LIST OF FIGURES/SCHEMES/TABLES

Sr. No.	Title	Page No.
	Chapter 1: Introduction	
Figure 1.1	Examples of naturally occurring object in the nanoscale range	3
Figure 1.2	Illustration of carbon-based materials	5
Figure 1.3	Structure (a) and bonding (b) of graphene	7
Figure 1.4	Properties of graphene.	8
Figure 1.5	A typical structure of surfactant molecule.	14
Figure 1.6	Types of surfactants.	16
Figure 1.7	Application of GO	20
Scheme 1.1	History of graphene as per the timeline.	6
Scheme 1.2	Flow-chart of graphene production.	9
Scheme 1.3	Schematic of the preparation of graphene/metal oxide NCs	11
Scheme 1.4	Functionalization of graphene (a) Graphene; (b), (c), and (d) are	
	GO, rGO and graphene gel; (e) and (f) are organic small molecules	13
	and polymers modified graphene materials; (g), (h), and (i) are NPs	15
	functionalized graphene materials	
Table 1.1	At a glance view of properties of graphene	8
(Chapter 2: Materials, methods and characterization techniques	
Figure 2.1	Schematic diagram of bubble flow meter-based system with	12
	constant pressure/variable volume.	43
Figure 2.2	Fourier transform infrared spectroscopy (FTIR-8400S, Shimadzu,	45
	Japan) used for the present work.	45
Figure 2.3	X-ray diffractometer (SmartLab, Rigaku Corporation, Japan) used	16
	for the present work	υ
Figure 2.4	Thermogravimetric analyzer (Shimadzu, TGA-50, Japan) used for	17
	the present work	7/

Figure 2.5	Field emission scanning electron microscopy (ZEISS SIGMA,	
	Germany) and energy-dispersive X-ray spectroscopy (Bruker	48
	XFlash 6l100, Germany) used for the present work	
Figure 2.6	Transmission electron microscopy (TEM-1400 PLUS, JOEL India	
	pvt. Ltd.) used for the present work	49
Figure 2.7	Ultraviolet-visible spectroscopy (Shimadzu 1800, Japan) used for	50
	the present work	50
Figure 2.8	Tensile tester instrument (Instron uniaxial test machine, USA) used	F1
	for the present work	51
Figure 2.9	Differential Scanning Calorimetry (DSC-25, Shimadzu, Japan) used	52
	for the present work	52
Figure 2.10	Contact angle instrument (Krüss DSA100 contact angle	52
	goniometer, Germany) used for the present work	52
Scheme 2.1	Chemical structures of material used.	35
Scheme 2.2	Synthesis of graphene oxide	37
Scheme 2.3	Synthesis of GO@ZrO2 NC	37
Scheme 2.4	Synthesis of surfactant/DES modified NCs	40
Scheme 2.5	Preparation of MMMs film with different nanofillers using the	41
Scheme 2.5	Preparation of MMMs film with different nanofillers using the phase inversion method.	41
Scheme 2.5 Chapter 3: S	Preparation of MMMs film with different nanofillers using the phase inversion method. ynthesis and characterization of surfactant/DES modified GO@Z	41 CrO ₂ NC
Scheme 2.5 Chapter 3: S	Preparation of MMMs film with different nanofillers using the phase inversion method. ynthesis and characterization of surfactant/DES modified GO@Z for adsorption of dye from aqueous background	41 CrO ₂ NC
Scheme 2.5 Chapter 3: S Figure 3.1	Preparation of MMMs film with different nanofillers using the phase inversion method. ynthesis and characterization of surfactant/DES modified GO@Z for adsorption of dye from aqueous background XRD spectra of modified nanocomposite(s) and its precursor.	41 CrO ₂ NC 59
Scheme 2.5 Chapter 3: S Figure 3.1 Figure 3.2	Preparation of MMMs film with different nanofillers using the phase inversion method. ynthesis and characterization of surfactant/DES modified GO@Z for adsorption of dye from aqueous background XRD spectra of modified nanocomposite(s) and its precursor. FT-IR spectra of GO@ZrO ₂ and its modified forms with CGS and	41 CrO ₂ NC 59 60
Scheme 2.5 Chapter 3: S Figure 3.1 Figure 3.2	Preparation of MMMs film with different nanofillers using the phase inversion method. ynthesis and characterization of surfactant/DES modified GO@Z for adsorption of dye from aqueous background XRD spectra of modified nanocomposite(s) and its precursor. FT-IR spectra of GO@ZrO ₂ and its modified forms with CGS and DES nanocomposites.	41 CrO ₂ NC 59 60
Scheme 2.5 Chapter 3: S Figure 3.1 Figure 3.2 Figure 3.3	Preparation of MMMs film with different nanofillers using the phase inversion method. ynthesis and characterization of surfactant/DES modified GO@ZZ for adsorption of dye from aqueous background XRD spectra of modified nanocomposite(s) and its precursor. FT-IR spectra of GO@ZrO2 and its modified forms with CGS and DES nanocomposites. TEM images of a) GO@ZrO2 b) CGS-GO@ZrO2, and c) DES-	41 CrO ₂ NC 59 60
Scheme 2.5 Chapter 3: S Figure 3.1 Figure 3.2 Figure 3.3	Preparation of MMMs film with different nanofillers using the phase inversion method. ynthesis and characterization of surfactant/DES modified GO@Z for adsorption of dye from aqueous background XRD spectra of modified nanocomposite(s) and its precursor. FT-IR spectra of GO@ZrO ₂ and its modified forms with CGS and DES nanocomposites. TEM images of a) GO@ZrO ₂ b) CGS-GO@ZrO ₂ , and c) DES- GO@ZrO ₂ .	41 CrO ₂ NC 59 60 61
Scheme 2.5 Chapter 3: S Figure 3.1 Figure 3.2 Figure 3.3	Preparation of MMMs film with different nanofillers using the phase inversion method. ynthesis and characterization of surfactant/DES modified GO@Z for adsorption of dye from aqueous background XRD spectra of modified nanocomposite(s) and its precursor. FT-IR spectra of GO@ZrO2 and its modified forms with CGS and DES nanocomposites. TEM images of a) GO@ZrO2 b) CGS-GO@ZrO2, and c) DES- GO@ZrO2. SEM-EDX images of a) GO@ZrO2, b) DES-GO@ZrO2 and c)	41 CrO ₂ NC 59 60 61 61
Scheme 2.5 Chapter 3: S Figure 3.1 Figure 3.2 Figure 3.3	Preparation of MMMs film with different nanofillers using the phase inversion method. ynthesis and characterization of surfactant/DES modified GO@Z for adsorption of dye from aqueous background XRD spectra of modified nanocomposite(s) and its precursor. FT-IR spectra of GO@ZrO2 and its modified forms with CGS and DES nanocomposites. TEM images of a) GO@ZrO2 b) CGS-GO@ZrO2, and c) DES- GO@ZrO2. SEM-EDX images of a) GO@ZrO2, b) DES-GO@ZrO2 and c) CGS-GO@ZrO2.	41 CrO ₂ NC 59 60 61 61
Scheme 2.5 Chapter 3: S Figure 3.1 Figure 3.2 Figure 3.3 Figure 3.4	Preparation of MMMs film with different nanofillers using the phase inversion method. ynthesis and characterization of surfactant/DES modified GO@Z for adsorption of dye from aqueous background XRD spectra of modified nanocomposite(s) and its precursor. FT-IR spectra of GO@ZrO2 and its modified forms with CGS and DES nanocomposites. TEM images of a) GO@ZrO2 b) CGS-GO@ZrO2, and c) DES- GO@ZrO2. SEM-EDX images of a) GO@ZrO2, b) DES-GO@ZrO2 and c) CGS-GO@ZrO2. a) Thermograms and b) derivative thermograms of GO@ZrO2 and	41 CrO ₂ NC 59 60 61 61 61
Scheme 2.5 Chapter 3: S Figure 3.1 Figure 3.2 Figure 3.3 Figure 3.4	Preparation of MMMs film with different nanofillers using the phase inversion method. ynthesis and characterization of surfactant/DES modified GO@Z for adsorption of dye from aqueous background XRD spectra of modified nanocomposite(s) and its precursor. FT-IR spectra of GO@ZrO2 and its modified forms with CGS and DES nanocomposites. TEM images of a) GO@ZrO2 b) CGS-GO@ZrO2, and c) DES- GO@ZrO2. SEM-EDX images of a) GO@ZrO2, b) DES-GO@ZrO2 and c) CGS-GO@ZrO2. a) Thermograms and b) derivative thermograms of GO@ZrO2 and CGS/DES modified nanocomposites.	41 CrO ₂ NC 59 60 61 61 62
Scheme 2.5 Chapter 3: S Figure 3.1 Figure 3.2 Figure 3.3 Figure 3.4 Figure 3.5	Preparation of MMMs film with different nanofillers using the phase inversion method. ynthesis and characterization of surfactant/DES modified GO@Z for adsorption of dye from aqueous background XRD spectra of modified nanocomposite(s) and its precursor. FT-IR spectra of GO@ZrO2 and its modified forms with CGS and DES nanocomposites. TEM images of a) GO@ZrO2 b) CGS-GO@ZrO2, and c) DES- GO@ZrO2. SEM-EDX images of a) GO@ZrO2, b) DES-GO@ZrO2 and c) CGS-GO@ZrO2. a) Thermograms and b) derivative thermograms of GO@ZrO2 and CGS/DES modified nanocomposites. Variation of % MB removal from background solution (20 ml, after	41 CrO2 NC 59 60 61 61 62
Scheme 2.5Chapter 3:Figure 3.1Figure 3.2Figure 3.3Figure 3.4Figure 3.5Figure 3.6	Preparation of MMMs film with different nanofillers using the phase inversion method. ynthesis and characterization of surfactant/DES modified GO@Z for adsorption of dye from aqueous background XRD spectra of modified nanocomposite(s) and its precursor. FT-IR spectra of GO@ZrO2 and its modified forms with CGS and DES nanocomposites. TEM images of a) GO@ZrO2 b) CGS-GO@ZrO2, and c) DES- GO@ZrO2. SEM-EDX images of a) GO@ZrO2, b) DES-GO@ZrO2 and c) CGS-GO@ZrO2. a) Thermograms and b) derivative thermograms of GO@ZrO2 and CGS/DES modified nanocomposites. Variation of % MB removal from background solution (20 ml, after 60 m) with different initial concentrations of MB (20-100 mg L ⁻¹)	41 CrO ₂ NC 59 60 61 61 62 63
Scheme 2.5 Chapter 3: S Figure 3.1 Figure 3.2 Figure 3.3 Figure 3.4 Figure 3.5	Preparation of MMMs film with different nanofillers using the phase inversion method. ynthesis and characterization of surfactant/DES modified GO@Z for adsorption of dye from aqueous background XRD spectra of modified nanocomposite(s) and its precursor. FT-IR spectra of GO@ZrO2 and its modified forms with CGS and DES nanocomposites. TEM images of a) GO@ZrO2 b) CGS-GO@ZrO2, and c) DES- GO@ZrO2. SEM-EDX images of a) GO@ZrO2, b) DES-GO@ZrO2 and c) CGS-GO@ZrO2. a) Thermograms and b) derivative thermograms of GO@ZrO2 and CGS/DES modified nanocomposites. Variation of % MB removal from background solution (20 ml, after 60 m) with different initial concentrations of MB (20-100 mg L ⁻¹) at 30±0.1°C: GO@ZrO2 (2 mg/ml); DES-GO@ZrO2 (2 mg/ml)	41 CrO2 NC 59 60 61 61 62 63

Figure 3.7	Optimisation of composite dosages for MB adsorption (20 ml solution, after 60 m): DES-GO@ZrO ₂ (with 20 mg L^{-1} MB) and CGS-GO@ZrO ₂ (with 50 mg L^{-1} MB) at 30±0.1°C.	64
Figure 3.8	Influence of pH (2-10) on MB adsorption (20 ml solution, after 60 m) by DES-GO@ZrO ₂ (2 mg/ml dosage, with 20 mg L ⁻¹ MB) and b) CGS-GO@ZrO ₂ (10 mg/ml dosage, with 50 mg L ⁻¹ MB) at 30±0.1°C.	65
Figure 3.9	Variation of ΔpH vs pH_{intial} for DES-GO@ZrO ₂ (50 mg/20 ml KNO ₃ solution) and CGS-GO@ZrO ₂ (50 mg/20 ml KNO ₃ solution) at 30±0.1°C.	65
Figure 3.10	Variation of adsorption capacity (Q _t) with Contact time (t) for various starting MB concentrations (10-1000 mg L ⁻¹): a) DES- GO@ZrO ₂ (2 mg/ml dosage, 20 ml solution of MB), and b) CGS- GO@ZrO ₂ (10 mg/ml dosage, 20 ml solution of MB) at $30\pm0.1^{\circ}$ C.	66
Figure 3.11	Variation of log (Q _e -Q _t) vs t and fitted data of Pseudo-first order kinetic model: a) DES-GO@ZrO ₂ (2 mg/ml dosage, 20 ml solution of MB), and b) CGS-GO@ZrO ₂ (10 mg/ml dosage, 20 ml solution of MB) at $30\pm0.1^{\circ}$ C.	67
Figure 3.12	Variation of t/Q_t vs t and fitted data of Pseudo-second order kinetic model: a) DES-GO@ZrO ₂ (2 mg/ml dosage, 20 ml solution of MB), and b) CGS-GO@ZrO ₂ (10 mg/ml dosage, 20 ml solution of MB) at 30±0.1°C.	68
Figure 3.13	Variation of Q_t vs $t^{1/2}$ and fitted data of Intraparticle diffusion kinetic model: a) DES-GO@ZrO ₂ (2 mg/ml dosage, 20 ml solution of MB), and b) CGS-GO@ZrO ₂ (10 mg/ml dosage, 20 ml solution of MB) at 30±0.1°C.	69
Figure 3.14	Variation of log Q_e vs log C_e and fitted Freundlich isotherm model for DES-GO@ZrO ₂ (2 mg/ml dosage, 20 ml solution of MB), and CGS-GO@ZrO ₂ (10 mg/ml dosage, 20 ml solution of MB) at $30\pm0.1^{\circ}$ C.	70
Figure 3.15	Variation of $1/Q_e \text{ vs } 1/C_e$ and fitted Langmuir isotherm model for DES-GO@ZrO ₂ (2 mg/ml dosage, 20 ml solution of MB), and CGS-GO@ZrO ₂ (10 mg/ml dosage, 20 ml solution of MB) at $30\pm0.1^{\circ}$ C.	71

Figure 3.16	Variation of Q_e vs log C_e and fitted Temkin isotherm model for DES-GO@ZrO ₂ (2 mg/ml dosage, 20 ml solution of MB), and CGS-GO@ZrO ₂ (10 mg/ml dosage, 20 ml solution of MB) at $30\pm0.1^{\circ}$ C.	72
Figure 3.17	Desorption study of MB from DES-GO@ZrO ₂ using 50 ml of various solvents.	74
Figure 3.18	Recyclability study of DES-GO@ZrO2 using 50 ml of ethanol for	74
	each cycle (up to 5 cycles).	
Scheme 3.1	Depiction of MB adsorption on modified NCs via different modes	75
	of interactions.	
Table 3.1	EDX elemental data of modified GO@ZrO2 with CGS and DES.	62
Table 3.2	Fitted kinetic data in different models for DES-GO@ZrO ₂ and CGS-GO@ZrO ₂	67
Table 3.3	Fitted adsorption data of MB on DES-GO $@ZrO_2$ and CGS-GO $@ZrO_2$ using various models.	70
Table 3.4	Comparison of removal efficiency of DES-GO@ ZrO_2 and CGS-GO@ ZrO_2 with similar materials reported in the literature.	73
Chapter 4: S	Synthesis and characterization of surfactant/DES modified ${ m GO}@$	TiO ₂ NC
	for adsorption of dye from aqueous background	
Figure 4.1	XRD spectra of TiO ₂ , GO@TiO ₂ , DT-GO@TiO ₂ and DES-GO@TiO ₂ NCs.	86
Figure 4.2	FTIR spectra of TiO ₂ , GO@TiO ₂ , DT-GO@TiO ₂ and DES-GO@TiO ₂ NCs.	87
Figure 4.3	FESEM/EDX analysis of (I) GO@TiO ₂ , (II) DT-GO@TiO ₂ and (III) DES-GO@TiO ₂ NC's (a) FESEM image, (b) EDX elemental mapping showing different elements, (c) spot EDX spectra showing various elements in terms of percentage.	88
Figure 4.4	(I) TGA (II) derivative thermograms of GO@TiO ₂ , DT-GO@TiO ₂ and DES-GO@TiO ₂ NCs.	89
Figure 4.5	The effect of the initial dye concertation on the percentage removal of MB for GO@TiO2, DT-GO@TiO2 and DES-GO@TiO2 NCs.	90
Figure 4.6	The effect of the composite load on the percentage removal of MB for DT-GO@TiO2 and DES-GO@TiO2 NCs.	91

Figure 4.7	The effect of the pH on the percentage removal of MB for DT-	92
Eigene 19	D_{2} and D_{2} and D_{2} D_{2} N_{2}	
Figure 4.8	Found of zero charge (pH_{pzc}) of D1-GO $(@11O_2)$ and DES-GO $@TiO_2$ NCs.	92
Figure 4.9	Variation of adsorption capacity (Q) with time (t, m) for MB dye	02
	on (I) DT-GO@TiO2 and (II) DES-GO@TiO2 NCs.	93
Figure 4.10	Variation of log (Q_e-Q_t) vs. t and fitted data of pseudo-first order	0.4
	kinetic model: a) DT-GO@TiO2, and b) DES-GO@TiO2 at 30°C.	94
Figure 4.11	Variation of t/Q_t vs. <i>t</i> and fitted data of <i>pseudo</i> -second order kinetic	05
	model: a) DT-GO@TiO2, and b) DES-GO@TiO2 at 30°C.	95
Figure 4.12	Variation of Q_t vs. $t^{1/2}$ and fitted data of Intraparticle diffusion	07
	kinetic model: a) DT-GO@TiO2, and b) DES-GO@TiO2 at 30°C.	96
Figure 4.13	Variation of $\log Q_e$ vs. $\log C_e$ and fitted Freundlich isotherm model	07
	for DT-GO@TiO2, and DES-GO@TiO2 at 30°C.	97
Figure 4.14	Variation of $1/Q_e$ vs. $1/C_e$ and fitted Langmuir isotherm model for	00
	DT-GO@TiO2, and DES-GO@TiO2 at 30°C.	98
Figure 4.15	Variation of Qe vs. log Ce and fitted Temkin isotherm model for	00
	DT-GO@TiO2, and DES-GO@TiO2 at 30°C.	99
Figure 4.16	Desorption study of MB from DT-GO@TiO2, and DES-	101
	GO@TiO2NCs using 50 ml of various solvents.	101
Figure 4.17	Recyclability study of NCs using 50 ml of ethanol for each cycle	101
	(up to 7 cycles).	101
Scheme 4.1	Schematic representation of MB adsorption on DES-GO@TiO2	94
	and DT-GO@TiO ₂ NCs via different modes of interactions.	71
Table 4.1	Fitted kinetic data in different models for DES-GO@TiO2 and	97
	$DT-GO@TiO_2$	
Table 4.2	Fitted adsorption data of MB on DES-GO@TiO2 and DT-	100
	$GO@TiO_2$ using various models.	100
Table 4.3	Comparison of removal efficiency of DES-GO@TiO2 and DT-	
	GO(a)TiO ₂ with similar materials reported in the literature.	102

Chapter 5: 0	GO/surfactant inspired photophysical modulation of dye in DES	s with or
	without additives	
Figure 5.1	Absorption spectral profile of rhodamine B (RB, 3x10 ⁻⁴ Mdm ⁻³) in	
	Reline with or without graphene oxide (GO, 0 to 100 μ g/ml) at	113
	30°C.	
Figure 5.2	Emission spectra of RB $(3x10^{-4} M dm^{-3})$ in (a) Pure solvents (water,	
	methanol or Reline), (b) Reline + water (0 to 25% (v/v)), and (c)	115
	Reline with and without glycerol (ChCl: U: Glycerol, 1:2-x:x, x=0	115
	(Reline), x=0.5 (CUG-1), x=1 (CUG-2), x=2 (Glyceline)).	
Figure 5.3	Emission spectra of different concentration of RB $(1x10^{-4} \text{ to } 3x10^{-4} $	116
	⁴ Mdm ⁻³) in (a) Water, (b) Methanol, and (c) Reline at 30°C.	110
Figure 5.4	Emission spectra of RB (3x10 ⁻⁴ Mdm ⁻³) in (a) Reline with (below	
	(10 mMdm ⁻³) or above CMC (15 mMdm ⁻³)) and without SDS, and	118
	(b) CUG-1/CUG-2 with and without CTAB (2 mMdm ⁻³).	
Figure 5.5	Emission spectra of RB (3x10 ⁻⁴ Mdm ⁻³) with GO in (a) Reline (GO	
	varies from 0 to 100 μ g/ml), (b) Reline with and without water (0	120
	to 25% (v/v)) having 5 $\mu g/ml$ GO, and (c) Reline, CUG-1 or CUG-	120
	2 with 5 μ g/ml GO.	
Figure 5.6	Emission spectra of RB (3x10 ⁻⁴ Mdm ⁻³) with and without 5 μ g/ml	
	GO in (a) Reline +SDS (below (10 mMdm ⁻³) or above CMC (15	121
	mMdm ⁻³)), and (b) CUG-1/CUG-2 with and without CTAB (2	121
	mMdm ⁻³).	
Table 5.1	Different DESs, components, molar ratio, and their respective pH.	116
Chapte	r 6: A polymer blend NCs for the separation and purification of g	gases
Figure 6.1	FTIR spectra of polymer blend composites (a) PC_{50}/PS_{50} + 20 wt%	
	DES-GO/ZrO ₂ (b) PC_{50}/PS_{50} + 5 wt% DES-GO/ZrO ₂ (c)	132
	$PC_{50}/PS_{50}\text{+}$ 20 wt% GO/ZrO_2 (d) $PC_{50}/PS_{50}\text{+}$ 5 wt% GO/ZrO_2	152
	(e) PC_{50}/PS_{50} + 20 wt% ZrO_2 (f) PC_{50}/PS_{50} + 20 wt% GO.	
Figure 6.2	XRD patterns of polymer blend composites (MMMs).	135
Figure 6.3	SEM-EDX analysis of (a) GO/ZrO ₂ , (b) DES-GO/ZrO ₂ (c)	
	PC_{50}/PS_{50} + 20 wt% ZrO ₂ (d) PC_{50}/PS_{50} + 20 wt% GO (e)	137
	PC_{50}/PS_{50} + 20 wt% GO/ZrO_2 (f) PC_{50}/PS_{50} + 20 wt% DES-	101
	GO/ZrO_2	

Figure 6.4	DSC analysis of (a) PC_{50}/PS_{50} + 20 wt% DES-GO/ZrO ₂ (b) PC_{50}/PS_{50} + 20 wt% GO/ZrO ₂ (c) PC_{50}/PS_{50} + 20 wt% GO (d) PC_{50}/PS_{50} + 20 wt% ZrO ₂ (e) PC_{50}/PS_{50} + 5 wt% ZrO ₂ (f) PC_{50}/PS_{50}	139
Figure 6.5	TGA analysis of (i) polymer blend composite films and (ii) DTG curve of polymer blend composite films.	140
Figure 6.6	Contact angle measurements of (a) PC_{50}/PS_{50} (b) PC_{50}/PS_{50} + 20 wt% GO (c) PC_{50}/PS_{50} + 20 wt% ZrO ₂ (d) PC_{50}/PS_{50} + 20 wt% GO/ZrO ₂ (e) PC_{50}/PS_{50} + 20 wt% DES-GO/ZrO ₂ .	142
Figure 6.7	(i) Thickness (μ m) and (ii) porosity (%) of (a) Blend of PC ₅₀ /PS ₅₀ & PC ₅₀ /PS ₅₀ + different wt% of GO (2 wt% to 20 wt%) (b) Blend of PC ₅₀ /PS ₅₀ & PC ₅₀ /PS ₅₀ + different wt% of ZrO ₂ (2 wt% to 20 wt%) (c) Blend of PC ₅₀ /PS ₅₀ & PC ₅₀ /PS ₅₀ + different wt% of GO/ZrO ₂ (2 wt% to 20 wt%) (d) Blend of PC ₅₀ /PS ₅₀ & PC ₅₀ /PS ₅₀ + different wt% of DES/GO/ ZrO ₂ (2 wt% to 20 wt%), respectively.	143
Figure 6.8	 (i) Tensile strength (MPa) (ii) Elongation at break (%) (iii) Flexural strength (MPa) and (iv) Impact strength (J/m) of (a) Blend of PC₅₀/PS₅₀ & PC₅₀/PS₅₀+ different wt% of GO (2 wt% to 20 wt%) (b) Blend of PC₅₀/PS₅₀ & PC₅₀/PS₅₀+ different wt% of ZrO₂ (2 wt% to 20 wt%) (c) Blend of PC₅₀/PS₅₀ & PC₅₀/PS₅₀ + different wt% of GO/ZrO₂ (2 wt% to 20 wt%) (d) Blend of PC₅₀/PS₅₀ & PC₅₀/PS₅₀ & PC₅₀/PS₅₀ + different wt% of DES-GO/ZrO₂ (2 wt% to 20 wt%). 	145
Figure 6.9	Youngs modulus (N/mm^2) of (a) blend of PC_{50}/PS_{50} (b) PC_{50}/PS_{50} + 20 wt% GO (c) PC_{50}/PS_{50} + 20 wt% ZrO ₂ (d) PC_{50}/PS_{50} + 20 wt% GO/ZrO ₂ (e) PC_{50}/PS_{50} + 20 wt% DES/GO/ ZrO ₂ .	146
Figure 6.10	Gas permeability of H ₂ , CO ₂ , N ₂ , O ₂ and CH ₄ in (i) GO (ii) ZrO_2 (iii) GO/ ZrO_2 (iv) DES-GO/ ZrO_2 with 0 wt% to 20 wt% nanofillers.	149
Figure 6.11	Gas selectivity of $PC_{50}/PS_{50} + 2 \text{ wt\%}$ to 20 wt% nanofillers (i) GO (ii) ZrO_2 (iii) GO/ZrO_2 (iv) DES-GO/ ZrO_2 in various gases.	151
Figure 6.12	Robeson upper bound correlations for (i) H_2/CO_2 separation (ii) H_2/CH_4 separation (iii) H_2/O_2 separation and (iv) H_2/N_2	152

	separation in PC_{50}/PS_{50} + 20 wt% nanofillers (GO, ZrO ₂ ,	
	GO/ZrO_2 and DES- GO/ZrO_2).	
Scheme 6.1	Schematics illustration of the possible interaction between NCs and polymer blend of PC and PS.	134
Table 6.1	EDX elemental analysis of GO/ZrO $_2$ and DES-GO/ZrO $_2$	136
Table 6.2	Thermal property of polymer blend nanocomposite of PC/PS composite with GO, ZrO ₂ , GO/ZrO ₂ and DES-GO/ZrO ₂ nanofillers.	141