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This chapter discusses the trajectory controllability of the governed system with
classical and non-local initial conditions over the general Banach space. The re-
sults of the trajectory controllability for governed systems are obtained through the
concept of operator semigroup and Gronwall’s inequality. This manuscript is also

equipped with examples to illustrate the applications of derived results.
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Vishant Shah 4.1. INTRODUCTION

4.1 Introduction

Impulsive differential equations play a vital role in studying the behavior of the phe-
nomenon having abrupt changes in physical problems. If the changes are at a fixed
moment then it is called instantaneous impulsive differential equations and if the
changes are over small intervals then it is called non-instantaneous impulsive differ-
ential equations. There is a wide range of applications of these impulsive evolution
equations in all fields of science namely, physical sciences, biological science, and
environmental sciences. These applications are found in the monographs [1, 84, 132]
and research articles 7, 39, 44, 79, 69] and references there in. Qualitative properties
like the existence and uniqueness of solution and continuity of the solutions of instan-
taneous and noninstantaneous differential or integro-differential or evolution equa-
tions are found in research articles with initial conditions found in research articles
[5, 24, 28, 29, 30, 46, 63, 91, 92, 100, 123, 124, 134, 135, 141, 144, 149, 152, 154, 158]

and references therein.

Nowadays, the concept of controllability plays an important role in the field of
applied mathematics. In the notion of controllability, one has to find the control
that steers the initial state at the initial time to the desired final state at the final
time. The complete controllability of a finite-dimensional linear system using a func-
tional analytic approach was first introduced by Kalmann. Many researchers were
involved in developing the different controllability of various linear and nonlinear
finite and infinite dimensional impulsive and non-impulsive systems using the func-
tional analytic approach. The notion of controllability are found in the monographs
[22, 125, 140] and articles [51, 70, 80, 82, 90] and reference their in. Trajectory
controllability is the strongest form of controllability among all other forms of con-
trollability. The study of trajectory controllability of one-dimensional systems was
initiated by George [122]. Thereafter Chalishajar, et. al. [27] generalized the con-

cept of trajectory controllability on finite and infinite-dimensional systems.

This chapter established the trajectory controllability of the system:

w'(t)

z(t)

At)x(t) + F(t,z(t) + W(t), te€ sk, tr+1), forallk=0,1,2---p

Gr(t, z(1)) + Wi(1), t € [te, sx), for all k=1,2,--- p,
(4.1.1)

with local condition z(0) = x¢ and non-local condition z(0) = xo — h(z).
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Vishant Shah 4.2. PRELIMINARIES

4.2 Preliminaries

This section discusses definitions and prepositions to establish trajectory control-
lability of the system governed by non-instantaneous impulsive evolution equation

with classical as well nonlocal conditions.

Definition 4.2.1. [70] The system (4.1.1) is completely controllable on the interval
J = [0,Ty] if for any xo,z1 € X, if there exist a control W(-)n in U (control space)

steers the system from xq att =0 to xq1 at t =Tj.

In the definition of complete controllability, there is no information on the path or
trajectory on which the given system is to be driven. Sometimes this leads to high
cost So to overcome this situation we select the path or trajectory (having minimum
cost) under which the control system drives from xy to x; over the interval J.
Searching of controller W(-) in a way that the system drives from xy to z; over the
interval is called trajectory controllability of the system. Therefore, the trajectory

controllability of the system is strongest among all types of controllability.

Definition 4.2.2. [27] Let, Cr be the set of all trajectories under which the system
(4.1.1) drives from zq to x1 over the interval J. The system (4.1.1) is trajectory
controllable if for any z € Cr, there is a controller W(-) € U such that state of the
system x(t) drives on prescribed trajectory z(t). This means z(t) = z(t) a.e. over
the interval J .

4.3 T-controllability with local conditions

Consider the system governed by the non-instantaneous impulsive evolution equation

'(t) = At)x(t) + F(t,z(t)) + W(t), t€E [Sk,tri1)
x(0) = xg

over the interval [0, 7). Here, z(t) is the state of the system lies in Banach space X
at any time ¢ € [0,Tp], A at any time ¢ is a linear operator on the Banach space X
F, Gy : [0,To] x X — X are nonlinear functions and W(t) and W;,(t) are trajectory

controller of the system.

41
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To discuss the trajectory controllability of the system governed by non-instantaneous

impulsive evolution equation (4.3.1), we have the following theorem:

Theorem 4.3.1. [f,

(A1) Linear operator A in the system (4.3.1) infinitesimal generator of Cy semi-

group.

(A2) The non-linear map F : [0,Ty] x X — X is continuous such that there exist a

non-decreasing function lp : R — R+ and positive real number ro satisfying
1F(t, 21) = F (& w2)l| < 1p(r)|lzr — a2

, forallt € [0,To], x1, 22 € B.(X) and r < rg.

(A8) The non-linear map Gy, : [0, Ty] x X — X for all k are are continuous such that

there exist constants 0 < lg, < 1 satisfying
G (t, 21) = Gi(t, z2)|| < lgillz1 — 22|

, for all t € [0,Tp] and 1, = max{ly; Vk}.
Then, the system (4.3.1) is trajectory controllable over the interval [0, Tp).

Proof. Let y(t) be any desired state trajectory in C, satisfying z(t;) = y(¢;) along
which the system (4.3.1) steered from initial state xo at ¢ = 0 to desired final state
z1 at t =1Ty.

Over the interval [0,%), the system (4.3.1) becomes:

() = A(t)a(t) + F(t,z(t) + W(t) (4.3.2)

Consider
W(t) = y'(t) — At)y(t) — F(t,y(1))

over the interval [0,¢;) in and plugging it in the (4.3.2) the system (4.3.2) becomes

'(t) = A()x(t) + F(t, x(t) + y'(t) — A)y(t) — F(t, y(t))
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Vishant Shah 4.3. T-CONTROLLABILITY WITH LOCAL CONDITIONS

with initial condition z(0) — y(0) = 0.

Choosing variable z = x — y the equation system reduces to

Z(t) = A(t)=(t) + F(t,z(t)) = F(t,y(1)) (4.3.3)

and problem of trajectory controllability of the system (4.3.2) is reduced to the
solvability of the system (4.3.3) over the interval [0,¢;). The mild solution of the
system (4.3.3) is given by:

z@=£7ﬁ—ovmam—fmmomc (4.3.4)

where, 7T (t) is Cy semigroup generated by linear operator A satisfying || 7 (¢)|| < M
for some positive number M.

Therefore,

Il < [ 17 = Oll 176 2(0) - (.Ml
gﬂféﬁﬂmWNO—y«m«

SMAMWW@WC

and using Gronwall’s inequality, we obtain z(¢) = 0 over the interval [0,¢;). Hence,
z(t) = y(t) for all t € [0,¢1). Therefore, the system is trajectory controllable over
the interval [0, t,).

Over the interval [ty, si), the system becomes
x(t) = Gi(t, z(t)) + Wi(t), (4.3.5)

and at ¢ = ¢; value of the state z is given by x(t}) = Gr (¢, z(t})) + Wi(t})).
Plugging the trajectory controller Wy(t) = y(t) — Gi(t, y(t)) over the interval [t, si)
in the system (4.3.5) the system becomes:

2(t) —y(t) = G(t,y(1)) — Gi(t,y(t))

43



Vishant Shah 4.3. T-CONTROLLABILITY WITH LOCAL CONDITIONS

Choosing z(t) = z(t) — y(t) we obtain
2(t) = Gr(t, x(t)) — Gu(t, y(1))

and the value of the z at ¢t =t} is zero. Therefore, we have

2O < NGk (2, 2(2)) = Gr(t, y ()] < Lllz()]],

using (A3) I, < 1 we obtain z(t) = 0 for all ¢ € [ty, s,) Therefore, system (4.3.1) is

T-Controllable over the interval [tx, si). Moreover, z(s;) = 0 as G,.s are continuous.

Over the interval [sy, x4 1) the system (4.3.1) becomes:

a'(t) = A(t)x(t) + F(t, z(t)) + W(t)

4.3.6
x(sk) = y(sk) 130
Choose the controller over the interval [sy, tx1 as:
W(t) =y'(t) — Al)y(r) — F (¢ y(t))
and plugging it in the equation (4.3.6) we get,
2'(t) = A()z(t) + F(t,2(t) + y'(t) — Al)y(t) — F (¢, y(?))
considering z(t) = z(t) — y(t), above expression becomes:
(8) = AW=(0) + F (6, 0) - Fo, (1) s
z(sg) =0,
Therefore .
|1z(@)]] S/ T (& = O [F(C z(C) = F(Cy(O)]]|de
< [ 1 0)[a() = w(C)]ldC
0
<M l d
<M [ 1m0l
and using Gronwall’s inequality, we obtain z(t) = 0 over the interval [sg,tr1).

Hence, x(t) = y(t) for all t € [sg, tx+1). Therefore, the system is T- controllable over

the interval sy, tgi1)-
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Since, the system is T-controllable over the intervals [0, 1), [Sg, tk+1) and [tx, Sk)
for all k. Hence, the system is controllable over the entire interval [0,7,]. This

completes the proof of the theorem. O]

Example 4.3.1. Let, X = L([0, 7], R) and consider the system governed by a non-

instantaneous impulsive evolution equation:

—aHéi’ L PH(t,0) + F(t, H(t,9) + w(t, ) ¢ €1[0,1/3)U[2/3,1],
H(t,¢) = Gi(t, H(t,v)) + wi(t, ) tel1/3,2/3), (138)
H(t,00=0 H(t,7)=0 t>0,
H(0,v) = Ho() 0<¢<m,

over the interval [0, 1].
Defining the operator on the space X as A(t) = 03, A(t) is the infinitesimal generator
of the Cy semigroup T (t). The representation of T (t) is

T(t)z = Z exp(mt) < 2z, om > O
m=0

where, ¢,, = \/§sm(m/1) for allm =1,2,--- is the orthonormal basis corresponding

to eigenvalue ji,, = —m? of the operator A.

With this concept the equation (4.3.8) can be rewritten as an abstract equation on

the space X as

() = A(t) + F(t, z) + W(t) te0,1/3)U[2/3,1],
z(t) = Gi(t,x) + Wy te[1/3,2/3), (4.3.9)
x(0) = xo,

where, x(t) = H(t,-),W(t) = w(t, ) and Wi(t) = wy(t,¢). The system (4.3.9) is
tragectory controllable over the interval [0,1] if the functions F and Gy satisfy the
hypotheses of the theorem.
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4.4 T-controllability with non-local conditions

Consider the system governed by the non-instantaneous impulsive evolution equation

Y1) = A0)a(t) + F(t2(t)) + W), 1€ [se.tye)
(Zf) = Qk(t $( )) + Wk(t), t € [tk, Sk) (441)
z(0) = h(x)

over the interval [0,75]. Here, z(t) is the state of the system lies in Banach space X
at any time t € [0, Ty, A(t) at any time ¢ is a linear operator on the Banach space
X, F, Gk : [0, Ty] x X — X are nonlinear functions, Wk(t) are trajectory controller
of the system and h : X — X is the operator representing the non-local conditions.

The mild solution of the equation (4.4.1) is given by

/ Tt = 0)[F(G.ae) + WO, teon)

2(t) = { Gult, 2(£)) + Wi(t) £ € [y, %)
T(0)Gu(sws (1)) + / Tt = O FGa() + WO 1wt
' (4.4.2)

where, 7T (t) is semigroup generated by the linear operator A(t).

The following theorem discusses the trajectory controllability of the system governed
by the equation (4.4.1).

Theorem 4.4.1. [f,
(A1) Linear operator A in the system (4.3.1) infinitesimal generator of Cy semi-
group.

(A2) The non-linear map F : [0,Ty] x X — X is continuous such that there exist a

non-decreasing function lp : R, — R+ and positive real number ry satisfying
|| F(t,x1) — F(t,z2)|| < lp(r)|jzr — 22|

, for allt € [0,Tp], x1,29 € B.(X) and r < ry.

(A8) The non-linear map Gy, : [0, Ty] x X — X for all k are are continuous such that
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Vishant Shah 4.4. T-CONTROLLABILITY WITH NON-LOCAL CONDITIONS

there exist constants 0 < lg, < 1 satisfying
|Gk (t, 21) — Gr(t, 22)|| < lgellz1 — 22]],

for allt € [0,Ty] and l; = max{l,; Vk}.

(A4) The function h : X — X is Lipchitz continuous with Lipchitz constant 0 < [, <
1.

Then, the system (4.4.1) is trajectory controllable over the interval [0, Tp].

Proof. Let y(t) be any desired state trajectory in C, satisfying z(¢;7) = y(¢;) along
which the system (4.4.1) steered from initial state z(0) = h(x) at ¢ = 0 to desired
final state x; at ¢t = Tj.

Over the interval [0,¢;), the system (4.4.1) becomes:

(4.4.3)

Consider trajectory controller
W(t) =y'(t) — A)y(t) — F(t,y(t))
over the interval [0,¢;) and plugging it in the system (4.4.3), the system becomes
a'(t) = A(t)x(t) + F(t, () + 3/ (t) = ARy (t) — F(t,y(t))

with initial condition z(0) — y(0) = h(x) — h(y).

Choosing variable z = x — y the equation system reduces to

(4.4.4)

and problem of trajectory controllability of the system (4.4.3) is reduced to the
solvability of the system (4.4.4) over the interval [0,¢;). The mild solution of the
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Vishant Shah 4.4. T-CONTROLLABILITY WITH NON-LOCAL CONDITIONS

system (4.4.4) is given by:

2(t) = T(O)[h(x) = h(y)] + /0 Tt = QIF (¢ x(C)) = F(Cy()]d¢ (4.4.5)

where, T (t) is Cy semigroup generated by linear operator A satisfying ||7(¢)|| < M
for some positive number M.
Therefore,

IV@HSHT@MW@)—MMN+AHT@—OHmf@w@D—FKw@DM%
SAHMﬂﬂ—MWMHWAlﬂﬂWﬂﬁ—MOWC

ngmm+MAumwmwc

Mlp(r
el < 1258 Fioac

Using Gronwall’s inequality, we obtain z(t) = 0 over the interval [0,¢;). Hence,
x(t) = y(t) for all t € [0,¢1). Therefore, the system (4.4.1) is trajectory controllable

over the interval [0,;).

This implies

Over the interval [tg, si), the system becomes
2(t) = Gu(t, x(t)) + Wi(1), (4.4.6)

and at ¢ = ¢; value of the state z is given by x(t}) = Gp (¢, z(t})) + Wi(t}).
Plugging the trajectory control Wy (t) = y(t) — Gi(t, y(t)) over the interval [ty, si)
in the system (4.4.6) the system becomes:

2(t) —y(t) = Gi(t, 2(t)) — Gi(t, y(1))
Choosing z(t) = x(t) — y(t) we obtain

2(t) = Gi(t, x(t)) — Gr(ty(t))

and the value of the z at t = t; is zero. Therefore, we have

2O < 19k (8, 2(8)) = Gelt, y ()] < Ll[z(D]],
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Vishant Shah 4.4. T-CONTROLLABILITY WITH NON-LOCAL CONDITIONS

using (A3) l; < 1 we obtain z(t) = 0 for all ¢ € [tg,s;) and using continuity of
Gr leads to z(sx) = 0. Therefore, system (4.4.6) is T-Controllable over the interval

[tk, Sk) .
Over the interval sy, ;1) the system (4.3.1) becomes:

2'(t) = A(t)x(t) + F(t, z(t)) + W(t)

4.4.7
x(sk) = y(sk) ( )
Choose the control over the interval [sg, ;1) as:
W(t) =y (t) — A(t)y(t) — F(t, y(t))
and plugging it in the equation (4.4.7) we get,
2'(t) = A)x(t) + F(t,z(t) + y'(t) — A)y(t) — F(t,y(t))
, considering z(t) = z(t) — y(t), above expression becomes:
2(t) = A(t)z(t) + F(t, z(1)) — F(t,y(1)) (1438)
z(sk) =0,
Therefore,
[|z()]] S/ T = Ol TIFC 2(6) — F(& y(E)]lld¢
< [ () (0) - w(Olld¢
0
<M [ I d
<M [ im0l
and using Gronwall’s inequality, we obtain z(t) = 0 over the interval [sy,tgi1).

Therefore, x(t) = y(t) for all t € [sg, tx+1). Thus, the system is trajectory control-

lable over the interval [sg, 1)

Since, the system is T-controllable over the intervals [0, 1), [Sg, tk+1) and [tx, Sk)
for all k. Hence, the system is controllable over the entire interval [0,Ty]. This

completes the proof of the theorem. n

Example 4.4.1. Let, X = L?([0, 7], R) and consider the system governed by a non-
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instantaneous impulsive evolution equation:

—aHéi’ /. OLH(t,v) + F(t, H(t, ) +w(t,p)  te0,1/3)U[2/3,1],
H(t,9) = Gy(t, H(t,1)) + wi(t, 1)) te[1/3,2/3), (4.4.9)
H(t,0)=0 H(t,m)=0 t >0,
H(Oﬂvb):H(taqu)) O<¢<7T,

over the interval [0, 1]. Here, H(t,v) is nonlocal opertor defined by y ., c; H(t;, ).

Defining the operator on the space X as A(t) = 03, A(t) is the infinitesimal generator
of the Cy semigroup T (t). The representation of T (t) is

T(t)z =Y explpmt) < 2, ém > b

m=0
where, ¢, = V/2sin(ny) for allm = 1,2, --- is the orthonormal basis corresponding
to eigenvalue ji,, = —m? of the operator A.

With this concept the equation (4.4.9) can be rewritten as an abstract equation on

the space X as

2(t) = A(t) + F(t,z) + W(t)  te0,1/3)U[2/3,1],
2(t) = Gi(t,z) + Wi(t) te[1/3,2/3), (4.4.10)

where, x(t) = H(t,-),W(t) = w(t,-), Wi(t) = wi(t,y) and h(z) = > o cux(t;).
The system (4.4.10) is trajectory controllable over the interval [0, 1] if the functions
F, Gy, and h satisfy the hypotheses of the theorem.

4.5 Conclusion

In this chapter, we have discussed the trajectory controllability of the system gov-
erned by a non-instantaneous impulsive evolution equation with classical and nonlo-
cal conditions on the infinite-dimensional Banach space. Results for the trajectory

controllability were obtained through the concept of nonlinear functional analysis,
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Lipschitz conditions and Gronwall’s inequality. Illustrations were discussed as an

application of the derived results.
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