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❖ Introduction: 

Rapid industrialization and urban expansion have significantly increased the discharge of 

wastewater, leading to substantial water pollution, notably from dye release. This poses a grave 

threat to both terrestrial and aquatic ecosystems. Effluent disposal containing used dyes 

exacerbates water pollution, necessitating treatment to mitigate its harmful effects before disposal. 

However, dye removal remains a formidable challenge due to its potential health hazards, including 

allergic reactions, skin irritation, and carcinogenicity. Various methods such as physical, 

photocatalytic, electrochemical, chemical, adsorption, and biological treatments have been 

employed to address this issue. Among these, adsorption emerges as the most effective technique 

due to its simplicity, affordability, and adaptability in selecting and modifying adsorbent materials. 

Additionally, it generates no harmful by-products and can efficiently treat large water volumes[1]. 

Analytical instruments like GC–MS[2], LC-MS[3], and HPLC-DAD[4] have been established for 

dye detection, offering rapid and precise results. However, these techniques are hindered by high 

costs, complex instrumentation, and the use of organic reagents, necessitating a more sustainable 

approach. UV-visible spectroscopy presents itself as a viable alternative detection method, offering 

user-friendly operation, quick and accurate results, and cost-effectiveness, thus promoting 

sustainability throughout the process[5]. 

Graphene oxide (GO) is preferred over pure graphene due to its functional groups and 

exceptional properties (Figure 1). However, challenges such as surface energy-induced 

agglomeration and higher costs are encountered. These issues are addressed by incorporating 

metallic oxides through nanocomposite (NC) formation[6–8]. Titanium (IV) oxide (TiO2) has 

garnered significant attention in the research community for NC formation due to its easy 

availability, long-term stability, cost-effectiveness, non-toxic nature, biocompatibility, 

environmental friendliness, and high chemical stability[9–12]. These qualities render it a promising 

precursor for nanomaterial in large-scale industrial wastewater treatment[13]. Currently, NCs are 

being modified or functionalized with various compounds or mixtures, including polymers (both 

synthetic and natural), surfactants, or ionic liquids among others [14–19]. 
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Figure 1: Illustration of carbon-based materials[20]. 

 

GO can undergo modification through the addition of other groups via either covalent or 

non-covalent bonding. Covalent functionalization is feasible due to the presence of carboxylic and 

carbonyl groups at the edges, as well as epoxy and hydroxyl groups on the surface of GO. These 

functional groups serve as active sites for the addition of other organic functionalities onto the 

GO surface[21]. For the functionalization of GO with organic molecules, achieving orthogonality 

in the reaction conditions is ideal for selectively functionalizing one site over another[22]. On the 

other hand, non-covalent functionalization can be accomplished through intercalation and doping. 

Small molecules, such as surfactants[18], pyridine[23], proteins[24], DNA[25], RNA, peptides, 

deep eutectic solvents (DES)[26], and complex compounds like anticancer drugs, can be 

functionalized onto graphene surfaces[27]. This process enhances solution processing capability, 

as well as optical, electronic, and biological properties (Figure 2)[28]. 
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Figure 2: Functionalization of graphene (a) Graphene; (b), (c), and (d) are GO, rGO and 

graphene gel; (e) and (f) are organic small molecules and polymers modified graphene materials; 

(g), (h), and (i) are NPs functionalized graphene materials[29]. 

❖ Brief Research Methodology: 

 Carbon allotropes have received considerable attention over the past few decades due to 

their unique properties and wide-ranging applications. One notable allotrope, graphene, consists 

of a single layer of carbon atoms arranged in a two-dimensional lattice with sp2 hybridization. 

Graphene is extensively utilized, both in its pure form and as part of composites, across various 

scientific and engineering fields due to its outstanding mechanical, electrical, and thermal 

properties. Despite these impressive characteristics, GO is often favored because of its functional 

groups. GO disperses readily in aqueous solutions, making it particularly useful for treating 

polluted water. However, its high surface energy can cause agglomeration, reducing its 

dispersibility. To overcome this challenge, GO is frequently combined with metallic oxides to 

create NCs. These NCs, which are multicomponent materials with distinct phase nano-domains, 

possess specific structural and photochemical properties that enhance their effectiveness in water 

treatment technologies. 

 The thesis entitles “Investigation on Graphene Based Composites of Metal Oxides 

Functionalized by Surfactants” consists of seven chapters including: Chapter 1 : General 
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introduction; Chapter 2 : Materials, methods, and characterization techniques; Chapter 3 : 

Synthesis and characterization of surfactant/DES modified GO@ZrO2 NC for adsorption of dye 

from aqueous background; Chapter 4 : Synthesis and characterization of surfactant/DES 

modified GO@TiO2 NC for adsorption of dye from aqueous background; Chapter 5 : 

GO/surfactant-inspired photophysical modulation of dye in DESs with or without additives; 

Chapter 6 : Polymer blend NCs for the separation and purification of gases for different 

applications; Chapter 7 : Conclusion and future perspective. The salient features of each chapter 

are given as under. 

 Chapter 1 delves into the realm of nanotechnology and nanocomposites, with a special 

focus on GO, a carbon-based two-dimensional material. This chapter provides a concise overview 

of graphene oxide, highlighting its unique properties. It also underscores the benefits that come 

from functionalizing GO with metal oxide NCs.  

 Chapter 2 delves into the synthesis routes, principles, and applications of characterization 

techniques utilized in the creation of nanocomposites with metal oxides. GO was synthesized in 

the laboratory using Hummer’s method. Additionally, the discussion covers the functionalization 

of graphene-metal oxide nanocomposites with surfactants and DESs. Subsequently, major 

characterization techniques for structural, chemical, microscopic, and physical evaluations of 

nanocomposites were developed. These techniques include Fourier transform infrared 

spectroscopy (FTIR), X-ray diffraction studies (XRD), UV-visible absorption spectroscopy (UV-

Vis), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), field emission 

scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy 

dispersive X-ray (EDX), contact angle measurement, and tensile strength analysis. 

 In Chapter 3 and Chapter 4, the synthesis of nanocomposites continued with graphene 

oxide–zirconium oxide (GO@ZrO2) and graphene oxide–titanium oxide nanocomposites 

(GO@TiO2), respectively. Subsequently, these nanocomposites underwent modification using a 

cationic gemini surfactant (CGS, specifically butanediyl-1,4-bis(N,N-hexadecyl ammonium) 

dibromide (16-4-16)), dodecyl trimethyl ammonium bromide (DTAB), or DES (reline, ChCl; urea, 

in a 1:2 molar ratio). Following synthesis and modification, the resulting adsorbent materials 

underwent thorough characterization using various physicochemical techniques. To evaluate their 

effectiveness, methylene blue (MB) was utilized as a model adsorbate to investigate its adsorption 

and removal from aqueous solutions employing the modified nanocomposites. The adsorption 

data obtained were then compared with those of other similar reported adsorbents. Interestingly, 

the DES-based advanced material demonstrated ultrafast MB adsorption compared to the 
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surfactant-modified nanocomposites. These findings underscore the promising potential of the 

developed nanocomposites for efficient and rapid adsorption applications. 

 Chapter 5 delves into the photophysical behavior of rhodamine B (RB) within DESs, both 

in the presence and absence of GO or ionic surfactants. The chapter provides a comprehensive 

analysis of how GO, surfactants, or their combination affect the movement of RB across various 

sites, including the GO surface, surfactant micelles, DES surface, and the background solvent, 

using fluorometric analysis. Furthermore, it is observed that modifications induced by reline in 

DESs alter the interactions between RB and GO, sodium dodecyl sulfate (SDS, an anionic 

surfactant), or cetyltrimethylammonium bromide (CTAB, a cationic surfactant). The DES 

environment controls whether RB adopts a cationic or zwitterionic form, which significantly 

influences its interactions and sustained movement toward the GO surface, micellar surface, or 

the formation of negatively charged ion pairs with SDS monomers. These findings offer a deeper 

understanding of the complex interactions among DES components, surfactants, and GO in 

shaping the photophysical behavior of RB. This knowledge is valuable for potential applications 

in controlled-release systems and sensing devices. 

 In Chapter 6, the fabrication of Mixed Matrix Membranes (MMMs) was achieved using the 

standard phase inversion technique, known for its cost-effectiveness and time efficiency. This 

process involved blending polycarbonate (PC) and polystyrene (PS) with nanofillers, such as GO 

and ZrO2, in concentrations ranging from 2 wt% to 20 wt%. Additionally, membranes 

incorporating DES were produced. The resulting MMMs were thoroughly characterized using 

various techniques. Leveraging the excellent surface characteristics of ZrO2, the high sorption 

capacity of GO, and the enhanced thermal stability provided by DES, the MMMs demonstrated 

significantly improved gas permeability and selectivity compared to conventional membrane 

materials. Permeability data for various environmental gases, including CO2, N2, O2, and CH4, were 

collected and used to determine selectivities, highlighting the potential of these MMMs for 

advanced gas separation applications. 

 In Chapter 7 provides a comprehensive summary of the research, highlighting key findings 

and outcomes. It concludes by discussing potential future research directions in related areas, 

offering insights into the possibilities for further exploration. 

❖ Key Findings: 

 This thesis proposes a comprehensive approach to synthesize GO via a modified Hummer's 

method, integrating metal oxides to create nanocomposites. Functionalization with surfactants and 

DES enhances these nanocomposites, which are meticulously characterized for their structural, 
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chemical, and optical properties. Dye adsorption experiments demonstrate their efficacy in 

wastewater treatment. Additionally, polymer-modified nanocomposites show promise in 

enhancing gas separation for energy storage and green hydrogen production. The study also 

explores photophysical modulation of dyes in DESs, with and without additives, leveraging GO 

and surfactants to reveal significant insights for advanced material applications. 

❖ Conclusion: 

 In conclusion, this thesis presents a detailed investigation of graphene-based composites, 

emphasizing metal oxide functionalization and surfactant/DES modification. It begins by 

highlighting the fundamental properties of GO and the advantages of functionalizing NCs with 

GO and metal oxides. The synthesis of nanocomposites involved preparing GO and 

functionalizing graphene-metal oxide nanocomposites with surfactants and DESs. 

Characterization techniques such as FTIR, XRD, UV-Vis, TGA, DSC, FESEM, TEM, EDX, 

contact angle measurements, and tensile strength tests elucidated their structural, chemical, and 

physical properties. GO@ZrO2 and GO@TiO2 NCs were synthesized and modified using a 

cationic gemini surfactant, DTAB, or DES (reline). These materials showed ultrafast MB 

adsorption, highlighting their potential for efficient wastewater treatment. The thesis also explores 

the photophysical behavior of RB in DESs with and without GO or ionic surfactants, revealing 

intricate interactions valuable for controlled-release systems and sensing devices. Additionally, the 

fabrication of MMMs using PC and PS with nanofillers like GO and ZrO2 demonstrated 

improved gas permeability and selectivity. These advancements indicate the potential of MMMs 

for advanced gas separation applications. Overall, the thesis successfully integrates graphene-

based nanocomposites, showcasing their versatility in wastewater treatment, gas separation, and 

photophysical studies, paving the way for future innovations in nanotechnology and material 

science. 

❖ Recommendation and Suggestions: 

 For future research, it is recommended to explore the long-term stability and reusability of 

the synthesized nanocomposites in real-world applications. Investigating the environmental 

impact and biodegradability of these materials will be crucial for sustainable development. 

Additionally, expanding the range of metal oxides and surfactants could further enhance the 

properties and applications of the nanocomposites. Advanced computational modeling could 

provide deeper insights into the interaction mechanisms at the molecular level. Lastly, scaling up 

the synthesis process while maintaining the material's efficacy and consistency should be 

prioritized to facilitate industrial applications and commercialization. 
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