LIST OF FIGURES

Studies on development of Saline Tolerance in plants

Figure No	Title		
Chapter -1	REVIEW OF LITERATURE		
Fig. 1.1	Regulation of ion (e.g., Na ⁺ and K^+) homeostasis by the SOS pathway	4	
Fig.1.2	Biosynthesis of betaine	20	
Chapter -2	TISSUE CULTURE STUDIES FOR DEVELOPMENT OF REGENERATION PROTOCOL FOR GROUNDNUT		
Fig2.1A	Seed coat peeled off from pre-soaked sterilized seed	32	
Fig2.1B	Embryonated cotyledon with immature leaflets intact in pre-soaked sterilized seed	32	
Fig.2.2A	Young green folded leaflets developed during seed germination within 7 day incubation	32	
Fig.2.2B	Young green folded leaflet lamina separated from seeds and used as explants	32	
Fig. 2.3A	Shoot bud initiation after 15 days of inoculation	34 _.	
Fig.2.3B	Shoot elongation 30 days of inoculation	34	
Fig. 2.4A	Initiation and development of shoot buds at the proximal end of the de-embryonated CN explants	39	
Fig. 2.4B	Elongation of shoots after two sub culture	39	

Fig. 2.5	Rooting of the elongated shoots	40
Fig. 2.6A	Initiation of callus at the cut edge of the leaf margin	43
Fig. 2.6B	White-greenish friable callus growth after 3 sub culture on MS medium with BAP & 2,4,D	43
Fig.2.7A	Brownish-hard compact callus with development of root initial after 3 sub culture on MS medium with kinetin & NAA.	43
Fig.2.7B	Development of shoot buds and plantlets from the brownish hard callus on MS medium with reduced kinetin concentration after 5 subcultures	43
Chapter 3	BIOCHEMICAL CHANGES SEEN IN GROUND NUT DUE TO SALT STRESS	
Fig. 3.1	Reactions producing ROS and organic free radicals	47
Fig. 3.2	Defence systems (enzymes, antioxidants) against ROS	49
Fig. 3.3	ROS and its harmful effect.	51
Fig. 3.4	Ground nut plants under different level of NaCl stress.	60
Fig. 3.5	Ground nut plants under NaCl stress Control and 10mM on 22nd day	60
Fig. 3.6	Ground nut plants under NaCL stress 25mM and 50mM on 22nd day.	62
Fig. 3.7	Leaves size of plants under different level of NaCl stress.	62
Fig. 3.8	Ground nut plants under NaCl stress 100mM on 22nd day.	63

.

Fig. 3.10Release of H ₂ O ₂ in different concentration of NaCl stress.65Fig. 3.11Catalase activity at different concentration of NaCl stress.66Fig. 3.12Peroxidase activity at different concentration of NaCl stress.67 Chapter 4TRANSFORMATION OF AGROBACTERIUM 67Fig. 4.1Confirmation of the plasmid by agarose gel electrophoresis.76Fig. 4.2Triparental mating (A: Agrobacterium tumefaciens (Rif ^R Tet ^R); D: Donor pHS724 (Kan ^R); H: Helper strain (Kan ^R)77Fig. 4.3Agrobacterium and Agrobacterium transformants on LA Plate79Fig. 4.5Ketolactose test81Fig. 4.6Agrobacterium and Agrobacterium transformants on a medium containing 0.1M NaCl82Fig. 4.8Agrobacterium and Agrobacterium transformants on a medium containing 0.2M NaCl82	Fig. 3.9	In vitro germinating seeds on MS medium on 3 rd day of inoculation with different level of NaCL stress.	64
Fig. 3.11Catalase activity at different concentration of NaCl stress.66Fig. 3.12Peroxidase activity at different concentration of NaCl stress.67Chapter 4TRANSFORMATION OF AGROBACTERIUM67Fig. 4.1Confirmation of the plasmid by agarose gel electrophoresis.76Fig. 4.2Triparental mating (A: Agrobacterium tumefaciens (Riff ^R Tet ^R); D: Donor pHS724 (Kan ^R); H: Helper strain (Kan ^R)77Fig. 4.3Agrobacterium tumefaciens on LA plate79Fig. 4.4Agrobacterium and Agrobacterium transformants on LA Plate81Fig. 4.5Ketolactose test81Fig. 4.7Agrobacterium and Agrobacterium transformants on a medium containing 0.2M NaCl82Fig. 4.8Agrobacterium and Agrobacterium transformants on a medium containing 0.3M NaCl82	Fig. 3.10	Release of H_2O_2 in different concentration of NaCl stress.	65
Fig. 3.12Peroxidase activity at different concentration of NaCl stress.67Chapter 4TRANSFORMATION OF AGROBACTERIUM67Fig. 4.1Confirmation of the plasmid by agarose gel electrophoresis.76Fig. 4.2Triparental mating (A: Agrobacterium tumefaciens (Rif ^R Tet ^R); D: Donor pHS724 (Kan ^R); H: Helper strain (Kan ^R)77Fig. 4.3Agrobacterium tumefaciens on LA plate79Fig. 4.4Agrobacterium and Agrobacterium transformants on LA Plate81Fig. 4.5Ketolactose test81Fig. 4.6Agrobacterium and Agrobacterium transformants on a medium containing 0.1M NaCl82Fig. 4.8Agrobacterium and Agrobacterium transformants on a medium containing 0.3M NaCl82	Fig. 3.11	Catalase activity at different concentration of NaCl stress.	66
Chapter 4TRANSFORMATION OF AGROBACTERIUMFig. 4.1Confirmation of the plasmid by agarose gel electrophoresis.76Fig. 4.2Triparental mating (A: Agrobacterium tumefaciens (Rifter Tetter); D: Donor pHS724 (Kan ^R); H: Helper strain (Kan ^R)77Fig. 4.3Agrobacterium tumefaciens on LA plate79Fig. 4.4Agrobacterium and Agrobacterium transformants on LA Plate79Fig. 4.5Ketolactose test81Fig. 4.6Agrobacterium and Agrobacterium transformants on a medium containing 0.1M NaCl81Fig. 4.7Agrobacterium and Agrobacterium transformants on a medium containing 0.2M NaCl82Fig. 4.8Agrobacterium and Agrobacterium transformants on a medium containing 0.3M NaCl82	Fig. 3.12	Peroxidase activity at different concentration of NaCl stress.	67
Fig. 4.1Confirmation of the plasmid by agarose gel electrophoresis.76Fig. 4.2Triparental mating (A: Agrobacterium tumefaciens (Rif ^R Tet ^R); D: Donor pHS724 (Kan ^R); H: Helper strain (Kan ^R)77Fig. 4.3Agrobacterium tumefaciens on LA plate79Fig. 4.4Agrobacterium and Agrobacterium transformants on LA Plate79Fig. 4.5Ketolactose test81Fig. 4.6Agrobacterium and Agrobacterium transformants on a medium containing 0.1M NaCl81Fig. 4.7Agrobacterium and Agrobacterium transformants on a medium containing 0.2M NaCl82Fig. 4.8Agrobacterium and Agrobacterium transformants on a medium containing 0.3M NaCl82	Chapter 4	TRANSFORMATION OF AGROBACTERIUM	
Fig. 4.2Triparental mating (A: Agrobacterium tumefaciens (Rif ^R Tet ^R); D: Donor pHS724 (Kan ^R); H: Helper strain (Kan ^R)77Fig. 4.3Agrobacterium tumefaciens on LA plate79Fig. 4.4Agrobacterium and Agrobacterium transformants on LA Plate79Fig. 4.5Ketolactose test81Fig. 4.6Agrobacterium and Agrobacterium transformants on a medium containing 0.1M NaCl81Fig. 4.7Agrobacterium and Agrobacterium transformants on a medium containing 0.2M NaCl82Fig. 4.8Agrobacterium and Agrobacterium transformants on a medium containing 0.3M NaCl82	Fig. 4.1	Confirmation of the plasmid by agarose gel electrophoresis.	76
Fig. 4.3Agrobacterium tumefaciens on LA plate79Fig. 4.4Agrobacterium and Agrobacterium transformants on LA Plate79Fig. 4.5Ketolactose test81Fig. 4.6Agrobacterium and Agrobacterium transformants on a medium containing 0.1M NaCl81Fig. 4.7Agrobacterium and Agrobacterium transformants on a medium containing 0.2M NaCl82Fig. 4.8Agrobacterium and Agrobacterium transformants on a medium containing 0.3M NaCl82	Fig. 4.2	Triparental mating (A: <i>Agrobacterium</i> <i>tumefaciens</i> (Rif ^R Tet ^R); D: Donor pHS724 (Kan ^R); H: Helper strain (Kan ^R)	77
Fig. 4.4Agrobacterium and Agrobacterium transformants on LA Plate79Fig. 4.5Ketolactose test81Fig. 4.6Agrobacterium and Agrobacterium transformants on a medium containing 0.1M NaCl81Fig. 4.7Agrobacterium and Agrobacterium transformants on a medium containing 0.2M NaCl82Fig. 4.8Agrobacterium and Agrobacterium transformants on a medium containing 0.2M NaCl82	Fig. 4.3	Agrobacterium tumefaciens on LA plate	79
Fig. 4.5Ketolactose test81Fig. 4.6Agrobacterium and Agrobacterium transformants on a medium containing 0.1M NaCl81Fig. 4.7Agrobacterium and Agrobacterium transformants on a medium containing 0.2M NaCl82Fig. 4.8Agrobacterium and Agrobacterium transformants on a medium containing 0.2M NaCl82Fig. 4.8Agrobacterium and Agrobacterium transformants on a medium containing 0.3M NaCl82	Fig. 4.4	Agrobacterium and Agrobacterium transformants on LA Plate	79
Fig. 4.6Agrobacterium and Agrobacterium transformants on a medium containing 0.1M NaCl81Fig. 4.7Agrobacterium and Agrobacterium transformants on a medium containing 0.2M NaCl82Fig. 4.8Agrobacterium and Agrobacterium transformants on a medium containing 0.2M NaCl82Fig. 4.8Agrobacterium and Agrobacterium transformants on a medium containing 0.3M NaCl82	Fig. 4.5	Ketolactose test	81
Fig. 4.7Agrobacterium and Agrobacterium transformants on a medium containing 0.2M NaCl82Fig. 4.8Agrobacterium and Agrobacterium transformants on a medium containing 0.3M NaCl82	Fig. 4.6	Agrobacterium and Agrobacterium transformants on a medium containing 0.1M NaCl	81 ·
Fig. 4.8 Agrobacterium and Agrobacterium transformants 82 on a medium containing 0.3M NaCl 0.3M NaCl	Fig. 4.7	Agrobacterium and Agrobacterium transformants on a medium containing 0.2M NaCl	82
	Fig. 4.8	Agrobacterium and Agrobacterium transformants on a medium containing 0.3M NaCl	82

Fig. 4.9	Agrobacterium and Agrobacterium transformants	83
	on a medium containing 0.4M NaCl	
Chapter 5	TRANSFORMATION OF GROUNDNUT PLANTS FOR SALINE TOLERANCE	
Fig. 5.1	Tì Plasmid	88
Fig. 5.2	Transformation of plant cells by Agrobacterium (Gelvin, 2005)	89
Fig. 5.3	Binary Vector System	92
Fig. 5.4	pHS724 Vector map	94
Fig. 5.5A	Infection of leaf explants after 5 day co- cultivation with Agrobacterium.	98
Fig. 5.5B	Infection of cotyledon explants after 5 day co- cultivation with Agrobacterium	98
Fig. 5.6A	Swelling of explants with growing buds and callus at the proximal end of cotyledon explants.	102
Fig. 5.6B	Shoot bud producing plants from the proximal end of cotyledon explants.	102
Fig. 5.7A	Untransformed plants in MS medium without kanamycin	104
Fig. 5.7B	Untransformed plants in MS medium with 60mM kanamycin	104
Fig. 5.7C	Transformed plants in MS medium with 60mM kanamycin	106
Fig. 5.8	Transformed multiple shoot from embryo axis explants.	106
Fig. 5.9	Comparison of transformed plant with the control plants growing on MS medium without stress.	109

.

Fig. 5.10	Transformed plants which survived 2 cycle selection under kanamycin rich medium growing on MS medium with 100 mM NaCl	109
Fig. 5.11	Comparison of performance of transformed plants with control plants.	110
Fig. 5.12A	Comparison of X – gluc staining in the leaves of control & transformed plants	111
Fig. 5.12B	Blue colored X – gluc staining in the leaves of transformed plants.	111
Fig. 5.13	Comparison of X – gluc staining in the cotyledon tissues of control & transformed plants	112
Fig. 5.14	Blue spots of X – gluc staining in the cells of stems	112

.