List of Figures

Figure 1.1: A simplified diagram illustrating the plant immune system	9
Figure 1.2: Magnaporthe oryzae distribution map	10
Figure 1.3: Disease cycle of <i>M. oryzae</i>	12
Figure 1.4: Schematic showing the early invasion into host cell by blast fungus	13
Figure 1.5: Diagram depicting the array of tools for examining fungal pathogen	
genomes	15
Figure 1.6: Species tree of blast fungus showing its divergence into multiple	
host-specific lineages	18
Figure 1.7: Coinfection on common host plants as one of the potential mechanisms	
for genetic exchange between distinct M. oryzae lineages	20
Figure 1.8: MAX effectors AVR-PikD and AVR-Pia exhibit the same structural fold	24
Figure 1.9: The evolutionary dynamics of effectors	26
Figure 1.10: Fungal non-proteinaceous effectors (NPEs) illustrating potential	
effector-like functions at the interface of plant-fungal interactions	28
Figure 1.11: Secondary metabolites are produced via metabolic pathways, encoded	
by biosynthetic gene clusters	30
Figure 1.12: Population genomics to identify chemical effectors	32
Figure 2.1: Schematic showing the steps of mono-conidial isolation from a leaf	
infected with blast disease	43
Figure 2.2: Schematic depicting the Rep-PCR methodology	45
Figure 2.3: Schematic representing design of mating crosses between opposite mating	g
type strains of <i>M. oryzae</i>	48
Figure 3.1: Representative images of blast disease infected host tissues	57
Figure 3.2: Sampling sites of blast disease in the current study	58
Figure 3.3: Colony morphology of different strains of <i>M. oryzae</i>	61
Figure 3.4: Colony characteristics of representative strains of <i>M. oryzae</i>	62
Figure 3.5: Molecular fingerprinting based on Pot2 Rep-PCR	64
Figure 3.6: Molecular finger printing based on Mg-SINE Rep-PCR	65
Figure 3.7: PCR amplification of AVR-Pita gene from various rice and non-rice	
M. oryzae isolates	66

Figure 3.8: Organization of enzymatic domains in the hybrid PKS-NRPS product of	
ACE1 gene	66
Figure 3.9: PCR amplification of ACE1 gene from various rice and non-rice	
M. oryzae isolates	67
Figure 3.10: PCR amplification of AVR1-CO39 gene in different isolates	68
Figure 3.11: PCR amplification of AVR-Pik gene in various isolates	69
Figure 3.12: PCR amplification of AVR-Pizt gene in different M. oryzae strains	69
Figure 3.13: PCR amplification of PWL2 gene in different strains	70
Figure 3.14: PCR amplification confirming the mating types in various isolates from	
rice and non-rice hosts	71
Figure 3.15: Dendrogram generated by taking into account presence/absence of	
AVR genes and mating types	75
Figure 3.16: Host invasion of representative field strains of <i>M. oryzae</i> on leaf sheaths	
of four different host plants	76
Figure 3.17: Pathogenicity tests of field strains of M. oryzae	78
Figure 3.18: Mating assay displaying sexual crosses of representative field strains	79
Figure 3.19: Perithecia development as a result of successful mating between	
opposite mating type strains	80
Figure 3.20: Key factors considered for classification of <i>M. oryzae</i> field strains	
and subsequent selection for comparative genomics analyses	81
Figure 4.1: Workflow depicting the analyses performed on whole genome sequencing	
data	86
Figure 4.2: Genetic divergence of Indian population of <i>M. oryzae</i>	89
Figure 4.3: Principal component analysis (PCA) based on total SNPs identified from	
various M. oryzae strains	90
Figure 4.4: Genomic comparison of total SNPs number in genomes belonging to	
different lineages	90
Figure 4.5: Whole genome distribution of SNP density shown in the different	
chromosomes	91
Figure 4.6: Whole genome distribution of Nucleotide diversity measured as Pi per	
bp, shown along the length of different chromosomes	92

Figure 4.7: Content of repetitive elements in the de novo assembled genomes from	
each strain	94
Figure 4.8: Distribution of <i>M. oryzae</i> specific transposable elements in various	
host-specific lineages	95
Figure 4.9: Proportions of secretory proteins and effectors proteins predicted based	
on functional annotation	99
Figure 4.10: Venn diagram showing the lineage-wise clustering of proteomes	100
Figure 4.11: Phylogenetic tree based on PAV in accessory genes shows	
divergence of host-specific lineages of M. oryzae	102
Figure 4.12: Phylogenetic analysis of FAE sequences from host-specific lineages	
of <i>M. oryzae</i>	103
Figure 4.13: Presence/absence polymorphisms of known effector genes in various	
lineages of the blast fungus	106
Figure 5.1: <i>M. oryzae</i> worldwide populations are organized in host-specific lineages	110
Figure 5.2: <i>M. oryzae</i> and <i>M. grisea</i> are evolutionarily distinct species adapted to	
different hosts	111
Figure 5.3: Workflow for exploring fungal biosynthetic diversity	116
Figure 5.4: Occurrence of BGCs associated with specific classes of SM in individua	ıl
genomes of M. oryzae and M. grisea	117
Figure 5.5: Similarity network analysis of biosynthetic gene clusters (BGCs) from	
M. oryzae and M. grisea	118
Figure 5.6: Homology of melanin-associated <i>M. oryzae</i> and <i>M. grisea</i> gene cluster	
family with reference BGCs in MIBiG database	120
Figure 5.7: Analysis of homology between ACE1 gene cluster family in M. oryzae	
and M. grisea and reference BGCs in MIBiG database	121
Figure 5.8: Analysis of homology between putative epipyriculol-associated gene	
cluster family in M. oryzae and M. grisea and reference BGCs in	
MIBiG database	122
Figure 5.9: Homology of putative Squalestatin S1-associated M. oryzae and M. grist	ea
gene cluster family with reference BGCs in MIBiG database	123
Figure 5.10: Analysis of homology between Tenuazonic acid-associated gene cluster	r
families in host-adapted <i>M. oryzae</i> and <i>M. grisea</i> isolates	124

Figure 5.11: BGC-O2 is predominantly present in Oryza-specific lineage of	
M. oryzae	126
Figure 5.12: BGC-TLE is predominantly present in <i>Triticum</i> , <i>Lolium</i> and <i>Eleusine</i> -	
specific lineages of M. oryzae	127
Figure 5.13: Comparison of core biosynthetic gene region of BGC-TLE shows	
the pseudogenization in NRPS gene belonging to Triticum lineage	128
Figure 5.14: BGC-O1 is predominantly present in Oryza lineage of M. oryzae	129
Figure 5.15: Genomic localization of BGC-O1 and syntemy between the <i>Oryza</i> and	
non-Oryza lineages	131
Figure 5.16: Circos plots showing synteny among SM related genes between the	
representative strains from Oryza and Eleusine lineages	133
Figure 5.17: Evolutionary origin of the reducing polyketide synthase (PKS)	
MGG_08236 gene	135
Figure 5.18: BGC-O1 genes are specifically expressed during pathogenic	
development	137