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In this chapter, we have established conditions for the existence and uniqueness of

mild and classical solutions to the fractional order Cauchy problem by including and

without including impulses over the completed norm linear space (Banach space).

Conditions are established using the concept of generators and the generalized Ba-

nach fixed point theorem, which are weaker conditions than the previously derived

conditions. We have also established the conditions under which a mild solution to

the problem gives rise to a classical solution to the given problem. Finally, illustra-

tions of the existence and uniqueness of the solution are provided to validate our
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Vishant Shah 7.1. INTRODUCTION

derived results.

7.1 Introduction

The various problems in physics, engineering, and biological sciences that have

abrupt changes for a small amount of time are well explained in terms of impulses.

Therefore, problems like removal of insertion of biomass, populations of species with

abrupt changes, abrupt harvesting, and various problems containing abrupt changes

are modeled into impulsive differential equations [7, 39, 44, 69, 79, 84, 90, 100, 124].

Many researchers have studied the qualitative properties like existence, uniqueness,

and asymptotic behavior of impulsive differential equations using various techniques.

These studies are found in the articles cited [3, 5, 54, 92, 123, 131] and reference

therein.

On the other hand, due to the inherited property of the fractional derivative operator

[20, 31] many nonlinear complicated problems, such as seepage flow in porous media,

anomalous diffusion, wave and transport, and many other problems, are now being

remodeled into fractional differential equations [43, 49, 61, 60, 98, 114, 120, 143].

Fractional calculus developed to become one of the most well-liked areas of applied

mathematics as a result of the numerous uses of fractional differential equations.

This draws a lot of academics interested in differential equations and fractional cal-

culus. Numerous scholars, including [37, 43, 78, 131], have examined the qualitative

properties, such as the existence and uniqueness of mild solutions to fractional equa-

tions using diverse methodologies. Researchers have looked into the existence and

originality of impulsive fractional differential equations. Benchohra and Slimani[18]

investigated the presence and distinctiveness of a mild solution to impulsive dif-

ferential equations in one dimension. To find adequate criteria for the existence

and uniqueness of the mild solution, they employed the fixed point theorems of

Banach, Schaefer, and Leray-Schauder. With the use of the Banach contraction

principle and semigroup theory, Mohphu [102] researched the existence and unique-

ness of mild solutions. By assuming the sectorial property of the linear operator

A, Ravichandran and Arjunan [119] investigated the existence and uniqueness of

the classical and mild solutions of impulsive fractional integro-differential equations

on Banach space. Balachandra et al. By omitting the semigroup property from
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Mohphu’s work, al. [11] examined the existence and uniqueness of mild solutions to

impulsive fractional integro-differential equations on a Banach space. The classical

solution of a fractional order differential equation of the Caputo type is described by

Kataria and Patel [73], who also examine the congruence between the classical and

mild solutions of more extended impulsive fractional equations on a Banach space.

Krasnoselskii’s fixed point was utilized by Borah and Bora [21] and Kataria et al.

[75] to demonstrate the necessary conditions for the existence of mild solutions for

the non-local fractional differential equations with non-instantaneous impulses.

In this chapter, we develop the necessary criteria for a mild solution and classical

solution of the impulsive fractional evolution problem,

cDαx(t) = Ax(t) + F(t, x(t)) t ̸= tk, k = 1, 2, · · · , p

∆x(tk) = Ik(x(tk)), t = tk, k = 1, 2, · · · , p

x(t0) = x0

(7.1.1)

over the interval [0, T0] on a Banach space X. Here, cDα denotes Caputo fractional

differential operator of order 0 < α ≤ 1, A : X → X is linear operator and F :

[0, T0] × X → X is nonlinear function. Ik : X → X are impulse operator at time

t = tk, fro k = 1, 2, · · · , p and their existence and uniqueness. We also developed

conditions under which classical and mild solutions of (7.1.1) coincide.

7.2 Prelimnaries

In this section, we introduce notations, definitions, assumptions, and, preliminary

facts used throughout this paper.

Definition 7.2.1. ([78, 112]) The Riemann-Liouville fractional integral operator of

α > 0, of function f ∈ L1(R+) is defined as

Iαt0+f(t) =
1

Γ(α)

∫ t

t0

(t− s)α−1f(s)ds,

provided the integral on the right side exists. Where Γ(·) is the gamma function.

Definition 7.2.2. ([78, 112]) The Caputo fractional derivative of order α > 0,
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n− 1 < α < n, n ∈ N, is defined as

cDα
t0+
f(t) =

1

Γ(n− α)

∫ t

0

(t− s)n−α−1d
nf(s)

dsn
ds,

provided the integral on the right exists and n = [α] + 1.

Definition 7.2.3. One and two-parameter Mittag-Leffler function is defined as:

Eα(z) =
∞∑
n=0

zn

Γ(αn+ 1)
, Eα,β(z) =

∞∑
n=0

zn

Γ(αn+ β)

for all α, β > 0 and z ∈ C respectively.

Definition 7.2.4. [135] Let X be Banach space. Then the set

PC([t0, T ], X) =

{
u : [t0, T ] → X;u is continuous at t ̸= tk, left continuous at t =

tk, right limit at t = tk exist for all k = 1, 2, · · · , p
}
.

This set PC([t0, T ], X) is Banach space under the norm defined by ||u||PC = sup
{
||x(t)||;

t ∈ [t0, T ]
}
.

7.3 Motivation

This section is devoted to the motivation behind studying the existence and unique-

ness of solutions for the Caputo Cauchy problem. Consider the non-homogeneous

diffusion equation without impulses

cDαz(t, x) = zxx(t, x) + F (t, x),

z(t, 0) = z(t, π) = 0,

z(0, x) = z0(x)

(7.3.1)

over the rectangle [0, T0] × [0, π]. The solution of this equation (7.3.1) using the

Laplace transform and Fourier series at any time t ∈ [0, T0] is given by

z(t, x) = Tα(t)z0(x) +

∫ t

0

(t− s)α−1Tα,α(t− s)F (s, x)ds (7.3.2)
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where, the families of operators Tα(t), Tα,β(t) : X → X for all t ∈ [0, T0] are defined

as

Tα(t)z =
∞∑
n=1

Eα(−n2tα) < z, ϕn > ϕn

and

Tα,β(t)z =
∞∑
n=1

Eα,β(−n2tα) < z, ϕn > ϕn

in the space

X =
{
z : [0, π] → R : z′′ exists and z(0) = z(π) = 0

}
the functions Eα(·) and Eα,β(·) are Mittag-Leffler functions of one and two-parameter

family respectively and ϕn(x) are orthonormal Fourier basis corresponding to eigen-

values.

In view of the equation (7.3.2) we can define a mild solution of a semilinear diffusion

equation
cDαz(t, x) = zxx(t, x) + F (t, z),

z(t, 0) = z(t, π) = 0,

z(0, x) = z0(x)

(7.3.3)

as a function u satisfy the equation

z(t, x) = Tα(t)z0(x) +

∫ t

0

(t− s)α−1Tα,α(t− s)F (s, z)ds (7.3.4)

where, the families of operators Tα(t), Tα,β(t) are defined above.

Observe that the operator A = ∂xx in equation (7.3.3) is neither bounded nor

semigroup property but solutions of equation (7.3.3) exist under certain conditions

(derived in the Section -7.4). From this, we can say that the function u is the mild

solution of diffusion equation (7.3.3) if u satisfies the integral equation (7.3.4). Using

this concept we can easily study the various qualitative properties like existence and

uniqueness of solution, various types of stability and controllability of the Caputo

fractional evolution system (7.1.1) with and without impulses. This motivates us

to study the existence and uniqueness of solutions of Caputo fractional evolution

equation (7.1.1).
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7.4 Mild and Classical solutions without Impulses

In this section, we will discuss the existence and uniqueness of classical and mild

solutions of the fractional order evolution equation (7.1.1) without impulses by using

the concept of generators, motivated by the previous section.

Consider the fractional order evolution equation without impulses over the interval

[0, T0] of the form:
cDαx(t) = Ax(t) + F(t, x(t)),

x(0) = x0
(7.4.1)

in the general Banach space X, where A : X → X is linear operator, cDα is fractional

differential operator of Caputo type for 0 < α ≤ 1 and F : [0, T0] × X → X is

nonlinear function.

We define the operators generated by the linear operator A.

Definition 7.4.1. The families of operators Tα(t), Tα,β(t) : X → X, t ≥ 0 are

generated by a linear operator A : X → X satisfies the following properties:

(1) Tα(0) = I and Tα,β(0) = I where, I is identity operator

(2) T (t) satisfies the linear fractional equation cDαx(t) = A(t)x(t) in Banach

space X

(3) limβ→1 Tα,β(t) = Tβ(t)

Example 7.4.1. The operators Tα(t), Tα,β(t) : X → X for all t ∈ [0, T0] are defined

as

Tα(t)z =
∞∑
n=1

Eα(−n2tα) < z, ϕn > ϕn

and

Tα,β(t)z =
∞∑
n=1

Eα,β(−n2tα) < z, ϕn > ϕn

defined on the space

X =
{
z : [0, π] → R : z′′ exists and z(0) = z(π) = 0

}
are generated by the linear operator A = ∂2

∂x2
satisfies the above properties.
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With the operators Tα(·) and Tα,β,the mild and classical solutions of Caputo frac-

tional evolution equation (7.4.1) is defined as follows

Definition 7.4.2. The function x ∈ X is called mild solution of Caputo fractional

order (0 < α ≤ 1) evolution equations (7.4.1) over the interval [0, T0] if u satisfies

the equation of the form:

x(t) = Tα(t)x0 +

∫ t

0

(t− s)α−1Tα,α(t− s)F(s, x)ds (7.4.2)

where, T (t) and Tα(t) are generated by the linear operator A.

Definition 7.4.3. The solution x ∈ X is a classical solution of semi-linear fractional

order evolution equation (7.4.1) of α order Caputo fractional derivative with respect

to t exists and continuous.

Theorem 7.4.1. The fractional order Caputo fractional evolution equation (7.4.1)

has a unique mild solution over the interval [0, T0] if the following properties are

satisfied.

(1) The families of operators Tα(t) and Tα,β(t) generated by the operator A are

continuous and bounded over [0, T0]. That is, there exist positive constants M

and Mα such that ||Tα(t)|| ≤M and ||Tα,β(t)|| ≤Mα for all t ∈ [0, T0].

(2) The nonlinear function F is continuous with respect to t and there exist r0 such

that F Lipchitz continuous with respect to x in Br0 = {x ∈ X; ||x|| ≤ r0}. That
is, there exist positive constant L such that ||F(t, x) − F(t, y)|| ≤ L||x − y||
for all t ∈ [0, T0] and x, y ∈ Br0.

Proof. Define the operator P : X → X as:

Px(t) = Tα(t)x0 +

∫ t

0

(t− s)α−1Tα,α(t− s)F(s, x)ds.

To show (7.4.1) has a unique mild solution it is sufficient to show P(m) is a contraction

for some m ∈ N.
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For any u, v ∈ Br0 and n ∈ N, we have

||P(n)u(t)− P(n)v(t)||

≤MαL

∫ t

0

(t− s)α−1||P(n−1)x(s)− P(n−1)v(s)||ds

≤M2
αL

2

∫ t

0

∫ s1

0

(t− s1)
α−1(s1 − s)α−1||P(n−2)x(s)− P(n−2)v(s)||dsds1

Continuing this process to get

||F (P )u(t)− P(n)v(t)||

≤Mn
αL

α

∫ t

0

∫ s1

0

· · ·
∫ sn−1

0

(t− s1)
α−1(s1 − s)α−1 · · · (sn−1 − s)α−1||u(s)− v(s)||

dsdsn−1 · · · ds1

≤Mn
αL

n

∫ T0

0

∫ T0

0

· · ·
∫ T0

0

(T0 − s1)
α−1(T0 − s2)

α−1 · · · (T0 − s)alpha−1||u− v||

dsdsn−1 · · · ds1

≤Mn
αL

n

∫ T0

0

(T0 − s)n(α−1) (T0 − s)n

(n− 1)!
||u− v||ds

≤ (MαL)
nT nα0

n!α
||u− v||

Therefore, for any fixed T0 and sufficiently large integer n say m the operator P(m)

is contraction therefore, by generalized Banach fixed point theorem P has a unique

fixed point. Hence, (7.4.1) has a unique mild solution given by (7.4.2).

Example 7.4.2. The operators Tα(t) and Tα,β(t) generated for the equation (7.3.4)

are continuous and bounded. Hence, there exist positive constants M and Mα such

that ||Tα(t)|| ≤M and ||Tα,β(t)|| ≤Mα. Therefore, the equation (7.3.3) has a unique

mild solution given by (7.3.4) since F is continuous with respect to t and Lipchitz

continuous with respect to u in a given Banach space over the interval [0, T0].

Remark 7.4.1. We have the following observations from the theorem-7.4.1.

(1) Conditions derived in the Theorem-7.4.1 are more liberal than previously de-

rived conditions by the author for a similar system.

(2) The conditions obtained in Theorem-7.4.1 are sufficient but not necessary.
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Now we consider a system in which the initial time is taken t = t0 instead of t = 0.

Thus the theorem-7.4.1 can be extended as follows:

Corollary 7.4.1. The fractional evolution equation

cDαx(t) = Ax(t) + F(t, x(t)),

x(t0) = x0
(7.4.3)

has unique mild solution over interval [t0, T0] given by

x(t) = Tα(t− t0)x0 +

∫ t

t0

(t− s)α−1Tα,α(t− s)F(s, x)ds (7.4.4)

if the following conditions are satisfied:

(1) The families of operators Tα(t) and Tα,β(t) generated by the operator A are

continuous and bounded over [t0, T0]. That is, there exist positive constants M

and Mα such that ||Tα(t)|| ≤M and ||Tα,β(t)|| ≤Mα for all t ∈ [t0, T0]

(2) The nonlinear function F is continuous with respect to t and Lipchitz con-

tinuous with respect to x. That is, there exist positive constant L such that

||F(t, x)−F(t, y)|| ≤ L||x− y|| for all t ∈ [t0, T0] for x, y ∈ Br0.

Condition for the classical solution of the system (7.4.1) is given by the following

theorem:

Theorem 7.4.2. The mild solution of (7.4.1) is the classical solution if

(1) x0 ∈ D(A) (Domain of A)

(2) The generators Tα(t) and Tα,β(t) are continuously differentiable for all t > 0.

(3) The function F is differentiable with respect to t and continuous with respect

to x.

Proof. Let x(t) be the mild solution of (7.4.1). Therefore x(t) satisfies the cor-

responding integral equation (7.4.2). Assuming conditions (1),(2), and (3) of the

hypothesis, the fractional Caputo derivative of x(t) in equation (7.4.2) exists and is

continuous. Moreover for all t ∈ [0, T0] the function x(t) ∈ D(A). Hence the mild
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solution x(t) defined by (7.4.2) is a classical solution of the equation (7.4.1). This

completes the proof of the theorem.

Similarly one has the classical solution for the system (7.4.4).

Corollary 7.4.2. The mild solution given by (7.4.4) of (7.4.3) is the classical so-

lution if

(1) x0 ∈ D(A) (Domain of A)

(2) The generators Tα(t) and Tα,β(t) are continuously differentiable for all t ∈
[t0, T0]

(3) The function F is differentiable with respect to t and continuous with respect

to x.

The following theorems give the uniqueness of the classical solution of both systems.

Theorem 7.4.3. Equation (7.4.1) has unique classical solution over the interval

[0, T0] if

(1) x0 ∈ D(A) (Domain of A).

(2) The generators Tα(t) and Tα,β(t) of the linear operator A are continuously

differentiable and bounded over the interval [0, T0].

(3) The function F is differentiable with respect to t and Lipchitz continuous with

respect to x in Br0.

Proof. Using condition (2) the generators are continuously differentiable and bounded

over [0, T0] so, they are continuous and bounded over [0T0]. This means there exist

positive constants M and Mα such that ||Tα(t)|| ≤ M and ||Tα,β(t)|| ≤ Mα and

condition (3) the function F is continuous with respect t and Lipchitz continuous

with respect to x and applying theorem-7.4.1 the equation (7.4.1) and has unique

mild solution given by (7.4.2). Assuming (1), (2) and (3) this mild solution becomes

a classical solution of the equation (7.4.1). Since the mild solution is unique, the

classical solution is also unique.
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Corollary 7.4.3. Equation (7.4.3) has unique classical solution over the interval

[t0, T0] if

(1) x0 ∈ D(A) (Domain of A).

(2) The generators Tα(t) and Tα,β(t) of the linear operator A are continuously

differentiable and bounded over the interval [t0, T0].

(3) The function F is differentiable with respect to t and Lipchitz continuous with

respect to x in Br0.

Example 7.4.3. Consider the fractional order equation

cDαw(t, x) + w
∂w

∂x
(t, x) +

∂2w

∂x2
(t, x) = F(t, w(t, x)) (7.4.5)

on the domain [0, T0] boundary conditions

w(t, 0) = w(t, 2π) = 0 (7.4.6)

with initial condition w(0, x) = w0. The domain of the operator Aw = −∂2w
∂x2

is

D(A) =
{
z ∈ L2[0, 2π] : z′′ continuous and satisfies boundary conditions

}
.

Then the mild solution in the interval [0, T0] of the equation (7.4.5) with conditions

(7.4.6) is given by

w(t, x) = Tα(t)w0 +

∫ t

0

(t− s)α−1Tα,α(t− s)
{1
2

∂w2

∂x
+ f(s, w)

}
ds (7.4.7)

where,

Tα(t)z =
∞∑
n=1

Eα(−n2tα) < z, ϕn > ϕn

and

Tα,β(t)z =
∞∑
n=1

Eα,β(−n2tα) < z, ϕn > ϕn

are the generators of the linear operator A. ϕn(x) are orthogonal Fourier basis

functions in L2[0, 2π].

We have the following observations:

(1) The generators Tα(t) and Tα,β(t) are defined in equation (7.4.7) are continu-

ously differentiable with respect to t. Therefore there exists positive constants
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M and Mα such that ||Tα(t)|| ≤M and ||Tα,β(t)|| ≤Mα respectively.

(2) The first non linear term in (7.4.5) 1
2
∂w2

∂x
is composition of two continuous

operators Pw = 1
2
∂w
∂x

and Qw = w2 which are continuous with respect to t and

Lipchitz continuous with respect to w in finite closed ball Br0 as the operator

P is linear and the partial derivative of Q with respect to w exist for every w.

Moreover, P and Q are differentiable with respect to arguments t and w.

Therefore equation (7.4.5) has a unique mild solution given by (7.4.7) if the second

term F(t, w) is continuous with respect to t and Lipchitz continuous with respect

to w The mild solution (7.4.7) is unique classical solution of (7.4.5) if F(t, w) is

differentiable and w0 ∈ D(A).

7.5 Mild and Classical solutions with Impulses

In this section, we are going to derive a set of sufficient conditions for the existence

and uniqueness of classical as well mild solution of impulsive fractional evolution

equation (7.1.1). We are also deriving the conditions in which the classical and mild

solutions coincide.

Definition 7.5.1. Classical Solution[73]

A solution x(t) is a classical solution of the equation (7.1.1) for 0 < α < 1 if

x(t) ∈ PC([0, T0],X)∩Cα(J ′,X) where, J ′ = [0, T0]−{t1, t2, · · · , tp} and Cα(J ′,X) ={
u : J ′ → X :c Dαx(t) exist and continuous at each t ∈ J ′}, x(t) ∈ D(A) (Domain

of A) for t ∈ J ′ and satisfies (7.1.1) on [0, T0].

Definition 7.5.2. Mild Solution

A function x(t) ∈ PC([0, T0],X) is a mild solution of the equation (7.1.1) if it

satisfies

x(t) =


Tα(t− ti)

(∏1
k=i Tα(tk − tk−1)

)
x0 + Tα(t− ti)

∑i
j=1

(∏2
k=j Tα(tk − tk−1

)∫ tj
tj−1

(tj − s)α−1Tα,α(tj − s)F(s, x(s))ds+
∫ t
ti
(t− s)α−1Tα,α(t− s)F (s, x(s))ds

+Tα(t− ti)
∑i

j=1

(∏3
k=i Tα(tk − tk−1)

)
Ikx(tk)

(7.5.1)

for each t ∈ [ti, ti+1).
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Here, the families of operators T (t) and Tα(t) are generated by the linear operator

A.

Theorem 7.5.1. The fractional order semi-linear impulsive evolution equation (7.1.1)

has a unique mild solution over the interval [0, T0] if the following properties are sat-

isfied.

(1) The families of operators Tα(t) and Tα,β(t) generated by the operator A are

continuous and bounded over [0, T0]. That is there exist positive constants M

and Mα such that ||Tα(t)|| ≤M and ||Tα,β(t)|| ≤Mα for all t ∈ [0, T0].

(2) The nonlinear function F is continuous with respect to t and Lipchitz contin-

uous with respect to u in Br0. That is there exist positive constant L such that

||F(t, u)−F(t, v)|| ≤ L||u− v|| for all t ∈ [0, T0] and u, v ∈ Br0.

(3) Impulses Ik at t = tk for k = 1, 2, · · · , k are continuous and bounded.

Proof. Over the interval [0, t1] the equation (7.1.1) becomes,

cDαx(t) = Ax(t) + F(t, x(t)),

x(t0) = x0
(7.5.2)

Assuming conditions (1) and (2) of the hypotheses and using theorem-7.4.1 the

equation (7.5.2) has a unique mild solution over the interval [0, t1) given by

x(t) = Tα(t− t0)x0 +

∫ t

t0

(t− s)α−1Tα,α(t− s)F(s, x(s))ds. (7.5.3)

At t = t1 the mild solution x(t−1 ) becomes:

x(t−1 ) = Tα(t1 − t0)x0 +

∫ t1

t0

(t1 − s)α−1Tα,α(t1 − s)F(s, x(s))ds.

Over the interval [t1, t2) the equation (7.1.1) becomes:

cDαx(t) = Ax(t) + F(t, x(t)),

x(t+1 ) = x1 = x(t−1 ) + I1u(t1)
(7.5.4)

Here, the impulse operator I1 is continuous and bounded. Assuming conditions (1)

and (2) and applying corollary 7.4.1, the equation (7.5.4) has a unique mild solution
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over the interval [t1, t2) given by

x(t) = Tα(t− t1)u1 +

∫ t

t1

(t− s)α−1Tα,α(t− s)F(s, x(s))ds. (7.5.5)

Continuing in this way the equation (7.1.1) over the interval [ti, ti+1) becomes

cDαx(t) = Ax(t) + F(t, x(t)),

x(t+i ) = xi = x(t−i ) + Iixti).
(7.5.6)

Assuming condition (1) and (2) of the hypotheses and applying corollary-7.4.1 the

equation (7.5.6) has unique mild solution over the interval [ti, ti+1) given by

x(t) = Tα(t− ti)ui +

∫ t

ti

(t− s)α−1Tα,α(t− s)F(s, x(s))ds. (7.5.7)

Finally over the interval [tp, T0] the equation (7.1.1) becomes:

cDαx(t) = Ax(t) + F(t, x(t)),

x(t+p ) = x1 = x(t−p ) + Ipx(tp).
(7.5.8)

Assuming condition (1) and (2) of the hypotheses and applying corollary-7.4.1 the

equation (7.5.8) has unique mild solution over the interval [tp, T0] given by

x(t) = Tα(t− tp)up +

∫ t

tp

(t− s)α−1Tα,α(t− s)F(s, x(s))ds. (7.5.9)

Therefore for any t ∈ [ti, ti+1) for i = 1, 2, · · · , p the equation (7.1.1) has unique

mild solution given by

x(t) = Tα(t− ti)xi +

∫ t

ti

(t− s)α−1Tα,α(t− s)F(s, x(s))ds

= Tα(t− ti)[x(t
−
i ) + Iix(ti)] +

∫ t

ti

(t− s)α−1Tα,α(t− s)F(s, x(s))ds
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Substituting the values of xk’s for k = 1, 2, · · · , i we obtained,

x(t) = Tα(t− ti)
( 1∏
k=i

Tα(tk − tk−1)
)
x0 + Tα(t− ti)

i∑
j=1

( 2∏
k=j

Tα(tk − tk−1

)
∫ tj

tj−1

(tj − s)α−1Tα,α(tj − s)F(s, x(s))ds

+

∫ t

ti

(t− s)α−1Tα,α(t− s)F(s, x(s))ds+ Tα(t− ti)
i∑

j=1

( 3∏
k=i

Tα(tk − tk−1)
)
Ikx(tk).

We complete the proof by showing x(t) ∈ PC([0, T0],X) for all t ∈ [0, T0].

If t ∈ [0, T0] for all j = 1, 2, · · · , p then t ∈ [ti, ti+1) for atleast one i. Assuming

conditions (1), (2) and (3) we get the continuity of u at t ̸= ti and left continuous

at t = ti and the right limit exists at t = ti. Therefore x(t) ∈ PC([0, T0],X). Hence,
equation (7.1.1) has unique mild solution in PC([0, T0],X).

Theorem 7.5.2. The mild solution (7.5.1) of (7.1.1) is the classical solution if

(1) The generators Tα(t) and Tα,β(t) are continuously differentiable for all t > 0.

(2) The function F is diffrentiable with respect to t and continuous with respect to

x.

(3) Impulses Ik at t = tk are for k = 1, 2, · · · , k differentiable and bounded.

(4) x0 and Ikx(tk) are in D(A) (Domain of A).

Proof. Over the interval [0, t1) the equation (7.1.1) becomes (7.5.2) which is evolu-

tion equation without impulses. Applying theorem-7.4.2 the mild solution (7.5.3)

becomes a classical solution of (7.1.1) over the interval [0, t1) by assuming the con-

ditions (1), (2) and (4).

In the interval [t1, t2) the equation (7.1.1) becomes (7.5.3) and I1 is differentiable

and bounded with I1x(t1) ∈ D(A) therefore, x1 ∈ D(A). Again assuming the con-

ditions (1), (2), and (4) and using corollary- 7.4.2 the mild solution (7.5.5) becomes

a classical solution of (7.1.1) over the interval [t1, t2).

Continuing in same manner the mild solution (7.5.7) of equation (7.1.1) over the

interval [ti, ti+1) becomes classical solution of (7.1.1).

Finally, the mild solution (7.5.9) of the equation (7.1.1) becomes classical solution

of equation (7.1.1) over the interval [tp, T0] proceeding in similar manner.

Hence the mild solution (7.5.1) of equation (7.1.1) becomes classical solution of

(7.1.1) over the whole interval [0, T0]. This completes the proof.
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Now we discuss the uniqueness of a classical solution of impulsive evolution equation

(7.1.1).

Theorem 7.5.3. Classical solution of (7.1.1) is unique if

(1) The generators Tα(t) and Tα,β(t) are continuously differentiable for all t > 0.

(2) The function F is differentiable with respect to t and Lipschitz continuous with

respect to u on Br0.

(3) Impulses Ik at t = tk are for k = 1, 2, · · · , k differentiable and bounded.

(4) x0 and Ikx(tk) are in D(A) (Domain of A).

Proof. Under the assumption (1), (2), (3), and (4) the mild solution (7.5.1) of equa-

tion (7.1.1) becomes a classical solution. Lipchitz continuity of F with respect to x

leads to the uniqueness of mild solution. Since a mild solution of (7.1.1) is unique

therefore a classical solution of (7.1.1) is unique.

Example 7.5.1. Consider the semi-linear fractional order impulsive heat equation

cDα
t w(t, x) =

∂2w(t, x)

∂x2
+ w

∂u

∂x
(t, x), t ̸= t1, t2 · · · , tp

w(t, 0) = w(t, π) = 0

w(0, t) = w0 = x(π − x)

∆w(tk) = Ik(tk) = akw(t
−
k ), t = tk, (ak’s are constants) k = 1, 2, · · · , p

(7.5.10)

over the interval [0, T0]. Here tk’s are time points where impulses are applied.

We have the following observations:

(1) The operator A = ∂2

∂x2
over the domain D(A) =

{
z : [0, π] → R : z′′ exists and z(0) =

z(π) = 0
}
generates the continuously differentiable and bounded families of op-

erators Tα(t) and Tα,β(t) defined by

T (t)z =
∞∑
n=1

Eα(−n2tα) < z, ϕn > ϕn
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and

Tα,β(t)z =
∞∑
n=1

Eα,β(−n2tα) < z, ϕn > ϕn

respectively.

(2) The nonlinear function F(t, u) = u∂u
∂x

= ∂
∂x
u2 is differentiable with respect to

t and Lipchitz continuous with respect to u on Br0.

(3) Impulses Iku(tk) = aku(t
−
k ) are differentiable such that Ikx(tk) ∈ D(A).

(4) u0 ∈ D(A).

Therefore by Theorem 7.5.1, 7.5.2 and 7.5.3 the equation (7.5.10) has unique mild

solution given by

w(t) = Tα(t− ti)
( 1∏
k=i

Tα(tk − tk−1)
)
u0

+ Tα(t− ti)
i∑

j=1

( 2∏
k=j

Tα(tk − tk−1

) ∫ tj

tj−1

(tj − s)α−1Tα,α(tj − s)
∂

∂x
w2ds

+

∫ t

ti

(t− s)α−1Tα,α(t− s)
∂

∂x
w2ds+ Tα(t− ti)

i∑
j=1

( 3∏
k=i

Tα(tk − tk−1)
)
akw(tk)

(7.5.11)

for all t ∈ [0, T0]. Moreover, this mild solution (7.5.11) becomes a classical solution

of (7.5.10). Since the mild solution is unique therefore the classical solution is

unique.

7.6 Conclusion

The fractional semi-linear evolution equation over general Banach space without

and with impulses has a set of mild and classical solutions, which are deduced in

this article. We developed the novel notion of generators and derived the adequate

requirements—which are more lax criteria and apply to a broader class of fractional

evolution equations using the generalized Banach fixed point theorem.
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