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This chapter derives the existence and uniqueness of a generalized nonlinear impul-

sive evolution equation. The proposed system is modeled with a nonlinear perturbed

force that changes after every impulse. The Banach contraction principle is applied

to prove the existence and uniqueness of the mild solution. The existence and

uniqueness of classical solution is obtained by fixing the impulse and the conditions

in which mild solution becomes classical solution also obtained. Finally, an example

is illustrated to the effectiveness of the main results.
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Vishant Shah 2.1. INTRODUCTION

2.1 Introduction

From the last few decades, the theory of impulsive differential equations has been

extensively used to model different problems such as the removal of insertion of

biomass [7], the population of species with abrupt changes of the important biological

parameter [44], abrupt harvesting [79], and various real-world problems of medicine,

biology, mechanics and control theory [39, 58, 69, 84, 90, 100, 132, 124]. Existence

and uniqueness of the solution of the impulsive evolution equation of the form,

x′(t) = Ax(t) + F(t, x(t)), t > 0, t ̸= ti

x(0) = x0, (2.1.1)

∆x(ti) = Ii(x(ti)), i = 1, 2, 3, . . . , N.

is studied by several authors. Rogovchenko [123] discussed existence of solution

of (2.1.1) using successive approximations when A is sectroial operator. Liu [92]

used the semigroup property and Banach fixed point theorem to study the existence

and uniqueness of classical and mild solutions of evolution equation (2.1.1). Li [89]

studies the global solution of the evolution equation (2.1.1) without impulses using

the methodology as [92]. Yang [62] replaced a finite number of impulses with an

infinite number of impulses and derived the existence of e-positive mild solutions of

(2.1.1) with non-compact semigroup in an ordered Banach space. Xiang, Peng, and

Wei [152] discussed PWD - α mild solutions of (2.1.1) in which F contains a integral

operator. Anguraj and Arjunan [5] modified F by introducing two integral operators

and obtained similar types of results as Liu [92]. Zhang and Yan [158] studied global

mild and positive mild solutions of (2.1.1) without impulses by replacing F(t, x(t))

by F(t, x(t), Tx(t), Sx(t)) where T and S are integral operators. Sattayatham [134]

replaced Ax(t) by A(t, x(t)) and discussed the existence and some properties of the

solution of (2.1.1) by assuming conditions on resolvent. Liang at. el. [91], Fan and

Li [46], Wen and Ji [149] and Chen and Yang, and other researchers studied the

existence of solution using nonlocal conditions using various approaches [24, 28, 29,

30]. On the other hand Tang and Nieto [144] used variational approach to discussed

existence and uniqueness of (2.1.1) with improved impulses Ii(ti, x(ti)).

Here a new nonlinear impulsive evolution equation over [0, T0] is considered with the
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nonlinear perturbation changes after every impulse in the following form:

x′(t) = Ax(t) + Fi(t, x(t), Tix(t), Six(t)), t ∈ [ti−1, ti) t ̸= ti,

x(0) = x0, (2.1.2)

∆x(ti) = Ii(x(ti)), i = 1, 2, 3, . . . , N.

in a Banach space X, where A is the infinitesimal generator of C0 semigroup [110]

{G(t)|t ≥ 0}, Fi ∈ C([0, T0]×X×X×X,X) are operators on Banach space X. The
impulses are satisfies 0 = t0 < t1 < t2 < t3 < · · · < ti < · · · < tN < tN+1 = T0,

∆x(ti) = x(t+i ) − x(t−i ) = Ii(x(ti)), where Ii : X → X is operator describe the

jumps for each i = 1, 2, · · · , N . For i = 1, 2, · · · , N + 1 operators Ti, Si : X → X

defined for all t ∈ [ti−1, ti). In case of integro-differential equations one can define

Ti(x(t)) =
∫ t
0
ϕi(t, s, x(s))ds and Si(x(t)) =

∫ T
0
ψi(t, s, x(s))ds if t ∈ [ti−1, ti). The

system (2.1.2) generalizes the system taken by Anguraj and Arjunan [5].

In this chapter, the author studied the existence and uniqueness of mild and classical

solutions using semigroup theory and Banach fixed point theory and proved that if

Fi’s are continuously differentiable then mild solution give rise to classical solutions.

The equations (2.1.2) are used to model a physical phenomenon having different

perturbing force components Fi after impulses.

2.2 Definitions and Assumptions

Definition 2.2.1. [135] Let X be a Banach space. Let PC([0, T0],X) consist of

functions u that are a map from [0, T0] into X, such that u(t) is continuous at t ̸= ti

and left continuous at t = ti, and the right limit u(t+i ) exists for i = 1, 2, 3, . . . N .

Evidently PC([0, T0],X) is a Banach space with the norm

∥u∥PC = sup
t∈[0,T0]

∥u(t)∥ .

2.2.1 Assumptions

Let the impulsive evolution equation (2.1.2) in a Banach space X where, Fi ∈
C([0, T0] × X × X × X,X) and ,Ti, Si : X → X for i = 1, 2, . . . N are operators on
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Banach space X. The following are assumptions:

(A1) Fi : [0, T0]×X×X×X → X, and Ii : X → X, i = 1, 2, . . . N . are continuous and

there exists constants Li1, Li2, Li3 > 0, hi > 0, T ∗
i , S

∗
i > 0 for i = 1, 2, 3, . . . , N .

such that for t ∈ [0, T0] and x, y ∈ X we have,

∥Fi(t, x1, x2, x3)−Fi(t, y1, y2, y3)∥ ≤ Li1∥x1 − y1∥+ Li2∥x2 − y2∥+ Li3∥x3 − y3∥,

∥Ii(x)− Ii(y)∥ ≤ hi∥x− y∥, ∥Ti(x)− Ti(y)∥ ≤ T ∗
i ∥x− y∥,

∥Si(x)− Si(y)∥ ≤ S∗
i ∥x− y∥.

Let G(t) be the C0 semigroup generated by the linear operator A. Let B(X) be the

Banach space of all linear and bounded operators on X.
Let

M = max
t∈[0,T0]

∥G(t)∥B(X), L = max
i=1,2,Ṅ

{Li1, Li2, Li3} H =
N∑
i=1

hi.

(A2) The constants L,H,M, T ∗
i , S

∗
i satisfy the inequality

M
[
LT0

N∑
i=1

(1 + T ∗
i + S∗

i ) +H
]
< 1

Definition 2.2.2. A function x(t) ∈ PC([0, T0],X) is a mild solution of equations

(2.1.2) if it satisfies

x(t) = G(t)x0 +
∑
ti<t

∫ t

ti

G(t− s)Fi(s, x(s), Tix(s), Six(s))ds+
∑

0<ti<t

G(t− ti)Ii(x(ti))

(2.2.1)

for all t ∈ [0, T0].

Definition 2.2.3. [5] A classical solution of Equations (2.1.2) is a function x(t)

in PC([0, T0],X) ∩ C1((0, T0)\{t1, t2, . . . , tN}, X), x(t) ∈ D(A) (Domain of A) for

t ∈ (0, T0)\{t1, t2, . . . , tN}, which satisfies equations (2.2.1) on [0, T0].
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2.3 Existence and Uniqueness Theorems

Theorem 2.3.1. Assume that (A1)-(A2) are satisfied. Then for every x0 ∈ X, for

t ∈ [0, T0] the equation (2.1.2) has a unique solution.

Proof. Let x0 ∈ X be fixed. Define an operator F on PC([0, T0],X) by

(Fu)(t) = G(t)x0 +
∑
ti<t

∫ t

ti

G(t− s)Fi(s, u(s), Tiu(s), Siu(s))ds+
∑

0<ti<t

G(t− ti)Ii(u(ti))

for t ∈ [0, T0]. Then F : PC([0, T0],X) → PC([0, T0],X). To prove (2.2.1) has

unique solution, F must be a contraction. For any x, y ∈ PC([0, T0],X),

∥(Fx)(t) − (Fy)(t)∥

≤
∑
ti<t

∫ t

ti

∥G(t− s)∥∥Fi(s, x(s), Tix(s), Siu(s)−Fi(s, y(s), Tiy(s), Siy(s))∥ds

+
∑

0<ti<t

∥G(t− ti)∥∥Ii(u(ti))− Ii(v(ti))∥

By using assumption (A1), we have

∥(Fx)(t)− (Fy)(t)∥ ≤M [T0L
∑
i=1

(1 + T ∗
i + S∗

i ) +H]∥x− y∥

Taking α =M [T0L
∑

i=1(1+T
∗
i +S

∗
i )+H] and assuming (A2), ∥(Fx)(t)−(Ft)(t)∥ ≤

α∥x− y∥, for x, y ∈ PC([0, T0],X) with α < 1.

Therefore, F is a contraction operator on PC([0, T0],X) and applying Banach fixed

point theorem [83], one get unique solution of (2.2.1).

Remark 2.3.1. Conditions (A1) and (A2) guarantee the existence of the mild solu-

tion of (2.2.1) but if conditions are not satisfied then we may get a unique solution.

Let us consider the impulsive evolution equation over [0, 2.5]

x′(t) =
x

t
, x(0) = 0, t ∈ [0, 2.5], t ̸= 1, 2, ∆x(1) = 2x(1), ∆x(2) = 3x(2)

has unique solution by x(t) = 0 but F = x
t
is not continuous at t = 0. Therefore

conditions (A1) and (A2) are sufficient but not necessary.

Remark 2.3.2. If Ii’s are constants then equation (2.2.1) has unique solution if we
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reduce inequality in (A2) by M [T0L
∑

i=1(1 + T ∗
i + S∗

i )] < 1.

The following lemmas are necessary to prove a unique classical solution of equation

(2.1.2).

Lemma 2.3.1. Consider the evolution equation,

x′(t) = Ax(t) + F(t, x(t), Tx(t), Sx(t)), 0 < t < T0

x(0) = x0, (2.3.1)

If x0 ∈ D(A), and F ∈ C1((0, T0)×X×X×X,X) and T, S are operator on X, and
there are positive constants L1, L2, L3, P,Q,M satisfies

(B1) For all t ∈ [0, T0] x, y ∈ X.

∥F(t, x1, x2, x3)−F(t, y1, y2, y3)∥ ≤ L1∥x1 − y1∥+ L2∥x2 − y2∥+ L3∥x3 − y3∥

∥Tx− Ty∥ ≤ P∥x− y∥, ∥Sx− Sy∥ ≤ Q∥x− y∥, M = max
t∈[0,T0]

∥G(t)∥.

(B2) The constants L, P,Q, and M satisfies α = MLT0(1 + P + Q) < 1 where

L = max{L1, L2, L3}.

then it has a unique classical solution, which satisfies

x(t) = G(t)x0 +
∫ t

0

G(t− s)F(s, x(s), Tx(s), Sx(s))ds (2.3.2)

for all t ∈ [0, T0).

Proof. Let, x0 be fixed and define an operator F on C1[0, T0] by

(Fx)(t) = G(t)x0 +
∫ t

0

G(t− s)F(s, x(s), Tx(s), Sx(s))ds

Then to show (2.3.1) has a unique classical solution (2.3.2), it is sufficient to show

that F is contraction.

∥(Fx)(t)− (Fy)(t)∥ ≤
∫ t

0

∥G(t− s)∥∥F(s, x(s), Tx(s), Sx(s))−F(s, y(s), T y(s), Sy(s))∥ds.
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Applying conditions in of lemma to get,∥(Fx)(t) − (Fy)(t)∥ ≤ α∥x − y∥ and α is

less than 1.

So, F is a contraction operator. Therefore x(t) is unique solution of (2.3.2).

Let, y(t) be the classical solution of the evolution equation (2.3.1) and F ∈ C1((0, T0)×
X× X× X,X). Therefore,

y(t) = G(t)x0 +
∫ t

0

G(t− s)F(s, y(s), T y(s), Sy(s))ds. (2.3.3)

Thus, u(t) also satisfies mild solution of (2.3.2). But the mild solution is unique

therefore u(t) = x(t). Which completes the proof of the lemma.

Lemma 2.3.2. For the unique classical solution x(t) on [ti−1, ti) of equation (2.1.2)

without impulsive conditions, one can define x(ti) in a such way that x(t) is left

continuous at ti and x(ti) ∈ D(A) for i = 1, 2, · · · , N + 1.

Proof. On the interval [ti−1, ti), equation (2.1.2) becomes

x′(t) = Ax(t) + Fi(t, x(t), Tix(t), Six(t))

x(ti−1) = xti−1
(2.3.4)

without impulsive condition. Then by lemma 2.3.1 equation (2.3.1) has unique

classical solution

x(t) = G(t)xti−1
+

∫ t

ti−1

G(t− s)fi−1(s, x(s), Ti−1x(s), Si−1x(s))ds (2.3.5)

on the interval [ti−1, ti) and x(t) ∈ D(A) for all t ∈ (ti−1, ti). Therefore we can

define

x(ti) = G(ti − ti−1)xi−1 +

∫ ti

ti−1

G(ti − s)fi(s, x(s), Tix(s), Six(s))ds (2.3.6)

One can complete the proof by showing x(t) is left continuous atti.

Let sk be increasing sequence of real numbers such that sk converges to ti, then

∥x(ti)− x(sk)∥ ≤ ∥G(ti − ti−1)− G(sk − ti−1)∥∥xi−1∥

+

∫ ti

sk

∥G(ti − s)− G(sk − s)∥∥Fi(s, x(s), Tix(s), Six(s))∥ds
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Since, G(t), and Fi, Ti, Si’s are continuous for i = 1, 2, · · · , N+1. Therefore, ∥x(ti)−
x(sk)∥ → 0 as k → ∞. Therefore x(t) is left continuous at ti and x(ti) ∈ D(A).

Which completes the proof of the lemma.

Theorem 2.3.2. Assume that x0 ∈ D(A), qi ∈ D(A), i = 1, 2, · · · , N . and that

Fi ∈ C1((0, T0)× X× X× X,X). Then the impulsive equation

x′(t) = Ax(t) + Fi(t, x(t), Tix(t), Six(t)),

x(0) = x0,

∆x(ti) = qi, i = 1, 2, 3, . . . , N. (2.3.7)

has a unique classical solution x(t) which satisfies,

x(t) = G(t)x0 +
∑
ti<t

∫ t

ti

G(t− s)Fi(s, x(s), Tix(s), Six(s))ds+
∑

0<ti<t

G(t− ti)qi.

(2.3.8)

for t ∈ [0, T0).

Proof. Consider the interval I1 = [t0, t1) then by Lemma 2.3.2 for equation

x′(t) = Ax(t) + F1(t, x(t), T1x(t), S1x(t)),

x(0) = x0

has a unique classical solution x1(t) which satiesfies

x1(t) = G(t)x(0) +
∫ t

0

G(t− s)F1(s, x(s), T1x(s), S1x(s))ds, t ∈ [0, t1)

and x1(t) ∈ D(A) for all t ∈ [0, t1). We define x1(t1) as

x1(t1) = G(t1)x(0) +
∫ t1

0

G(t1 − s)F1(s, x(s), T1x(s), S1x(s))ds

such that x1(t) is left continuous at t = t1 and x1(t1) ∈ D(A).

On the interval [t1, t2) consider the equation

x′(t) = Ax(t) + F2(t, x(t), T2x(t), S2x(t)),

x(t1) = x1(t1) + q1.
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Then x(t1) ∈ D(A) and applying lemma (2.3.2) above equation has unique classical

solution x2(t) satisfying

x2(t) = G(t− t1)x(t1) +

∫ t

t1

G(t− s)F2(s, x(s), T2x(s), S2x(s))ds, t ∈ [t1, t2)

and we define x2(t) at t = t2 as

x2(t2) = G(t2 − t1)x(t1) +

∫ t2

t1

G(t2 − s)F2(s, x(s), T2x(s), S2x(s))ds

such that x2(t) is left continuous at t2 and x2(t2) ∈ D(A).

Continuing this process on each interval [tk−1, tk) for k = 1, 2, . . . , N , get classical

solution xk(t) which satisfies the mild solution,

xk(t) = G(tk − tk−1)x(tk−1) +

∫ t

tk−1

G(t− s)Fk−1(s, x(s), Tk−1x(s), Sk−1x(s))ds

such that xk(t) is left continuous at t = tk and xk(tk) ∈ D(A).

On interval [tN , T0) the system become,

x′(t) = Ax(t) + FN+1(t, x(t), TN+1x(t), SN+1x(t)),

x(tN) = xN(tN) + qN

Again applying Lemma 2.3.2 above system has solution xN+1(t) which satisfies equa-

tion on interval [tN , T0]

xN+1(t) = G(t− tN)x(tN) +

∫ t

tN

G(t− s)FN+1(s, x(s), TN+1x(s), SN+1x(s))ds

such that xN+1(t) is continuous at T0 and xN+1(T0) ∈ D(A).

Define

x(t) =


x1(t), 0 ≤ t < t1,

xk(t), tk − 1 ≤ t < tk, k = 2, 3, . . . , N.

xN+1(t), tN < t ≤ T0.

(2.3.9)

Then x(t) ∈ PC([0, T0], X) and x(t) satisfies impulsive evolution equation (2.3.7).

Therefore x(t) is classical solution. Now we prove that x(t) also satisfies equation
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(2.3.8). Consider,

x(t) = xN+1(t)

= G(t− tN)x(tN) +

∫ t

tN

G(t− s)FN+1(s, x(s), TN+1x(s), SN+1x(s))ds

x(t) = G(t− tN)[G(tN − tN−1)x(tN−1) +

∫ tN

tN−1

G(tN − s)FN(s, x(s), TNx(s), SNx(s))ds

+ qN ] +

∫ t

tN

G(t− s)FN+1(s, x(s), TN+1x(s), SN+1x(s))ds

Applying Semigroup property to get,

x(t) = G(t− tN−1)x(tN−1) +

∫ tN

tN−1

G(t− s)FN(s, x(s), TNx(s), SNx(s))ds

+

∫ t

tN

G(t− s)FN+1(s, x(s), TN+1x(s), SN+1x(s))ds+ G(t− tN)qN

Continuing this process, one gets

x(t) = G(t)x0 +
∑
ti<t

∫ t

ti

G(t− s)Fi(s, x(s), Tix(s), Six(s))ds+
∑

0<ti<t

G(t− ti)qi

Therefore x(t) is solution of integral equation (2.3.8). Which completes the proof of

the theorem.

The next theorem derives the condition for which a mild solution of (2.1.2) gives

rise to a classical solution.

Theorem 2.3.3. Assume the hypotheses (A1)-(A2) are satisfied. Let x(t) be the

unique mild solution of (2.1.2) obtained in Theorem 2.3.1. Assume that x0 ∈ D(A),

Ii(x(ti)) ∈ D(A), i = 1, 2, . . . , N , and that fi ∈ C1((0, T0) × X × X × X,X) for

i = 1, 2, · · · , N + 1. Then x(t) gives rise to a unique classical solution of (2.1.2).

Proof. Applying theorem 2.3.2 by setting qi = Iix(ti), get classical solution x(t)
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which satisfies

x(t) = G(t)x0 +
∑
ti<t

∫ t

ti

G(t− s)Fi(s, x(s), Tix(s), Six(s))ds+
∑

0<ti<t

G(t− ti)Iix(ti).

Let y(t) be the mild solution of equation (2.1.2). Therefore u(t) satisfies

y(t) = G(t)x0 +
∑
ti<t

∫ t

ti

G(t− s)Fi(s, y(s), Tiy(s), Siy(s))ds+
∑

0<ti<t

G(t− ti)Iiy(ti).

Define,

z(t) = x(t)− y(t)

Then, z(t) satisfies evolution equation

z′(t) = 0 (2.3.10)

with initial condition z(0) = 0 and without impulses. Since, Fi continuously differ-

entiable and x(t), y(t) ∈ PC([0, T0], X), the solution of (2.3.10) is z(t) = 0. There-

fore x(t) = u(t). Thus the mild solution of (2.1.2) gives rise to a classical solution

and the uniqueness of the mild solution implies uniqueness of classical solution of

(2.1.2).

2.3.1 Example

Consider the system on [0, T0 = 1.5]

x′(t) = −3x+ Fi(t, x, Tix, Six), t ∈ [0, T0 = 1.5], t ̸= t1 = 1

x(0) = 1 (2.3.11)

∆x(t1) = I1(x(t1)) =
x(t1)

5

where F1 = 1/15[cosx(t) +
∫ t
0
(t − s)x(s)ds] and F2 = 1/20[

∫ T0
0
(t − s)sinx(s)ds +

sin2x(t)]. Equation (2.3.11) assumption (A1) with L = 1/15, M = 1, T ∗
1 =

1, S∗
1 = 1.125, T ∗

2 = 1.125, S∗
2 = 1 and H = h1 = 0.2. and M

[
LT0

∑N
i=1(1 + T ∗

i +
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S∗
i ) + H

]
= 0.7333 < 1 imply (A2) is also satisfies. Therefore by Theorem 2.3.1,

equation (2.3.11) has unique mild solution. Moreover, F1 and F2 are continuously

differentiable therefore by Theorem 2.3.3, a mild solution of (2.3.11) gives rise to a

classical solution.

2.4 Conclusion

The system (2.1.2) is a more general system than the system taken by Anguraj and

Arjunan [5] because this system has different perturbing forces after the impulses.

This type of system is useful to model the motion of a vehicle in the city or the

body dynamics of a person having an infectious disease because in both phenomena

the perturbing forces after impulses are different.

24


