orange) and flanking region (blue) sequences from US71, MZ5-1-6 and CD156 aligned with that of 70-15 are depicted.

The Circos plots were constructed to determine the synteny of these orthologous SM-genes between the genomes of the rice isolate (70-15) and finger millet isolate (MZ5-1-6) (**Fig. 5.16**). While, most of the genes were highly syntenic, a total of 36 SM-gene pairs located on to different chromosomes in the two genomes. Notably, 30 out of 36 SM-genes, which located on the chromosome 6 of MZ5-1-6, were rather found on chromosome-1 of 70-15. Such large chromosomal translocation events have been reported earlier for MZ5-1-6 and 70-15 (Luciano et al. 2019). Thus, the differential genomic rearrangement, especially with respect to the genes involved in secondary metabolism, in the rice and millet isolates might have some evolutionary role in adaptation to a specific host plant.

Pairs	Total Genes	MZ5 SM-genes vs	MZ5 SM-genes vs
	MZ5 vs 70-15	70-15 total genes	70-15 SM- genes
Total number of orthologs	10813	638	529
Total number of orthologs rearranged	671	84	36
Total number of orthologs rearranged between MZ5_Chr6 and 70-15_Chr1	549	50	30

Table 5.2: Summary of ortholog pairs between the genomes of millet isolate (MZ5-1-6) and rice isolate (70-15).

orthologous gene pairs represented by connecting links between (A) SM-genes of both MZ5-1-6 and 70-15 and (B) SM-genes of MZ5-1-6 and total genes of 70-15. In each plot, individual tracks (A to E) denote different characteristics - Track A, chromosomes scaled according to their length; Track B, candidate clusters positioned accordingly on the chromosomes; Track C, core biosynthetic genes with respect to their positions Figure 5.16: Circos plots showing synteny among SM related genes between representative strains from Oryza and Eleusine lineages. The

on the chromosomes; Track D, histogram showing orthologous gene-pairs between the two genomes, with color codes according to those of the chromosomes of 70-15; and Track E, links representing orthologous gene-pairs between the two genomes, with color codes same as those for the 70-15 chromosomes.

5.5 Evolutionary history of the novel polyketide synthase gene

In our quest to unravel the evolutionary history of BGC-O1, we embarked on a search for orthologous and closely related counterparts of the MGG_08236 rPKS protein within the Pezizomycotina group from the MycoCosm repository (Grigoriev et al., 2014;). Interestingly, only two closely resembling homologues were identified from the fungus Colletotrichum eremochloae. Employing a phylogenetic analysis, it became evident that the rPKS 670826 from *C. eremochloae* is a true orthologue of MGG_08236 rPKS, being in the adjacent clade to the *M. oryzae* lineage (Fig 5.17A). Meanwhile, the other paralogue in *C*. eremochloae, 679399, falls within a clade restricted to the Colletotrichum genus and constitutes a sister clade to the MGG_08236 rPKS clade. Upon conducting a comparative analysis of the genomic loci encompassing both homologues in C. eremochloae and BGC-O1 in *M. oryzae*, it was revealed that these two clusters shared the rPKS and two cytochrome P450 genes with BGC-O1. However, the methyltransferase and Co-A transferase genes were found as single copies elsewhere within the *C. eremochloae* genome (Fig. 5.17B). Notably, the orthologous BGC in C. eremochloae shares an average nucleotide identity of 76% when compared to the *M. oryzae* BGC. Intriguingly, both BGCs in *C. eremochloae* share only 50% nucleotide identity with each other.

5.6 BGC-O1 genes are expressed specifically during host invasion

In our study, we conducted PCR targeting the open reading frame (ORF) region of the rPKS gene MGG_08236, using genomic DNA extracted from *M. oryzae* strains from rice and finger millet host plants (**Fig. 5.18A**). The MGG_08236 gene was found to be present in all the examined *Oryza* strains studied, except for MOS3, which was stood out as the sole *Oryza* lineage strain lacking the BGC-O1 as investigated by our in-silico analysis.

Figure 5.17: Evolutionary origin of the reducing polyketide synthase (PKS) MGG_08236 gene. A) Maximum-likelihood phylogenetic tree using protein sequences of reducing PKS genes from BGC-O1 and related gene cluster families, as well as homologues retrieved from MycoCosm repository. Tip labels depicting sequences from *Oryza* and *Eragrostis*-specific clade are marked with blue and pink background, respectively. The *Colletotrichum eremocloae* ortholog (jgi.p_Coler1_670826), closer to MGG_08236, is denoted with pink label; whereas the more distant paralogue (jgi.p_Coler1_679399) is shown in orange. Gray shaded triangles denote collapsed clades with distant sequences. Branches were supported by > 95% Bootstrap values indicated with gray circles at the nodes. The tree is rooted at midpoint. B) Comparative analysis, using Clinker tool, of the BGC-O1 or BGC-O1-like loci from three *Oryza*-specific and *C. eremochloae* genomes.

The MGG_08236 ORF was notably absent in all the *Eleusine* strains investigated, as well as in the MOS1 and MOS4 strains, both of which are placed outside of *Oryza* lineage according to our phylogenetic analysis (**Fig. 5.1B and 5.18A**).

Subsequently, we delved into the investigation of the expression profiles of the rPKS genes (MGG_08236) and three associated tailoring genes, namely methyl transferase (MGG_15107), CoA-transferase (MGG_15108) and cytochrome P450 (MGG_12496), all of which are members of the BGC-O1 locus. This was achieved through semi-quantitative RT-PCR analysis conducted at different stages of infection. Total RNA was isolated from fungal vegetative mycelia cultured in complete medium, barley leaves inoculated with M. oryzae strain and incubated for different time intervals, and uninoculated barley leaves as mock samples. These assays were conducted to assess the transcript levels of the aforementioned genes relative to those of β -Tubulin, serving as an endogeneous control. Our finding indicated that the expression of the core rPKS gene was either undetected or barely seen during vegetative growth – mycelium and pre-invasive stage - 12 hours post inoculation (hpi), respectively. However, transcript accumulation commenced during the progression of pathogenesis, with a substantial increase in expression at 24 hpi, followed by a consistent, albeit gradual, rise in expression levels until 72 hpi (Fig. 5.18B and 5.18C). The expression patterns of MGG_15107 and MGG_15108 tailoring genes displayed partial correlation with that of rPKS, albeit with a lower expression level (Fig. 5.18B and 5.18C). In contrast, MGG_12496 exhibited a different expression pattern with its highest expression levels observed in mycelium and at 48 hpi during infection (Fig. 5.18B and 5.18C).

Figure 5.18: BGC-O1 genes are specifically expressed during pathogenic development. A) Gel electrophoresis of PCR products displaying presence or absence of ORF region of rPKS MGG_08236 from genomic DNA of the indicated *M. oryzae* strains. B157, MOS2, MOS3 and MOS5 belong to the Oryza lineage; whereas, the MOS1, MEC1, MEC4, MEC5, MEC6 and MEA1 belong to the *Eleusine* lineage. * - the only *Oryza* strain that lacked the BGC-01 in in-silico analysis. ** - the Oryza strains placed outside Oryza lineage. Arrowheads corresponds to the 1 Kb size of band from Marker. B) RT-PCR gel depicting expression of genes MGG_08236 (Polyketide synthase), MGG_15107 (Methyl transferase), MGG_15108 (Co-A transferase) and MGG_12496 (Cytochrome P450) in Oryza-specific strain B157 at different stages of barley infection (12 to 96 hpi) and during vegetative growth (mycelium) in complete medium. C) Quantification of the expression of BGC-O1 genes. The intensity of each band was measured using ImageJ, and relative gene expression was calculated relative to that of β -tubulin (MGG_00604) as an endogenous control. The data on expression of MGG 08236 represents mean \pm standard deviation of mean (SDM) from three independent biological experiments. Data on expression of the tailoring genes (MGG_15107, MGG_15108 and MGG_12496) represent observation from a single experiment.

These results indicate that the MGG_08236 PKS gene is specifically expressed during pathogenesis and potentially has a key role to play during host colonization. Additionally, our findings suggest that the BGC-O1 likely comprises only two co-regulated tailoring genes.

Altogether, our in-silico analyses identified a novel PKS gene cluster in the *Oryza*-specific lineage, which likely played a key role in shaping specialization of the blast fungus to rice host.