List of Tables

2.1	Mechanical properties (Young's modulus (YM), tensile strength	
	(TS) and percentage elongation at break (PE)) for non-biobased	
	non-biodegradable polymer (NB-NB), non-biobased	
	biodegradable polymer (NB-BP), biobased nonbiodegradable	
	polymer (BB-NB) and biobased biodegradable polymer (BB-BP),	
	from previously published sources	39
2.2	Raman modes corresponding to peaks observed in the Raman	
	spectrum of HDPE, LLDPE, and PPC films. The peak center is	
	determined from the Lorentzian fitting of the Raman peaks and	
	the corresponding vibrational mode is determined from the	
	fingerprints available in literature [4, 71, 72]	50
3.1	Peak assignments and their peak center at room temperature (30	
	°C) for peaks appearing in unprocessed PVAc. The peak numbers	
	as assigned in Figure 3.2(a). The best fit to the peaks is determined	
	from non-linear least square fitting results. The peaks are	
	assigned their respective vibrational modes with the help of	
	existing literature [34, 36, 37]	95
3.2	Calculation of activation energy from the Arrhenius fits (Equation	
	3.4) of the integrated peak intensities (I_{INT}^{T}) of Raman peaks 2, 3	
	and 4 of PVAc film	126
3.3	Fitting results of integrated peak intensities as a function of	
	temperature ($I_{INT}^{T=293K}$) fitted with VFT equation (Equation 3.5)	
	during cooling cycle of thermal ramp 2	126
4.1	Fractal dimension (d_F) for the peaks in PVAc film instantly after	
	quenching ($t_w = 0$) and after 95 minutes of quenching ($t_w = 95$ min).	149

5.1	Length scales (blob size ς) and interaction strength (ϕ_{Dep} , depletion
	interactions in presence of bentonite) for different concentrations
	of PEG aqueous solutions
5.2	Diffusion coefficients as calculated from three different techniques:
	Equation 5.4 (D1), Equation 5.5 (D2) and Equation 5.6 (D3) 172
5.3	Heterogeneities and immobile fractions present in PEG+B
	solutions for all concentrations of bentonite in 20P
5.4	Aggregate size obtained from fitting hierarchical model (Equation
	5.18) to scattering intensity obtained in SAXS and MSANS. SAXS
	1 is the SAXS experiments for the range given in Figure 5.8(a)
	(range 1) and SAXS 2 is the SAXS experiments for the range given
	in Figure 5.8(b) (range 2). The average aggregate size obtained
	from phase contrast microscopy for different concentrations of
	polymer in 1 wt.% bentonite solutions