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1.1 Introduction & Historical Background

A dynamical problem typically involves studying the behavior and evolution of a

system over time. Problems like predicting the orbits of planets, and other ce-

lestial bodies based on gravitational interactions, changes in population sizes of

species in an ecosystem, predicting economic growth, etc. are called as dynamical

problems. Dynamical problems can be studied and analyzed directly through ex-

periments. Experimental studies of dynamical problems can be resource-intensive,

requiring significant time, money, and continuous observations. Moreover, problems

like carbon dating take a long time and may not be practically amenable to direct

experimentation.
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Vishant Shah 1.1. INTRODUCTION & HISTORICAL BACKGROUND

Mathematical modeling serves as a crucial approach for studying dynamical prob-

lems by transforming them into mathematical expressions which are termed dynam-

ical systems. This process is known as mathematical modeling which involves the

identification of relevant variables, establishment of relationships, and formulation

of equations that enclose the system’s behavior over time. Mathematical models

provide a systematic and structured means to analyze dynamical problems, offering

insights into the long-term behavior, stability, and other essential characteristics of

the system under consideration. One of the important advantages of mathematical

modeling is its ability to make predictions and conduct simulations. Researchers

can explore diverse scenarios and conditions, enhancing the depth of understanding

regarding the system’s dynamics. Moreover, mathematical modeling is its cost-

effectiveness compared to experimental approaches. Therefore, many researchers

are involved in transforming the problem into a mathematical model applying the

laws of nature and solving it using various mathematical techniques.

Continuous dynamical problems are expressed using differential equations of the

form ẋ = F(t, x) where x represents the state variable of the problem, ẋ is the time

derivative of x, and F is a functional relationship between time and state variables.

If the state variable lies in finite dimensional space then the system is a finite-

dimensional system otherwise is an infinite-dimensional system. If F in the system

is linear then the system is called a linear system otherwise it is called a nonlinear

system [6, 15, 111]. Poincare(1899) was the first mathematician to discuss the qual-

itative theory of dynamical systems. After that many researchers like Hadamard,

Birkoff, Andronov, and Pontruagin contributed in developing a qualitative theory

of the dynamical systems [65].

Dynamical systems frequently undergo abrupt changes or jumps during specific mo-

ments or short intervals. These behaviors can be effectively represented using im-

pulsive differential equations. In recent decades, the theory of impulsive dynamical

systems has emerged as a powerful tool for modeling a diverse range of real-world

problems in fields such as medicine, biology, engineering, and physics. This mod-

eling approach has proven particularly useful in scenarios where there are sudden

alterations in critical parameters or events, such as the removal of biomass and dy-

namic changes in species populations [39, 84]. The impulsive dynamical system is
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of the form
ẋ(t) = F(t, x(t)), t ∈ [0, T0]− {t1, t2, · · · , tρ}

∆x(tk) = Jkx(tk), t = t1, t2, · · · , tρ
(1.1.1)

where Jk are the jumps at the time moments t = tk. Due to the applications of

impulsive systems in many real-world phenomena, many researchers are interested

in studying qualitative properties like the existence, uniqueness, and stability of

impulsive differential equations. A detailed introduction to the impulsive dynamical

systems is found in subsequent Chapters of this thesis.

Controllability is one of the fundamental property of control systems appearing in

various engineering disciplines. A dynamical system is controllable if we can find a

controller, that will steer the system from any initial state to a desired final state

in a given finite time interval [125]. The historical development of mathematical

control theory spans several decades and it involves contributions from various dis-

ciplines such as engineering, mathematics, and physics. The foundations of control

theory can be traced back to the early 20th century with the origin of automatic

control systems. Engineers like Frederick Taylor and Nicholas Minorsky made sig-

nificant contributions to ship steering mechanisms. Norbert Wiener in the 1940s

laid the theoretical groundwork for control systems. He developed the foundations

of cybernetics (a field that studies communication and control in living organisms

and machines). Kalman[71] introduced the concept of controllability and observ-

ability of finite dimensional linear system in 1960. This concept was extended to

semilinear systems and nonlinear systems by Mirza and Womack[101], Balachandran

et.al. [8, 9], Joshi and George[70], and Klamka[81]. The classical theory of control-

lability of finite dimensional space was extended for linear abstract systems defined

on infinite dimensional spaces by Triggianni [146]. Further, Quinn and Carmichael

[115], Louis and Wexler[93], George[51], Zuazua[33], and many other authors ob-

tained controllability results for nonlinear systems in infinite dimensional spaces.

Zuazua discusses various notions of exact controllability of control systems [33]. Re-

sults on the approximate controllability of semilinear and nonlinear systems were

found in [51, 142, 160]. Partial controllability was discussed by Nandakumaran and

George[106, 107].

Due to the importance of the impulsive dynamical systems as well as mathematical

control theory, this thesis is focused on
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• Existence and uniqueness of various impulsive dynamical systems of inte-

ger and fractional order considering instantaneous and non-instantaneous im-

pulses.

• Exact controllability of the impulsive systems of integer order by considering

instantaneous impulses.

• Trajectory controllability of Impulsive Systems first order and second order

systems by considering non-instantaneous impulses.

• Trajectory controllability of fractional order systems.

1.2 Mathematical Preliminaries

In this section, we review some important concepts of functional analysis and the

basics of the mathematical control theory of linear and nonlinear systems.

1.2.1 Some Results from Analysis

This subsection deals with some basic results from mathematical analysis and dif-

ferential equations, including some definitions, lemmas, and theorems that will be

of frequent use in the subsequent chapters.

Definition 1.2.1. [83] (Normed Spaces) Let (X,+, ·) be the vector space over the
field F. Then the function || · || : X → F is called a norm on X if

(i) ||x|| ≥ 0,∀x ∈ X and ||x|| = 0 iff x = 0.

(ii) ||cx|| = |c|||x||,∀x ∈ X and ∀c ∈ F.

(iii) For all x, y ∈ X, ||x+ y|| ≤ ||x||+ ||y||.

The pair (X, || · ||) is called normed space.

Definition 1.2.2. [83](Cauchy Sequence) The sequence {xn} in the normed space

is said to be a Cauchy sequence if, for each ϵ > 0, there exist N0 ∈ N such that

||xn − xm|| < ϵ for all n,m ≥ N0.
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Theorem 1.2.1. [83](Banach Contraction Principle) Let T be a continuous

operator on a Banach space X such that there exists a positive number n ≥ 1 such

that ||T nx− T ny|| ≤ k||x− y|| for all x, y ∈ X and for some positive number k < 1.

Then T has a unique fixed point.

When n = 1, the result becomes the Banach contraction principle.

Definition 1.2.3. [110] A one-parameter family {T (t)} for t ≥ 0 of bounded linear

operator on Banach space X is a semigroup of bounded linear operator on X if

(i) T (0) is identity operator on X.

(ii) T (t+ s) = T (t) ◦ T (s), for t, s ≥ 0.

A semigroup of a bounded linear operator is uniformly continuous if

lim
t→0

||T (t)− I|| = 0

Definition 1.2.4. [110] The linear operator A is defined on

D(A) =

{
x ∈ X : lim

t→0

T (t)x− x

t
exists for all x ∈ X

}
and defined by

Ax =
T (t)x− x

t

is the infinitesimal generator of a semigroup T (t).

Definition 1.2.5. [110] A semigroup {T (t)} of bounded linear operators on X is

strongly continuous (C0− semigroup) if

lim
t→0

T (t)x = xfor each x ∈ X

.

1.2.2 Controllability of Linear Systems

The concept of controllability is of great importance in mathematical control theory.

The problem of controllability is to show the existence of a control function, which
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steers the solution of the system from its initial state to the final state, where the

initial state and final state may vary over the entire space [140, 22, 125]. In this

section exact controllability of the linear dynamical system has been discussed.

Consider the linear dynamical system

ẋ(t) = Ax(t) + Bu(t)

x(0) = x0
(1.2.1)

over the interval [0, T0], 0 < T0. Where for each t ∈ [0, T0], x(t) ∈ X is the state

of the system, u(t) is the controller of the system, A and B are linear operators

respectively.

Definition 1.2.6. [105](Exact Controllability) The system (1.2.1) is exactly

controllable over the interval [0, T0] if for every x1 ∈ X, there exists u ∈ L2([0, T0],U)
such that there exists a differentiable function x ∈ L2([0, T0],X) satisfying (1.2.1)

and the condition x(T0) = x1.

The mild solution of the system (1.2.1) is given by

x(t) = T (t)x0 +

∫ t

0

T (t− s)Bu(s)ds (1.2.2)

For each u ∈ L2([0, T0],U) define an operator

Cu(t) =
∫ T0

0

T (T0 − s)Bu(s)ds,

and its adjoint C∗ : X → L2([0, T0],U) is

C∗z = B∗T ∗(T0 − t)z.

The following theorem gives a direct consequence of the exact controllability of the

system (1.2.1).

Theorem 1.2.2. The system (1.2.1) is exactly controllable if and only if C is onto.

Define the operator W : L2([0, T0],X) → L2([0, T0],X) by

Wz = CC∗z =

∫ T0

0

T (t− s)BB∗T ∗(T0 − s)zds,
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then foregoing theorem gives a characterization of the exact controllability for the

system (1.2.1)

Theorem 1.2.3. [34] The system (1.2.1) is exactly controllable on the subinterval

[0, T0] if, any one from below satisfied for some γ > 0, for all x ∈ X.

(a) Range(C) = X,

(b) ||C∗z||2X =
∫ T0
0

||(C∗z)(s)||2Uds ≥ γ2||z||2X,

(c)
〈
Wz, z

〉
≥ γ2||z||2X,

(d)
∫ T0
0

||B∗T ∗(T0 − s)z||2Uds ≥ γ2||z||2X,

(e) Ker(C∗) = {0} and Range(C∗) is closed.

Theorem 1.2.4. [34] The system (1.2.1) is exactly controllable on [0, T0] if and only

if, the operator W is non-singular. Moreover the control u ∈ L2(J0,U) steering an

initial state x0 to the final state x1 at time t = T0 is given by

u(t) = B∗T ∗(T0 − t)W−1[x1 − T (T0)x0].

1.2.3 Controllability of Semilinear Systems

In this subsection, the Controllability of the semilinear systems

ẋ(t) = Ax(t) + Bu(t) + F(t, x(t))

x(0) = x0
(1.2.3)

over the interval [0, T0], 0 < T0 is discussed. Where for each t ∈ [0, T0], x(t) ∈ X
is the state of the system, u(t) is the controller of the system, A and B are linear

operators respectively, and F(t, x) is the nonlinear term.

The mild solution of the system (1.2.3) over the interval [0, T0] is given by

x(t) = T (t)x0 +

∫ t

0

T (t− s)[Bu(s) + F(s, x(s))]ds (1.2.4)

where, T (·) is the operator semigroup generated by the linear part A.
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Definition 1.2.7. [86] The system (1.2.3) is said to be exactly controllable over the

interval [0, T0] if for every x1 ∈ X, there exists u ∈ L2([0, T0],U) such that there exists

a differentiable function x ∈ L2([0, T0],X) satisfying (1.2.4) satisfies x(T0) = x1.

The mild solution of the equation (1.2.3) at t = T0 becomes

x1 = x(T0) = T (T0)x0 +

∫ T0

0

T (T0 − s)[Bu(s) + F(s, x(s))]ds. (1.2.5)

Define the operator G : L2([0, τ ],U) → X by

Gu =

∫ T0

0

T (T0 − s)[Bu(s) + F(s, x(s))]ds

then the system (1.2.3) exactly controllable over the interval [0, T0] if and only if G
is onto. If the corresponding linear system (1.2.1) is controllable then there exists a

steering operator S = B∗T ∗(T0 − t)W−1 such that C ◦ S = I(identity operator).

Define the operator Ḡ : X → X by

Ḡζ = (G ◦ S)ζ = ζ +

∫ T0

0

T (T0 − s)F(s, ζ(s))ds = (I +K)ζ

then system (1.2.3) is controllable if and only if Ḡ is non-singular where, Kζ =∫ τ
0
T (τ − s)F(s, ζ(s))ds.

The following theorems give sufficient conditions for the exact controllability of the

system (1.2.3).

Theorem 1.2.5. [157] If the corresponding linear system (1.2.1) is controllable and

K is globally Lipschitz continuous with Lipschitz constant 0 < k < 1 then system

(1.2.3) is exactly controllable over the interval [0, T0] and state x of the systems

(1.2.3) steers form initial state x0 to final state x1 at t = T0.

Theorem 1.2.6. [157] If F(t, x) is Lipchitz continuous with respect to the second

argument then the system (1.2.3) is exactly controllable over the interval [0, T0] and

controller u(t) which steers initial state x0 to final state at t = τ is given by u(t) =

B∗T ∗(T0 − t)W−1(I +K)

[
x1 − T (T0 − t)x0 −

∫ T0
0

T (T0 − s)F(s, x(s))ds

]
.
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1.3 Layout of the thesis

The thesis contains nine chapters focusing on the existence of solutions, exact con-

trollability, and trajectory controllability of the different types of systems. The

detailed layout of the thesis is as follows:

Chapter 1 deals with the introduction and historical background as well as math-

ematical preliminaries.

Chapter 2, contains the existence and uniqueness of the classical and mild solutions

of the generalized impulsive evolution equation

x′(t) = Ax(t) + Fi(t, x(t), Tix(t), Six(t)), t ∈ [ti−1, ti), t ̸= ti

x(0) = x0

∆x(ti) = Iix(ti), t = ti, for i = 1, 2, 3, . . . , N.

(1.3.1)

over the finite interval [0, T0] in the Banach space X. Here, A : X → X is the

linear part of the evolution equation, for all i, Fi : [0, T0] × X × X × X → X are

nonlinear functions operated over the interval [ti−1, ti), operators Ti, Si : X× X are

operators operated over the interval [ti−1, ti), and Ii : X → X are the jumps at the

time moments t = ti.

Chapter 3 contains the Exact controllability of the system

x′(t) = Ax(t) + Fk(t, x(t), u(t)) + Bku(t) t ∈ [tk−1, tk), k = 1, 2, · · · , ρ

x(0) = x0

∆x(tk) = Mkx(tk) +Nku(tk), t = tk, k = 1, 2, · · · , ρ
(1.3.2)

over the interval [0, T0] using the concept of operator semigroup, linear and nonlinear

functional analysis. In equation (1.3.2) the state x(t) in the Hilbert space X for all

t ∈ J0 = [0, T0], A, and Mk are linear operators on X, u ∈ L2([0, T0],U) Bk,Nk :

X × U are bounded linear functions between Hilbert spaces X and U, and Fk :

[0, T0]× X× U → X are nonlinear functions.

Chapter 4 discussed the trajectory controllability of first-order non-instantaneous
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impulsive systems

x′(t) = A(t)x(t) + F(t, x(t)) +W(t), t ∈ [sk, tk + 1), for all k = 0, 1, 2 · · · , p

x(t) = Gk(t, x(t)) +Wk(t), t ∈ [tk, sk), for all k = 1, 2, · · · , p,
(1.3.3)

with local condition x(0) = x0 and non-local condition x(0) = x0 − h(x) over the

interval [0, T ] in the Banach space X where, A : X → X is linear operator, F , and

Gk are nonlinear functions on [0, T ]× X, and W ,Wk is trajectory controller.

Chapter 5 discussed the trajectory controllability of second-order systems x′′(t) = Ax+ F(t, x(t), x′(t)) +W(t),

x(0) = x10, x′(0) = x20
(1.3.4)

by considering non-instantaneous impulses into account over the finite time interval

Ω = [0, T0]. Here, at each time t, the state lies in X, A is the linear on X,
F : Ω × X2 → X is a non-linear function, and W(t) is the trajectory controller

of the system.

Chapter 6 derive a set of sufficient conditions for the existence of a mild solution

for the generalized fractional order impulsive system

cDλx(t) = Ax(x) + Fk

(
t, x(t),

∫ t

0

ak(t, τ, x(τ))dτ

)
, t ∈ [sk−1, tk), k = 1, 2, · · · , p

x(t) = Gk(t, x(t)), t ∈ [tk, sk)

with local condition x(0) = x0 and non-local condition x(0) = x0 + h(x) over the

interval [0, T ] in a Banach space X. Here A : X → X is linear operator, Pkx =∫ t
0
ak(t, τ, x(t))dτ are nonlinear Volterra integral operator on X, Fk : [0, T ]×X×X →

X are nonlinear functions applied in the intervals [sk−1, tk) and Gk : [0, T ] × X are

set of nonlinear functions applied in the interval [tk, sk) for all k = 1, 2, · · · , p.

Chapter 7 developed the necessary criteria for a mild solution and classical solution

of the impulsive fractional evolution problem,

cDαx(t) = Ax(t) + F(t, x(t)) t ̸= tk, k = 1, 2, · · · , p

∆x(tk) = Ik(x(tk)), t = tk, k = 1, 2, · · · , p

x(t0) = u0

(1.3.5)
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over the interval [0, T0] on a Banach space X. Here, cDα denotes Caputo fractional

differential operator of order 0 < α ≤ 1, A : X → X is linear operator and F :

[0, T0]×X → is nonlinear function. Ik : X → ↶ are impulse operator at time t = tk,

fro k = 1, 2, · · · , p and their existence and uniqueness. We also developed conditions

under which classical and mild solutions of (1.3.5) coincide.

Chepter 8 considered non-instantaneous impulsive integro-differential fractional

order (0 < λ ≤ 1 and 0 ≤ µ ≤ 1) evolution system of Hilfer type

Dλ,µ
0+ x(ζ) = −Ax(t)

+ F
(
t, u(t),

∫ t

0

a(t, τ, x(τ))dτ

)
, t ∈

[
∪ [si, ti+1)

]
∪ [sp, T0]

u(t) = Gk(t, x(t)), t ∈ [t1, s1) ∪ [t2, s2) ∪ · · · ∪ [tp, sp),

and discussed the existence of solutions with local condition I(1−λ)(1−µ)
0+ x(0) = x0

and non-local I(1−λ)(1−µ)
0+ [x(0)−h(x)] = x0 initial conditions over the finite interval

[0, T0] in a Banach space X. Dλ,µ differential operators of Hilfer type, A : X → X
is a linear part of the integrodifferential evolution equation, Kx =

∫ t
0
a(t, τ, x(τ))dτ

is nonlinear Volterra integral operator on X, F : [0, T0] × X × X → X is nonlinear

function and Gk : [0, T0] × X are set of non-linear functions applied in the interval

[tk, sk) for all i = 1, 2, · · · , p.

Chapter 9 discussed the Trajectory controllability of infinite dimensional Hilfer

fractional control systems

Dλ,µ
0+ x(t) + Ax(t) = F(t, x(t),

∫ t

0

a(t, τ, x(τ))dτ) +W(t)

over the interval [0, T0] with classical condition I(1−λ)(1−µ)
0+ x(0) = x0 and non-local

conditions I(1−λ)(1−µ)
0+ [x(0) − h(x)] = x0 in the Banach space X Where, A : X → X

is a linear part of the integrodifferential evolution equation, Kx =
∫ t
0
a(t, τ, x(τ))dτ

is nonlinear Volterra integral operator on X, F : [0, T0] × X × X → X is nonlinear

function.
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