LIST OF FIGURES

Figure no.	Title	PAGE NO.
2.1	Structure of a normal synovial joint as well as joint affected by rheumatoid arthritis and osteoarthritis	13
2.2	Mechanism of action of NSAIDs	19
2.3	COX-1 and COX-2 effects	20
2.4	Structure of COX-I and COX-II enzymes	21
3.1	Absorptivity scan of celecoxib in 0.1N Sodium hydroxide	104
3.2	Calibration curve of celecoxib in 0.1N Sodium hydroxide	104
3.3	Absorptivity scan of celecoxib in methanol	105
3.4	Calibration curve of celecoxib in methanol	105
3.5	Absorptivity scan of celecoxib in phosphate buffer pH 7.4 with 2.0% tween-80	108
3.6	Calibration curve of celecoxib in phosphate buffer pH 7.4 with 2.0% tween-80	109
3.7	Absorptivity scan of rofecoxib in methanol	112
3.8	Calibration curve of rofecoxib in methanol	112
3.9	Absorptivity scan of rofecoxib in phosphate buffer pH 7.4 with 2.5% tween-80	115
3.10	Calibration of rofecoxib in phosphate buffer pH 7.4 with 2.5% tween-80	116
3.11	Absorptivity scan of valdecoxib in methanol	119
3.12	Calibration of valdecoxib in methanol	119
3.13	Absorptivity scan of valdecoxib in phosphate buffer pH 7.4 with 2.0% tween-80	122
3.14	Calibration curve of valdecoxib in phosphate buffer	123

	pH 7.4 with 2.0% tween-80	
3.15	Calibration curve of glutaraldehyde	126
5.1	Particle size distribution of celecoxib loaded gelatin microspheres	168
5.2	Effect of volume of glutaraldehyde (25%w/w) and duration of cross-linking on the drug release	172
5.3	Effect of volume of formaldehyde (37%w/w) and duration of cross-linking on the drug release	173
5.4	Comparative release profiles of formaldehyde (Batch F4) and Glutaraldehyde (Batch G-4) crosslinked gelatin microspheres	174
5.5	Effect of gelatin concentration on release of celecoxib from gelatin microspheres	175
5.6	Effect of presence of collagenase in the dissolution medium on the release of celecoxib from gelatin microspheres	176
5.7	Effect of volume of glutaraldehyde and duration of cross-linking on the drug release from rofecoxib loaded gelatin microspheres	182
5.8	Effect of gelatin concentration on the release of rofecoxib from gelatin microspheres	183
5.9	Effect of volume of glutaraldehyde and duration of cross-linking on the drug release from valdecoxib loaded gelatin microspheres	186
5.10	Effect of gelatin concentration on the drug release from valdecoxib loaded gelatin microspheres	187
5.11	Scanning electron micrograph of plain gelatin microspheres	190
5.12	Scanning electron micrograph of celecoxib loaded gelatin microspheres	190
5.13	FTIR spectrum of gelatin	192

5.14	FTIR spectrum of poly-ethylene glycol	193
5.15	FTIR spectrum of a mixture of poly-ethylene glycol and gelatin	193
5.16	FTIR spectrum of celecoxib	194
5.17	FTIR spectrum of formaldehyde crosslinked gelatin microspheres	195
5.18	FTIR spectrum of glutaraldehyde crosslinked gelatin microspheres	195
5.19	Particle size distribution of celecoxib loaded chitosan microspheres	210
5.20	Effect of volume of glutaraldehyde (25%w/v) and duration of cross-linking on release of celecoxib from chitosan microspheres	215
5.21	Effect of volume of formaldehyde (37%w/v) and duration of cross-linking on the release of celecoxib from chitosan microspheres	216
5.22	In-vitro release profile of celecoxib loaded heat cross-linked microspheres	217
5.23	Comparative drug release profiles of glutaraldehyde (Batch D), Formaldehyde (Batch H) and heat cross- linked (Batch K) microspheres	217
5.24	Effect of chitosan concentration on the release of celecoxib from chitosan microspheres	218
5.25	Effect of presence of collagenase in the dissolution medium on the release of celecoxib from chitosan microspheres	219
5.26	Effect of volume of glutaraldehyde on the release of rofecoxib from chitosan microspheres	224
5.27	Effect of chitosan concentration on release of rofecoxib from chitosan microspheres	225
5.28	Effect of volume of glutaraldehyde and duration of cross-linking on release of valdecoxib from chitosan	228

,

	microspheres	
5.29	Effect of chitosan concentration on release of valdecoxib from chitosan microspheres	229
5.30	Scanning electron micrographs of celecoxib loaded chitosan microspheres	232
5.31	FTIR spectrum of chitosan	234
5.32	FTIR spectrum of formaldehyde crosslinked chitosan microspheres	235
5.33	FTIR spectrum of glutaraldehyde crosslinked chitosan microspheres	235
5.34	FTIR spectrum of heat crosslinked chitosan microspheres	235
5.35	Particle size distribution of celecoxib loaded albumin microspheres	243
5.36	Effect of volume of formaldehyde on the release of celecoxib from albumin microspheres	247
5.37	Effect of volume of glutaraldehyde on the release of celecoxib from albumin microspheres	248
5.38	In-vitro release profile of celecoxib loaded albumin microspheres prepared by thermal denaturation	249
5.39	Effect of presence of collagenase in the dissolution medium on the release of celecoxib from albumin microspheres	250
5.40	Effect of volume of glutaraldehyde on the release of rofecoxib from albumin microspheres	254
5.41	Effect of volume of glutaraldehyde on the release of valdecoxib from albumin microspheres	257
5.42	Scanning electron micrograph of plain albumin microspheres	260
5.43	Scanning electron micrograph of celecoxib loaded albumin microspheres	260

_		
5.44	FTIR spectrum of bovine serum albumin	262
5.45	FTIR spectrum of formaldehyde crosslinked albumin microspheres	262
5.46	FTIR spectrum of glutaraldehyde crosslinked albumin microspheres	263
5.47	FTIR spectrum of albumin microspheres prepared by thermal denaturation	263
5.48	Particle size distribution of celecoxib loaded solid lipid nanoparticles	270
5.49	In-vitro release of celecoxib from solid lipid nanoparticles	271
5.50	Scanning electron micrograph of celecoxib loaded solid lipid nanoparticles	273
6.1	Effect of pH on the Labelling efficiency of CS,CMS and AMS	286
6.2	Effect of pH on the labelling efficiency of SLN and GMS	287
6.3	Effect of incubation time on the labelling efficiency of CS, CMS and AMS	288
6.4	Effect of incubation time on the labelling efficiency of SLN and GMS	289
7.1 -	Blood kinetic studies of ^{99m} Tc-labelled CS, CMS and AMS in rabbits after intra-articular injection	299
7.2	Blood kinetics of Tc-labelled SLN and GMS in rabbits after intra-articular injection	300
7.3	Levels of celecoxib and its formulations in different organs 4 hours post intra-articular injection	306
7.4	Levels of celecoxib and its formulations in inflamed as well as non-inflamed joints 4 hours post intra- articular injection	306

.

7.5	Levels of celecoxib and its formulations in different organs 24 hours post intra-articular injection	307
7.6	Levels of celecoxib and its formulations in inflamed as well as non- inflamed joints 24 hours post intra-articular injection	307
8.1	Knee joint diameters of different groups before and after treatment	318
8.2	The radioactivity count ratios (A: C) in different groups before and after treatment	319
8.3	γ -Scintigrams of arthritic rats taken 4 hours post administration of ^{99m} Tc-glutathione	320
9.1	Blood clearance of celecoxib (CS) and its formulations (AMS and SLN)	332
9.2	Levels of celecoxib and its formulations in different organs at 1 hour post intravenous injection	336
9.3	Levels of celecoxib and its formulations inflamed and non-inflamed joint 1 hour post intra-venous injection	336
9.4	Levels of celecoxib and its formulations in different organs 4 hours post intravenous injection	337
9.5	Levels of celecoxib and its formulations in inflamed and non-inflamed joint 4 hours post intra-venous injection	337
9.6	Levels of celecoxib and its formulations in different organs 24 hours post Intravenous injection	338
9.7	Levels of celecoxib and its formulations in inflamed and non-inflamed joint 24 hours post intravenous injection	338
9.8	(Inflamed:Non-inflamed joint) A:C ratios of CS,AMS and SLN 1hour, 4 hours and 24 hours post intravenous injection	339
10.1	Histopathology of the joints	347