Chapter 2

Covariant Confined Quark Model

One of the potential objective modern particle physics wants to address is to uncover
the underlying structure of hadronic matter. Hence it is of utmost importance to un-
derstand the interaction between the constituents of the hadron and their interaction
with hadron itself. Understanding heavy-flavor decays is about drawing a distinction
between the long-distance (non-perturbative) hadronic effects and short-range (per-
turbative) QCD dynamics. Short distance dynamics can be easily understood via
Wilson’s coefficients [13] and effectively evaluated by perturbative approach, whereas
the investigations of hadronic matrix elements require nonperturbative approach. It
is now believed that hadrons are made up of quarks and gluons degrees of freedom
of QCD [118]. To understand the processes such as Hadronization (construction of
hadron from quarks) and confinement (quarks can’t exist in isolation), one is required
to apply approaches which are essentially non-perturbative because creation and an-

nihilation effects are non-perturbative in nature.

Many attempts have been reported that construct models focusing on different features
of QCD. The most model independent approach among these is Light Cone Sum
Rule(LCSR) [9,119], where initially the form factors are calculated in large recoil and
then extrapolated to zero recoil through pole-type parametrization. Authors of [120]
have studied semileptonic decay of B — K*I*l~ using HQET in low recoil region.
Some models describe quark propagation by fully dressed Schwinger functions which

wipe out the threshold problem and thus confinement is achieved. These models
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use the results obtained from QCD’s Dyson-Schwinger’s equation [121]. Apart from
these, constituent quark model [122], a relativistic quark model [123], QCD relativistic
potential model [124], a QCD sum rule technique [125] and covariant constituent quark
model (also called covariant quark model(CQM)) [126-128] are some very widely used

model approaches out there to accomplish the calculation of hadronic form factors.

It is important to note that the covariant constituent quark model is capable of ac-
counting for the complete physical range of momentum transfer. The covariant quark
model described in Refs. [126-128] didn’t take into account the quark confinement.
The meson transition in CQM are given by covariant Feynman diagrams in which the
constituent quarks propagate freely. Vertex functions with suitable damping mod-
erate the UV behaviour of the loop diagrams. The so-called compositeness condi-
tion [129,130] plays an important role in consistent design of the model. Since free
particle Green’s functions explain the propagation of the constituent quarks, on-shell
quark production occurs when the mass of the bound state is more than the sum of the
masses of constituent quarks. Consequently, the scope of the covariant quark model’s
application was restricted to situation where myg < my +msy. Later, when a universal
infrared cutoff parameter was incorporated into the space of loop integrations by [115],
this restriction was lifted, thereby introducing infrared confinement. As a result, the
CQM can now be employed to describe both heavy and light hadron processes. The
Covariant Quark Model is a very versatile tool that can be used to calculate any
heavy-heavy, heavy-light and light-light hadron transition once the model parameters
are tuned. The prediction of the CQM hold for general mass configurations which
is unavailable to the model-independent techniques because they need a heavy quark
mass expansion. However, if we use static propagators for the heavy quarks, we can

recover the predictions of the heavy-quark expansion.

2.1 Introduction

We have adopted Covariant Confined Quark Model (CCQM) [115-117,131, 132] for
the calculations of weak decays of meson. CCQM takes into account the interaction

Lagrangian of meson which interacts with constituent quarks and can be thought of as
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a potent quantum field theory technique. Here interaction Lagrangian is constructed
in terms of quarks and meson variables and then using Feynman rules, the S-matrix
elements that describe the mesonic interaction are derived using set of quark diagrams.
Double counting of hadronic degree of freedom is taken care of by compositeness

condition Eq. (2.9).

2.2 Framework

The interaction Lagrangian illustrating the coupling between meson M (¢;¢>) and its

constituent quarks ¢; and ¢ is given by
£int($) = gM]W(a:) . JM(:E) + H.c. (2.1)

here gys represents the coupling strength of meson with its constituent quarks. .Jy; is

the interpolating quark current and is given by

Jyu(x) = /dml/d:rgFM(m @1, 22) @ (22) Cargr (1) (2.2)

here I'y; are the Dirac matrices that are chosen precisely to characterise the associated
spin and flavor quantum number of mesonic field M(x). 'y, = I for scalar, Iy = ~°
for pseudoscalar and T'y; = +* is for vector meson. Fys(x, 1, x2) is the vertex function
and represents the finite size of the meson. For any given four-vector a, vertex function
must obey Fy(x+a, x1+a, z2+a) = Fy(z, 21, T3) so that translational invariance will
be achieved for the interaction Lagrangian given in Eq. (2.1). Fj; is also associated

with the scalar part of Bethe-Salpeter amplitude. Vertex function is chosen to be

2

Fu(x, a1, 29) = 6@ (x - Z wixi> Dy (21 — 22)?) (2.3)

i=1

The correlation function of the two constituent quarks with masses m; and ms is given
by ®ys and w; is given by w; = m;/(my+ms) which implies that w; +ws = 1, where m;
represents the quark mass. For bound state of meson, Bethe-Salpeter equation [121]

is used to obtain the Fourier Transform of the correlation function and is denoted by
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Figure 2.1: One loop self energy diagram

®/(—p?). Authors of [133] have shown that one can have any functional form for
vertex function, we still choose Gaussian form as will have an extra advantage as it is

more analytically easy to handle. The vertex functions is given as

Oar(—p?) = exp(p®/AY,) (2.4)

The argument of ®,, contains minus sign which indicates that one is working in
Minkowski space. In Euclidean space, p* converts to —p* and so Eq. (2.4) has the
fall-off behaviour sufficient enough to overthrow the Ultraviolet divergences of the

loop integral. Here Aj; characterizes the finite size of the meson.

Quark loop diagram in Fig. 2.1 is evaluated using free local fermion propagator for

the constituent quarks of the form

Su(k) = (2.5)

where m; is the effective constituent quark mass. Now with the help of Fourier trans-
formed vertex function given in Eq. (2.4) and quark propagator defined in Eq. (2.5),

we can define meson mass function for diagram shown in Fig. 2.1 as

For pseudoscalar meson

(;:;Z- OL(—E*)tr(v°S1(k + wip)y*Sa(k — wap)) (2.6)

Hp(pQ) = Ncg;/
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For vector meson

) o )
I (p2) = Nag? / G (RS -+ wip)”Sa(k = ) 27)

Fock representation is used to convert loop momenta to the derivative of external
momenta [134,135]. N. = 3 denotes the number of colors and in case of vector meson
ey - p = 0, because it is on its mass-shell, hence the part of the vector mass function

which is proportional to g, is only required. Hence

1) = 5 (90— 222 1) 29)

The coupling constant gy, in Eq. (2.1) can be obtained using compositeness condition
[129,130], which sets wave function renormalization constant (Z,,) of the meson field
to be equal to zero, i.e.

Zy=1-3,(m%)=0 (2.9)

Zy = 01is the so-called compositeness condition, where Z; is the wave-function renor-
malization constant, which mathematically connects the bare state and physical state

through the following relation

|bare) =/ Zn|phys)

The bare state interacts with the quantum vacuum to produce the physical state.
A 7dressed” physical state results from these interactions, involves the emission and
reabsorption of virtual particles. Z,; basically quantifies how much of this dressing
is present. Zj; can also be looked at as the probability amplitude for the physical
state to be found in the bare state. Specifically Z,; gives the residue at the pole in
the propagator of the particle which in a way gives the idea about the strength of the
coupling constant of the meson with its constituents.

The renormalization constant v/Z; can also be interpreted as the matrix element
between the bare and physical state and hence the condition Z,; = 0 suggests that
physical state doesn’t contain the bare state and hence can be considered as an ap-
propriate bound state. Z,; = 0 ensures that we avoid the double counting of meson

degree of freedom. X,(m3,) is the derivative of the mass operator associated with
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the self-energy diagram of Fig. 2.1 and is given by

) 392 3g3; Al (p?)
f )= 4—;\24 M(m?u) = 47;\24d—192

(2.10)

Eq. (2.9) allows us to fully describe the meson interaction via constituent quarks with
local constituent quark propagators only, where the derivative of mass operator is
taken on mass-shell p? = m3,. Now to calculate the derivative of the mass operators

given in Eq. (2.6) — (2.7) we use following identities.

dlly (p?) Lpu dlLy (p*)

dp? 2p? dp?

“dZNS(k +wp) = wS(k +wp)pS(k + wp) (2.11)

p

Following the above equations, the derivatives of the mass functions of meson can be

expressed as:
For pseudoscalar meson

!’

1 3g7 dk
2 —_or [ v
o) = 2p? 4n? | 4Arw2i

— wotr[Sy (k + wip)y* Sz (k — wap)pSa(k — W2p)75]>

03 (—k2) (wnte[Ss (k + wip)pSi (k + wip)ySo(k — wap)’)

(2.12)
For vector meson
’ 1 1 prV
2 o
0 (0") = 3339~ =)
/4 22(1)2 (wltr[sl(k—’_wlp)psl(k"_wlp)“/ﬂS?(k wop)yy] (2:13)

— wtr[S1 (k + wip)yuSa(k — wap)pSa(k — wﬂ?)%])

Next step is to solve for the loop integrations shown in Eq. (2.6) — (2.7).

2.2.1 Loop Integration Technique

Let’s consider n local propagators S;(k+v;) and n Gaussian vertex functions ®;(—(k+

Viyn)?) for n point one loop diagram. One loop diagram in Minkowski space can be
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stated as

L(p1y s pn) = /%trﬁ@i(—(k‘+vi+n)2)FiS¢(k+vZ-) (2.14)

here linear combinations of external momenta p; is represented by v;, whereas k is the
loop momenta and }“1 are the Dirac matrices for i hadron. The choice of external
momenta satisfies Z pi = 0. For any four vector a, the integral in Eq. (2.14) will be
invariant if loop m(i;rllenta k is shifted as k — k 4 [, due to translational invariance of

the one loop integral. Any linear combination of external momenta p; may serve as

the four vector a.

Next we apply Fock-Schwinger parameterizations to local quark propagators using

1 R L |
E:/o dﬁl/o dfpsexp(—HA — BaB) (2.15)

and we get

Si(k+v) = (mi +k+9¢,) /000 df; exp[—Bi(mi — (k + v;)?)] (2.16)

Fock-Schwinger representations are important because they are helpful in performing
tensor loop integrals by converting loop momenta into derivatives of the exponent

function. Next we use Wick rotation given by
k’() = Gi%k’4 = Z,{4 (217)

on the loop momenta to convert them from Minkowski space to Euclidean space hence
k? =k} — k? = —k3 — k2 = —k% < 0. Now for the quadratic form in Eq. (2.16) to be
positive-definite, all external momenta must also be rotated, i.e vg — v, and hence

v? = —v% so that

m; — (k+v)* =m; + (kg +vig)® > 0 (2.18)

so that the integral over § in Eq. (2.16) is convergent. All the loop integrations
are evaluated in Euclidean space. However, we still use Minkowski notation to avoid

rewriting the equations. It is to be noted that &% < 0 and v* < 0. By choosing

18



Gaussian form for the vertex function we have

(I)z(_(k + 'Ui—O-n)Q) = eXp[fBi—O-n(k + Ui-l—n)Q] (2'19)

where ¢ = 1,2, .., n. Size parameter for meson is denoted by 3y, = s; = 1/A%

Next using the vertex function representation in Eq. (2.19) and quark propagator in
Eq. (2.16), the one loop integration can be written as

L(p1y s D) :/ﬂtrﬂ/ dpeBim 1(mz+k+;é eXp{zﬁl (k + v;)?

One can see that exponential function in the above equation takes the form of 3k? +
2kr + 2y, where 8 = Z B, r Zﬁzvz and zg = Zﬂz
i=1

Using following properties

1
K exp(Bk* + 2kr + zp) = 5(9& exp(Bk® + 2kr + o)
Ty

1010
20r, 287“,,

k'K exp(BE? + 2kr + zp) = exp(Bk® + 2kr + 2) (2.20)

F can be replaced by @, = ’y“% so that one can perform tensor integration for

differentiation of the Gaussian exponent. So now loop integral can be re-written as
d*k Sim )
L(p1y oy pn) = —trH dﬁe i 1(ml+¢ +d@,) exp{Bk* + 2kr + z} (2.21)

Next step is to perform the loop integration and to move the Gaussian exponent e /B

to the left through the differential operator using

8 —1“2/(1 —T2/a|: 2rH 5 :|
—e =e -
or, a  Ory,
0 0 2 2 2rH 0 2rY 0
2 fr/a:f’"/a[—— H— } 2.2
Br,. Br, - ‘ s ' ar, o o (222)

[ J r} = gt (2.23)



Using the identity

2 2n
SAYomet=g Y Afii-u)

1<z<]<2n

the loop integral shapes like

In(pla--vpn) = H/Oo 52 exp{ Zﬁ,m +_ Z /81%3] _Uj) }
=10

1<z<]<2n

& 1,1
XtI’HFi (mi + ¢i - 57‘ + 5&7«)
i=1 !

(2.24)

The necessary commutation relations have been carried out using FORM code [136]
which treats all commutation relations in reliable manner. Now the integral which
remains to be evaluated over the Fock-schwinger parameter 0 < f5; < co. By intro-
ducing an additional integral they can be converted into a simplex using the transfor-

mation [137].

Ood"sF o B) = Oodtt"—l d"ad( 1 — n ) Fton, ... tay, 2.25
[ asren sy = [Taw [aas(1-3 e P ) 229

1=

The final form of the one loop n point diagram takes the following form

o (=t - st s?
L,(Py, ... P,) = dt d"ad| 1 — : — t20c
(P, .., Py) /0 (s+t)2/ « < ;a>exp{ 2 +S+tz1+8+tz2}
xtrﬁr» m; + ¢ —Lf—l-la
o 7 7 i S+t 2 T

(2.26)

here
n

Zloc = E ()éiTTL? - E (,Yi()éjflij

i=1 1<i<j<n

Zaz Z /8_] ij Z aiainj

= j=n+1 1<i<j<n
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Ry = Z /‘gingz’j

n+1<i<j<2n

r—z‘Zav +s Z Biv;

i=n+1

n
Where B4, = si/s, 5 = Zsi. Aij = (v —v;)*(1 < 4,5 < 2n) and is entirely
i=1
dependent on the invariant variables.
Entire process of n-point one loop integration involves n numerical integrations, n — 1
a-parameter integrations and an additional integration for simplex conversion over

the scale parameter ¢. The final integration is done using Mathematica. In Eq. (2.26)

if 21, < 0 the integration over parameter ¢ will not converge due to large ¢ sector.

After applying the above technique to the derivative of meson mass operator given by

Eq. (2.12), the final form of the derivative of meson mass function is given by

’ 2 d
T, (%) = m / " / dBe =+ £ (1, ),

472

20 = ami + (1 — B)ym33(1 — 3)p?,

QSMt
M= 25y + t(/B B )
ay =2sy + 1,0 = ([3 — ’wg)t. (227)

The convergence of the integral above the threshold value p* > (m; + m3)? (i.e.
zp < 0) can be achieved by addition of a small imaginary mass to the quark mass, i.e.
m; — m; —ic, ¢ > 0 in the local fermion quark propagator Eq. (2.5). It will rotate the
integration variable ¢ to the imaginary axis ¢ — it and hence the integral Eq. (2.27)
turns out to be convergent but carries the imaginary part associated with quark pair
production. One of the techniques to get rid of all the conceivable thresholds present

in the quark diagram is to introduce an infrared cut-off parameter A [115].
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2.2.2 Infrared Confinement

By introducing the infrared cut-off parameter A as in Eq. (2.28), one can truncate
the scale of the integration to the upper limit and all conceivable thresholds in the

primary quark diagram can be eliminated

/Ooo dr(..) = /OW dt(..) (2.98)

The quark flavor dynamics dominates the low energy meson properties at intermediate
scales only say between a confinement scale of few hundred MeV to 1 GeV due to the
fact that chiral symmetry is dynamically broken just in this region [?]. The cut-off
parameter can be considered as a scale upto which quarks have been integrated out
hence preventing the determinant in the quark loop diagram to suffer from quark-anti
quark thresholds. It is shown in that in applying the IR cut-off of this form [?]

2
Ap = [mb(m — me) + mb(m, —m)] x O(P? — 4m?) i 1

4m?
if the model parameter m, is less than the constituent quark mass then the denom-
inator of quark loop diagram is free from divergences. we have chosen this model
parameter as an IR-cut off parameter in our study. It is also shown in the same
study [?] that introduction of the IR cut-off of this particular form does not signifi-
cantly changes the constituent quark mass. The difference in the quark is less than
50 MeV. Let’s illustrate the implementation of confinement using a scalar one-loop

propagator. The Schwinger parametrization of the propagator is given by

1 o0
w2 :/0 daexp[—a(m® — p?)]

Now, let’s propose an upper integration limit 1/A\? instead of integrating from 0 to
00. The parameter A is known as infrared confinement constant with the dimension
of mass m. The cut-off allows us to construct a complete function that may be

understood as a localised propagator, which reads as

1 — exp[—(m? — p?)/N’]
m2 — p?

1/72
/0 doexp[—a(m® — p?)] = (2.29)
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Above equation suggests that it is free of singularities in the finite p? plane, which
signifies that no free quark exists in the asymptotic region of configuration states. The
usage of constrained propagator in the shape of whole function, on the other hand,
presents its own unique set of challenges. Once the hadron masses and energies of
the equation have been fixed, the convolution of whole function causes an accelerated
growth of the physical matrix element. This expansion can be thought of as mush-
rooming and hence the numerical results become extremely sensitive to variations in
the parameters those are being chosen which demands for extreme fine-tuning. Hence

it is advisable to proceed in the following manner.

Let’s start with general m-loop Feynman diagram with n propagators. The Schwinger

parametrizations reads
n

[Lr ) = [ [l espi= 3 ot = 2]

i=1

here ® represents the numerator product between propagators and vertex functions.

The result of the loop integration provides

H:/ d"aF (o, .., o)
0

Here F represents the structure of a given one loop diagram. All a;’s can be converted
into a simplex by using additional ¢{-integration through the identity
1:/ dts(t = ay)
0 i=1
which leads to
n

o] 1
H = / dtt”_l/ dnozé(l — Zai)F(tal, o lag)
0 0

i=1
Now as described in Eq. (2.29), we truncate the upper integration at 1/A? to obtain

n

1/22 1
:/ dtt"‘l/ d"a5<1 - Zcu-) F(ton, ..., tay,)
0 0

cut—of f i=1

Because of the incorporation of the infrared cutoff, the quark loop diagram is now
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completely devoid of any and all conceivable thresholds. We will assume the same
numerical value of the cutoff parameter in all physical processes. The technique to
accommodate infrared confinement is fairly versatile and can be applied to quark
diagrams having any number of loops and propagators. In addition, the confinement
scenario enables us to incorporate all conceivable resonance states in our computations.
As a result, infrared cut-off parameter guarantees confinement. Here it should be
emphasized that the above method is widely generalized and can be used for diagrams

having n number of loops and propagators.

Although the CCQM is not based on first principle methods, the calculations shown by
authors of [115] demonstrate that a wide variety of low energy mesonic processes can
be consistently described by using only few tunable parameters namely, size parameter
Ay, constituent quark masses m; and infrared confinement constant A. Uncertainty in
the quark masses are not included because they are the part of the model parameters
so we want to keep them as they were fixed/tuned while designing the model. That
will help us to maintain the universality of the model for different systems. Model
parameters are listed in the Tab. 2.2. All tunable parameters mentioned above are
obtained by fitting the radiative decay constants to experimental data or taken from
LQCD calculations 3.18. With obvious modifications, CCQM can also be used to

study baryonic decay processes.

In the next chapter, we use CCQM to calculate weak semileptonic decays of open

flavor mesons.
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Table 2.1: Leptonic decay constant f (in MeV)

fu Present Data Refrences
o 206.08 202.2(2.2)(2.6) LQCD [?]
210+ 11 QCDSR [7]

211.9(1.1) PDG [12]

fps 257.70 258.7 (1.1) (2.9) LQCD [?]
259+ 10 QCDSR [7]

249.0(1.2) PDG [12]

fps/fp 1.25 1.173(3) PDG [12]
s 156.96 155.37(34) LQCD [?]
1579+1.5 LQCD [?]

155.6(0.4) PDG [12]

fr 130.30 130.39 (20) LQCD [?]
132.3+1.6 LQCD [?]

130.2(1.7) PDG [12]

fr/fr 1.20 1.1928(26) PDG [12]
o 244.27 278. £134+ 10 LQCD [?]
263 + 21 QCDSR [7]

Ips 272.08 31149 LQCD [?]
308 £+ 21 QCDSR [7]
frc 226.81 222+8 QCDSR [7]
Io 218.28 208.5+554+0.9 LQCD [?]
fs 226.56 238+ 3 LQCD [?]
215+5 QCDSR [7]

fo 198.38 194.6 £3.24 LFQM [§]

Table 2.2: CCQM model parameters: quark masses, meson size parameters and in-

frared cut-off parameter (all in GeV)

Ap Ap, Ax Ago A, AI_\"*(BQQ)“ Aps
1.963 £ 0.038 | 2.05 £ 0.036 | 0.871 £ 0.002 | 1.014 £ 0.008 | 0.610 £ 0.012 | 0.81 £ 0.024 | 1.75 £ 0.035
My/d Mg me my A Ay, Ap,

0.241 0.428 1.67 5.05 0.181 0.488+0.019 | 1.56 = 0.014
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