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Chapter 1

Introduction

The classical Fourier series is generalized to various orthogonal Fourier series.

These series, like the Fourier series, Legendre Fourier series, Chebychev Fourier

series and Walsh Fourier series, are each tailored to deal with specific types of

functions, such as smooth periodic functions [11], smooth bounded functions [6],

analytic functions [28] and binary functions [10] respectively. Depending on the

characteristics of the function being approximated, different orthogonal series of-

fer different benefits in terms of convergence properties. However, when dealing

with non-periodic functions or those with discontinuities or singularities, the clas-

sical Fourier series often is not very useful. In such cases, the rational Fourier

series is a better alternative [9, 5]. With the right parameter adjustments, the

rational Fourier series can converge faster and provide more accurate results com-

pared to the classical Fourier series for certain functions [20, 21]. It’s worth noting

though, that computing the rational Fourier series may require more complexity

and computational resources than its classical counterpart. Besides theoretical

applications [13, 19, 22], the rational Fourier series finds numerous other applica-

tions in fields such as control theory [4], system identification [1], signal compres-

sion [14], denoising [31], and many more fields. Understanding how the rational

Fourier series behaves, especially considering its use of the rational orthogonal

system, is crucial due to its widespread applications and potential advantages

over the classical Fourier series.

The rational Fourier series [7] is defined using the rational orthogonal sys-

tem (also referred as Malmquist-Takenaka system [15, 25]), which is characterized
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by a complex sequence of poles within the open unit disk. The completeness con-

dition for this system is satisfied by ensuring the poles remain within a certain

bound. The rational Fourier series reduces to the classical Fourier series when

all poles are zero. Specific properties of the rational Fourier series, such as its

behaviour under the convolution and the magnitude of its coefficients, differ from

those of the classical Fourier series. For instance, convolution of functions does

not follow the same relation for rational Fourier coefficients as it does for classical

Fourier coefficients. Additionally, bounds on the magnitude of coefficients differ

between the two series. Thus, it is interesting to know which properties differs

between rational Fourier series and classical Fourier series.

Chapter 2

Order of magnitude of rational

Fourier coefficients

The study of the Fourier series traces its origin back to the early 19th century

and has continually expanded due to its theoretical and practical implications. A

significant contribution to this field is the Riemann Lebesgue Lemma, which laid

groundwork for understanding the relationship between Fourier coefficients and

the behavior of the studied function [8, Lemma 2.3.8, p. 36]. However, this lemma

does not specify a definitive rate at which Fourier coefficients tend to zero; in fact,

they can approach zero as slowly as desired. Consequently, mathematicians began

investigating this property for various subclasses of L1(T), where T = [0, 2π).

Schramm and Waterman [23, p. 408] obtained the result for the order of

Fourier coefficient for functions of Φ − Λ− bounded variation. Tan and Zhou

[27] carried out the study of rational Fourier coefficients in 2013. Firstly, they
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gave an analogous result of Riemann Lebesgue Lemma for rational Fourier series.

Also, the result of Schramm and Waterman of the order of Fourier coefficients of

functions of ΦΛBV [0, 2π] is generalized for rational Fourier coefficient.

In 2002, Akhobadze [2] proposed another notion of generalized bounded

variation, termed BΛ(p(n) ↑ p, φ,T), and provided results regarding the order of

Fourier coefficients for this class. Additionally, in 2011, a concept of generalized

bounded variation, ΛBV (p(n) ↑ p, φ, I), was introduced [30], and an estimation

of the order of magnitude of Fourier coefficients was made for this variation. One

another subclass of L1([0, 2π]), that was explored for the study of the magnitude

order of Fourier coefficients is Lip(β, p)([0, 2π]) class [33, see p. 45]. The result

concerning the order of Fourier coefficients for functions in Lip(β, p)([0, 2π]) class

was obtained. In this chapter, we generalize all these results for rational Fourier

coefficients and thus obtained the order of Fourier coefficients for functions in

BΛ(p(n) ↑ p, φ,T), ΛBV (p(n) ↑ p, φ, I) and Lip(β, p)([0, 2π]) classes.

Chapter 3

Order of magnitude of double
and multiple rational Fourier
coefficients

In the previous chapter, we worked on the magnitudes of rational Fourier coeffi-

cients across a range of generalized bounded variation classes. This idea was ob-

tained from earlier research and by examining the magnitudes of classical Fourier

coefficients.

In 2002, Móricz [18] extended the results of Fourier coefficients to functions
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of two variables, particularly those with bounded variation in the Hardy sense.

This paved the way for exploring the magnitudes of double Fourier coefficients

across various functions in two dimensions. While many researchers contributed

to this, we noticed a gap: not much study had been done on the magnitudes of

double rational Fourier coefficients. This observation inspired our research in this

area.

In our study, we defined the double rational Fourier series and investigated

the magnitudes of double rational Fourier coefficients for functions with gener-

alized bounded variation in two variables, considering both Vitali and Hardy

senses. Therefore, we extended upon the findings from our previous chapter

on one-variable rational Fourier coefficients and applied them to double rational

Fourier coefficients. We also stated the results for the order of magnitude of

multiple rational Fourier coefficients.

Chapter 4

Rate of convergence of rational,
conjugate rational and double
rational Fourier series

The convergence rate of Fourier series relies on the function’s smoothness, cru-

cial for accurately representing functions as infinite sums of sines and cosines.

Analysing convergence of Fourier series is pivotal across mathematics, engineer-

ing, physics, and signal processing. Notably, the Dirichlet-Jordan test assesses

convergence for functions of bounded variation, extending its applicability beyond

theoretical mathematics.
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In 1971, Bojanić [3, p. 57] developed a quantitative version of the Dirichlet-

Jordan test based on variations. Subsequently, in 1982, Waterman [32, p. 52]

gave an estimate for the convergence rate of Fourier series, particularly for func-

tions closed to harmonic bounded variation. In 1987, Mazhar and Al-Budaiwi

[16, p. 178] derived an estimate for the convergence rate of conjugate Fourier se-

ries for functions of bounded variation. Móricz [17, Theorem 3, p. 349] extended

the quantitative version of the Dirichlet-Jordan test to double Fourier series in

1992. Finally, in 2013, Tan and Qian [26, Theorem 2.4, p. 545] obtained a similar

quantitative version of the Dirichlet-Jordan test for rational and conjugate ratio-

nal Fourier series. These contributions served as inspiration for our investigation

and thus we obtained the convergence rates of rational, conjugate rational, and

double rational Fourier series for functions with generalized bounded variations

in this chapter.

Chapter 5

Convergence and integrability of
rational and double rational
trigonometric series

Complex numbers and bounded variation sequences are vital for analysing conver-

gence of trigonometric series and behaviour of function, essential in mathematical

analysis. They ensure accurate approximation of function.

In 1954, Ul’yanov [29] obtained that sine and cosine series converge in

Lp[0, 2π) for any 0 < p < 1, if their coefficients form a null sequence of bounded

variation. Stanojevic [24] further explored convergence and integrability of com-
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plex trigonometric series with coefficients of generalized bounded variation in

1984. Later, Kaur et al. [12] extended these results to double trigonometric

series in 2004.

Motivated by the importance of bounded variation sequences in analysing

convergence and integrability of trigonometric series, we defined the rational

trigonometric series which reduces to trigonometric series when the poles are zero

in the orthogonal system and obtained results for convergence and integrability of

rational trigonometric series analogous of the result obtained by Stanojevic [24]

for trigonometric series. Later on, this results were extended for double trigono-

metric series and analogous results to that of Kaur et. al [12] was obtained.

Conclusion

The rational Fourier series can be seen as a generalization of the classical Fourier

series, with the classical series emerging when the poles in the rational orthogonal

system are considered as zero. In this thesis, we have derived results concerning

the order of magnitude of rational Fourier coefficients for functions from various

generalized bounded variation classes. These findings have been further extended

to encompass multiple rational Fourier coefficients. Notably, these results differs

from their classical counterparts. Additionally, we have determined the conver-

gence rates for rational, conjugate rational, and double rational Fourier series

for functions of generalized bounded variations. Understanding these conver-

gence rates is crucial for analysing the behaviour of functions, and it has been

demonstrated that by selecting appropriate poles, the rational Fourier series can

converge more rapidly than the classical Fourier series. Moreover, we have estab-

lished results regarding the convergence and integrability of rational and double

rational trigonometric series, which closely resemble their classical counterparts

concerning convergence and integrability of trigonometric and double trigonomet-

ric series.
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