LIST OF TABLES

Studies on development of Saline Tolerance in plants

Figure No	Title	Page No
Chapter -1	REVIEW OF LITERATURE	
Table 1.1	Examples of Metabolic Engineering of Osmoprotectants in Higher Plants (Rontein 2002)	16
Table 1.2	Summary of transgenic cyanobacteria and plants engineered to synthesize GB & their evaluation of their stress tolerance.	18
Chapter -2	TISSUE CULTURE STUDIES FOR DEVELOPMENT OF REGENERATION PROTOCOL FOR GROUNDNUT	
Table 2.1	Explant contamination and survival rates following surface sterilization treatments with NaOCI as well as HgCl ₂	28
Table 2.2	Effect of different concentrations of BAP and NAA on direct organogenic response from young leaves of <i>A. hypogaea</i> cv GG-20.	33
Table 2.3	Effect of different concentrations of BAP and NAA on regeneration from 6-day-old CN explants of <i>A. hypogaea</i> cv GG-20.	36
Table 2.4	Combination of antibiotics used to control bacterial contamination of explants	38

Table 2.5	Response of CN explant on MS medium supplemented with different combinations of NAA	41
	& BAP for direct shoot organogenesis.	
Chapter 3	BIOCHEMICAL CHANGES SEEN IN GROUNDNUT DUE TO SALT STRESS	
Table 3.1	Effect of different level of NaCl stress on seed	59
	germination and plant growth & development.	
Chapter 4	TRANSFORMATION OF AGROBACTERIUM	
Table 4.1	Resistance of plasmids to antibiotics	78
Table 4.2	Growth of transformants on Luria Agar plate	79
Chapter 5	TRANSFORMATION OF GROUNDNUT PLANTS FOR SALINE TOLERANCE	
Table – 5.1	MS medium with different combinations used during different stages of production of transformed plants using three different explants of groundnut var. GG20.	99
Table – 5.2	Effect of co-cultivation period on shoot bud regeneration on three explants of groundnut on shoot induction medium with 60 mg/l kanamycin sulfate.	103
Table 5.3	Transformation frequency of groundnut var. GG20 as influenced by explant type and level of	107