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This chapter considers a nonlinear system governed by Hilfer fractional integro-

differential equations in a Banach space. Using the concept of operator semigroup

and Gronwall’s inequality, we have established the trajectory controllability of the

integro-differential equation with local and non-local conditions. Finally, we have

given an example to illustrate the application of the derived results.
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Vishant Shah 9.1. INTRODUCTION

9.1 Introduction

Over the past few decades, the differential equations involving fractional order

derivatives have received increasing interest from many researchers due to numerous

applications in widespread areas of science and engineering such as in models of

epidemiology, medicines, electrical and mechanical engineering, biochemistry, etc.

For more applications, one can refer to [14, 64]. It has been verified that the frac-

tional differential equations are more accurate to describe the dynamical behavior

of a real-life phenomenon more precisely. Hilfer [64] proposed a new fractional

derivative which is a generalization of the Riemann-Liouville and Caputo fractional

derivatives. Thereafter many researchers studied the qualitative properties of the

solution like existence, uniqueness, and stability of fractional differential equations

including Hilfer fractional differential operators. The study of qualitative properties

are found in the papers [35, 48, 56, 147, 148, 154] and monographs [64, 78], and

reference therein.

Trajectory controllability is finding the control of the system which steers the ini-

tial state to the desired final state of the system via prescribed trajectory. There

are many physical systems in aerodynamics for which we require trajectory con-

trollability of the system for cost-effectiveness. Therefore, trajectory controllabil-

ity is stronger than any other controllability. Controllability of linear and non-

linear systems in finite and infinite dimensional spaces are found in the articles

[16, 17, 32, 25, 26, 66, 94, 95, 96, 104, 128, 127] and reference their in. Singh [139]

studied the exact controllability of Hilfer fractional differential systems. Study of

trajectory controllability of integer order linear and nonlinear systems are found in

article [27, 122] and the same for fractional order finite and infinite dimensional

systems are found in [38, 55, 103].

This chapter aims to study the trajectory controllability of the system governed by

the Hilfer fractional integro-differential system

Dλ,µ
0+ u(t) + Au(t) = g(t, u(t),

∫ t

0

a(t, τ, u(τ))dτ) + w(t)

over the interval [0, T ] with classical condition I(1−λ)(1−µ)
0+ u(0) = u0 and non-local

conditions I(1−λ)(1−µ)
0+ [u(0)− h(u)] = u0 in the infinite-dimensional Banach.
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9.2 Preliminaries

In this section, we will discuss basic definitions and results to derive controllability

conditions.

Definition 9.2.1. [67] For λ > 0, the fractional integral of order λ of a function

h(t) is defined by

Iλt0h(t) =
1

Γ(λ)

∫ t

t0

(t− τ)λ−1f(τ)dτ,

provided the integral on the right exists.

Definition 9.2.2. [67] The Hilfer fractional derivative of order λ, 0 < λ < 1 and

type µ, 0 ≤ µ ≤ 1 is defined by

Dλ,µ
t0+h(t) = Iµ(1−λ)t0+

d

dt
I(1−λ)(1−µ)
t0+ h(t),

provided the right value exists.

Definition 9.2.3. [67] For all θ ∈ C and λ > 0, the Wright-type function Mλ is

defined as:

Mλ(θ) =
∑
n∈N

(−θ)n−1

Γ(1− λn)(n− 1)!
(9.2.1)

provided the sum on the right exists.

The Wright-type function satisfies the following properties:

(1) Mλ(θ) > 0 for all λ > 0.

(2) For −1 < ι <∞ the integral,
∫∞
0
θηMλ(θ)dθ =

Γ(1+η)
Γ(1+λη)

(3) For r > 0 the integral,
∫∞
0

λ
θλ+1 e

−rθMλ(θ
−λ)dθ = e−r

λ

Let, CT = C([0, T ], X), the set of all continuous functions from [0, T ] into Banach

space X under the norm given by ||Ψ||T = sup0≤t≤T ||Ψ(t)||.

Let, T (t) be the family of semi-group generated by the linear operator −A. We
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define two two linear operators Sλ and Qλ as:

Sλ(t) =

∫ ∞

0

Mλ(θ)T (tλθ)dθ (9.2.2)

Qλ(t) =

∫ ∞

0

λθMλ(θ)T (tλθ)dθ (9.2.3)

We have following result for the operators Sλ and Qλ.

Lemma 9.2.1. If T (t) be the family of C0-semigroup generated by the linear operator

−A for all t ∈ [0, T ] then the families of operators Sλ(t) and Qλ(t) defined by (9.2.2)

and (9.2.3) are:

(1) continuous and bounded for all t ∈ [0, T ].

(2) strongly continuous over the interval t ∈ (0, T ]

Proof. Since, the family T t is C0-semigroup generated by the linear operator −A
therefore there exist M ≥ 0 such that ||T (t)|| ≤M .

For any u ∈ X

||Sλ(t)u|| ≤
∫ ∞

0

Mλ(θ)||T (tλθ)||||u||dθ ≤M

∫ ∞

0

Mλ(θ)dθ||u|| ≤M ||u||

and

||Qλ(t)u|| ≤
∫ ∞

0

λθMλ(θ)||T (tλθ)||||u||dθ ≤M

∫ ∞

0

λθMλ(θ)||u||dθ ≤
M

Γ(λ)
||u||

Therefore the operators Sλ(t) and Qλ(t) are bounded with bound M and M/Γ(λ)

respectively.

Let {un} be any sequence in a Banach space X converges to u ∈ X and consider,

||Sλ(t)un − Sλ(t)u|| = ||Sλ(t)[un − u]|| ≤M ||un − u||

Therefore, Sλ(t) is continuous. Similarly, we can prove that Qλ(t) is continuous for

all t ∈ [0, T ]. Clearly, families Sλ(t) and Qλ(t) are strongly continuous as

||Sλ(t2)u− Sλ(t1)u|| ≤
∫ ∞

0

Mλ(θ)||T (tλ2θ)− T (tλ1θ)||||u||dθ ≤ ||T (tλ2θ)− T (tλ1θ)||||u||

which tends to zero as t2 → t1 for all 0 < t1 < t2 ≤ T and u ∈ X. Similarly, family
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Qλ(t) is also strongly continuous. This completes the proof of the lemma.

With the help of families of the operators we define two linear operators Sλ,µ(t) and
Kλ(t) as:

Sλ,µ(t) = Iµ(1−λ)0 Kλ(t) (9.2.4)

Kλ(t) = tλ−1Qλ (9.2.5)

The operators satisfy following properties:

Lemma 9.2.2. If T (t) be the family of C0-semigroup generated by the linear operator

−A for all t ∈ [0, T ] then the families of operators Sλ,µ(t) and Kλ(t) defined by (9.2.4)

and (9.2.5) are:

(1) continuous and bounded for all t ∈ [0, T ].

(2) strongly continuous over the interval t ∈ (0, T ]

Proof. Clearly,

||Kλ(t)u|| ≤ tλ−1||Qλ(t)u|| ≤
tλ−1M

Γ(λ)
||u||

and

||Sλ,µ(t)u|| ≤
1

Γ(µ(1− λ))

∫ t

0

(t−τ)µ(1−λ)−1τλ−1 M

Γ(λ)
||u||dτ ≤ M(µ(1− λ))tλ+µ−λµ−1

Γ(λ+ µ− λµ− 1)
||u||

for all t ∈ [0, T ] and u ∈ X. Therefore the operators Sλ,µ(t) and Kλ(t) are bounded

for t ∈ [0, T ].

The continuity and strong continuity of the operators Sλ,µ(t) and Kλ(t) are achieved

using Lemma-9.2.1. This completes the proof of the Lemma.

Consider the control system governed by Hilfer fractional integro-differential equa-

tion with the classical condition in a Banach space X over the interval [0, T ]

Dλ,µ
0+ u(t) + Au(t) = g(t, u(t),

∫ t

0

a(t, τ, u(τ))dτ) + w(t)

I(1−λ)(1−µ)
0+ u(0) = u0,

(9.2.6)

where, Dλ,µ
0+ is Hilfer fractional derivative operator. A is closed linear operator which

is infinitesimal generator of C0 semigroup and u0 ∈ X. w ∈ U , a Hilbert space.
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Definition 9.2.4. A function u ∈ CT is called mild solution of integro-differential

equation (9.2.6) if u is solution of the integral equation

u(t) = Sλ,µu0 +
∫ t

0

Kλ(t− τ)[g(τ, u(τ), Su(τ)) + w(τ)]dτ (9.2.7)

where, Su(t) =
∫ t
0
a(t, τ, u(τ))dτ , operators Sλ,µ and Kλ(t) are defined as (9.2.4)

and (9.2.5) respectively.

Definition 9.2.5. The system (9.2.6) is said to be completely controllable on the

interval [0, T ] if for any u0, u1 ∈ X there exit a control w(t) ∈ U such that the

solution (9.2.7) of (9.2.6) satisfies u(T ) = u1.

Definition 9.2.6. The system (9.2.6) is totally controllable on the interval [0, T ] if

it is completely controllable over all its sub intervals [τk, τk+1].

Let T be the set of all functions y(·) defined over the interval [0, T ] satisfying y(0) =

u0 and y(T ) = u1 and Hilfer fractional derivative exist everywhere. The set T is

called the set of all feasible trajectories.

Definition 9.2.7. The system (9.2.6) is said to be trajectory controllable (T- Con-

trollable) any y ∈ T , there exist L2 control function w ∈ U such that the solution

u(t) (9.2.7) satisfy u(t) = y(t) almost everywhere.

The trajectory controllability of the system is the strongest in comparison with other

controllability.

9.3 Trajectory Controllability with Classical Con-

dition:

In this section, we are going to discuss the trajectory controllability of the system

governed by Hilfer fractional integro-differential equation (9.2.6). To discuss it we

make following conditions.

(A1) Linear operator −A is the infinitesimal generator of C0-semigroup.
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(A2) The nonlinear function g : [0, T ]×X ×X → X satisfies

||g(t, u1, v1)− g(τ, u2, v2)|| ≤ L1(r)||u1 − v1||+ L2(r)||u2 − v2||

for all t, τ ∈ [0, T ], u1, u2, v1, v2 ∈ Br(X). The functions L1, L2 : R+ → R+ are

non-decreasing and Br(X) is a closed ball in the Banach space X of radius r.

(A3) The nonlinear operator S : X → X satisfies

||Su(t)− Sv(τ)|| ≤ L3(r)||u− v||

for all t, τ ∈ [0, T ], u, v ∈ Br(X) and the function L3 : R+ → R+ is non-

decreasing function.

to write

Theorem 9.3.1. If conditions (A1) to (A3) satisfies then, the system (9.2.6) is

trajectory controllable over the interval [0, T ].

Proof. Let, y(t) be any trajectory in T then we define feedback control as:

w(t) = Dλ,µ
0+ y(t) + Ay(t)− g(t, y(t), Sy(t)))dτ). (9.3.1)

Putting the value of feedback control w(t) from equation (9.3.1) in equation (9.2.7)

and simplifying we get,

Dλ,µ
0+ [ut− y(t)] = −A[u(t)− y(t)] + g(t, u(t), Su(t))− g(t, y(t), Sy(t)) (9.3.2)

Choosing z(t) = u(t)− y(t), equation 9.3.2 becomes:

Dλ,µ
0+ z(t) = −Az(t) + [g(t, u(t), Su(t))− g(t, y(t), Sy(t))]

I(1−λ)(1−µ)
0+ z(0) = 0.

(9.3.3)

The mild solution of the equation (9.3.3) is given by

z(t) =

∫ t

0

Kλ(t− τ)[g(τ, u(τ), Su(τ))− g(τ, y(τ), Sy(τ))]dτ (9.3.4)
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Therefore,

||z(t)|| ≤
∫ t

0

||Kλ(t− τ)||||g(τ, u(τ), Su(τ))− g(τ, y(τ), Sy(τ))||dτ

≤
∫ t

0

τλ−1M

Γ(λ)

[
L1(r)||u(τ)− y(τ)||+ L2(r)L3(r))||u(τ)− y(τ)||

]
dτ

≤ L

∫ t

0

τλ−1||z(τ)||dτ,

where, L = M(L1(r)+L2(r)L3(r))
(Γ(λ))

and using the Gronwal’s inequality we get z(t) =

0 almost everywhere. Therefore, u(t) = y(t) almost everywhere. Hence system

equation (9.2.6) is Trajectory controllable over the interval [0, T ].

Example 9.3.1. Let X = L2([0, 1],R) and consider the partial differential equation

Dλ,µ
t u(t, x) = uxx(t, x) + 2u(t, x)ux(t, x) +

∫ t

0

e−u(s,x)ds+ w(t) (9.3.5)

with initial condition I(1−λ)(1−µ)u(0, x) = u0 and boundary conditions u(t, 0) =

u(t, 1) = 0.

Define an operator A as Au = u′′ over the domain D(A) = H2(0, 1) ∩ H1(0, 1)

then the operator A is generates infinitesimal generator of C−0 strongly continuous

semigroup T (t) given by

T (t) =
∞∑
n=1

exp(−n2π2t) < u, ϕn > ϕn

where, ϕn are orthonormal Fourier basis for X.

The equation (9.3.5) can be rewritten as the abstract equation in X = L([0, 1],R)
as:

Dλ,µ
t u(t) = Au(t) + g(t, u(t), Su(t)) + w(t)

I(1−λ)(1−µ)u(0) = u0
(9.3.6)

Clearly, g(t, u(t), Su(t)) = 2uux +
∫ t
0
e−u(τ)dτ is smooth function therefore for

there exist L1, L2 and L3 such that ||g(t, u(t), Su(t)) − g(t, v(t), Sv(t))||[≤ L1(r) +

L2(r)L3(r)]||u−v|| for all u, v ∈ B(X). Hence, by Theorem-9.3.1, the system (9.3.5)

is trajectory controllable over the interval [0, 1].
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9.4 Trajectory Controllability with Nonlocal Con-

dition

In this section, we are going to discuss the trajectory controllability of the system

governed by the Hilfer fractional integro-differential equation in the Banach space

X.

Dλ,µ
0+ u(t) + Au(t) = g(t, u(t),

∫ t

0

a(t, τ, u(τ))dτ) + w(t)

I(1−λ)(1−µ)
0+ [u(0)− h(u)] = u0,

(9.4.1)

where, Dλ,µ
0+ is Hilfer fractional derivative operator. A is a closed linear operator

which is an infinitesimal generator of C0-semigroup and u0 ∈ X. w ∈ U , a Hilbert

space.

Definition 9.4.1. A function u ∈ CT is called mild solution of integro-differential

equation (9.4.1) if u is solution of the integral equation

u(t) = Sλ,µ
[
u0+I(1−λ)(1−µ)

0+ h(u)
]
+

∫ t

0

Kλ(t− τ)[g(τ, u(τ), Su(τ))+w(τ)]dτ (9.4.2)

where, Su(t) =
∫ t
0
a(t, τ, u(τ))dτ , operators Sλ,µ and Kλ(t) are defined as (9.2.4)

and (9.2.5) respectively.

To discuss the trajectory controllability of the system (9.4.1) we required the fol-

lowing condition on h.

(A4) The function h satisfies

||h(u)− h(v)|| ≤ Lh||u− v||

for all u, v ∈ C([0, T ], X).

Theorem 9.4.1. If conditions (A1) to (A4) satisfies then, the system (9.4.1) is

trajectory controllable over the interval [0, T ] provided L∗ ̸= 1.

Proof. Let, x(t) any trajectory in T then define

w(t) = Dλ,µ
0+ x(t) + Ax(t)− g(t, x(t), Sx(t)))dτ). (9.4.3)
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Plugging the value of w(t) in equation (9.4.1) from equation (9.4.3) and simplifying

we get,

Dλ,µ
0+ [u(t)− x(t)] = −A[u(t)− x(t)] + g(t, u(t), Su(t))− g(t, x(t), Sx(t)) (9.4.4)

Choosing z(t) = u(t)− y(t), equation 9.4.4 becomes:

Dλ,µ
0+ z(t) = −Az(t) + [g(t, u(t), Su(t))− g(t, x(t), Sx(t))]

I(1−λ)(1−µ)
0+ [u(0)− x(0)− h(u) + h(x)] = 0

(9.4.5)

The mild solution of the equation (9.4.5) is given by

z(t) = Sλ,µI(1−λ)(1−µ)[h(u)−h(x)]+
∫ t

0

Kλ(t−τ)[g(τ, u(τ), Su(τ))−g(τ, x(τ), Sx(τ))]dτ

(9.4.6)

Therefore,

||z(t)|| ≤ ||Sλ,µI(1−λ)(1−µ)[h(u)− h(x)]||

+

∫ t

0

||Kλ(t− τ)||||g(τ, u(τ), Su(τ))− g(τ, x(τ), Sx(τ))||dτ

≤ L∗||u(t)− x(t)||

+

∫ t

0

τλ−1M

Γ(λ)

[
L1(r)||u(τ)− y(τ)||+ L2(r)L3(r))||u(τ)− y(τ)||

]
dτ

≤ L∗||z(t)||+ L

∫ t

0

τλ−1||z(τ)||dτ,

≤ L

1− L∗

∫ t

0

τλ−1||z(τ)||dτ

where, L = M(L1(r)+L2(r)L3(r))
(Γ(λ))

and L∗ = MLhT
Γ(λ)Γ(µ(1−λ))Γ((1−λ)(1−µ)+1)

and using Gron-

wall’s inequality get z(t) = 0 almost everywhere. Hence, system (9.4.1) is trajectory

controllable over [0, T ].

Example 9.4.1. Let X = L2([0, 1],R) and consider the partial differential equation

Dλ,µ
t u(t, x) = uxx(t, x) + 2u(t, x)ux(t, x) +

∫ t

0

e−u(s,x)ds+ w(t) (9.4.7)

with initial condition I(1−λ)(1−µ)[u(0, x) + h(u]) = u0, h(u) =
∑2

i=1
1
3i
u(1/i, x) and

boundary conditions u(t, 0) = u(t, 1) = 0. The equation (9.4.7) is converted into
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abstract equation

Dλ,µ
t u(t) = Au(t) + g(t, u(t), Su(t)) + w(t)

I(1−λ)(1−µ)[u(0)− h(u)] = u0
(9.4.8)

Since h is Lipchitz continuous with Lipschitz constant Lh, the system (9.4.7) is

trajectory controllable over the interval [0, 1].

9.5 Conclusion

In this chapter, we have discussed sufficient conditions for the trajectory controlla-

bility of a system governed by integro-differential systems with local and nonlocal

conditions on general Banach space. We have also added illustrations to validate

the derived results.
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