
Chapter 3

Anisotropic Approach: Compact

Star as Generalized Model

In this chapter, we have studied a new class of interior solutions that are singularity-

free and useful for describing anisotropic compact star objects on spherically sym-

metric spacetime metric. We have considered metric potential grr = B2
0(r) =

1

(1− r2

R2 )
n
, where n > 2. The various physical characteristics of the model are specifi-

cally examined for the pulsar PSRJ1903+327 with its current estimated data. Ac-

cording to analysis, every physical need for a physically admissible star is satisfied

and all features are acceptable. Further, the stability of the model has been exam-

ined. Numerous physical characteristics are also highlighted in a graphical form.

3.1 Introduction

Strange stars and neutron stars are objects of interest for researchers in relativis-

tic astrophysics. The research into relativistic stellar structure has been ongoing for

more than a century. When a massive star explodes as a supernova, the phase transi-

tion between hadronic and strange quark matter may occur at a density higher than
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the nuclear density as described by Bodmer [26]. The pressure inside these com-

pact stars can be decomposed into two parts: the radial pressure pr and tangential

pressure p⊥. The measure of anisotropy is defined as 8π
√
3S = pr − p⊥. According

to Geng et. al. [62], the intriguingly repeating fast radio bursts (FRBs) are caused

by irregular fractional collapses of a strange star’s crust caused by filling it with

accretion materials from its low-mass companion. The anisotropy can occur on the

existence of a solid core, the pressure of a type p-superfluid, a phase transition, a

rotation, a magnetic field, a mixture of two fluids, etc. According to Kippenhahn

et. al. [93], anisotropy in relativistic stars may be caused by the presence of a

solid core or type 3A superfluid. Herrera and Santos [76] studied local anisotropy

in self-gravitating systems. According to Weber [213], strong magnetic fields can

also thought to be a source of anisotropic pressure inside a compact object. Dev

and Gleiser [47], Dev and Gleiser[48], and Gleiser and Dev [63] have also discussed

a model of an anisotropic star by assuming a special type of matter density.

Rahaman et. al. [166] studied the anisotropic model of Krori-Barua spacetime.

A relativistic stellar model admitting a quadratic equation of state on Finch–Skea

spacetime was proposed by Sharma and Ratanpal [179]. This was generalized by

Pandya et. al. [149] on modified Finch Skea spacetime. Bhar [13] obtained a

new model of an anisotropic superdense star that allows conformal motions in the

presence of a quintessence field. This model well defined on Vaidya and Tikekar

[211] spacetime and characterized by the parameter wq with −1 < wq < −1
3
.

In connection with anisotropy, Maurya et. al. [101] studied an anisotropic analog of

the Durgapal and Fuloria [53] solution. Maurya et. al. [108] investigated pressure

anisotropy on a relativistic star. Maurya et. al. [109] did a comprehensive study

of anisotropic compact stars by considering Buchdahl ansatz [29]. Dayanandan et.

al. [43] presented a detailed analysis of the stability of anisotropic compact star
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by considering Matese and Whitman [97] transformation. Dayanandan and Maurya

[44] studied the charged compact star model for an anisotropic fluid distribution.

Recent studies have explored the presence of charge and anisotropy within the inte-

rior of stars. Das et. al. [42] studied an effect of anisotropy by considering metric

potential grr = (1+ r2

R2 ) and described the exact solution. Maharaj and Takisa [127]

studied charged anisotropic models using a quadratic equation of state. Sharma

et. al. [180] presented closed-form solutions for an anisotropic matter distribution.

Thirukkanesh et. al. [193] presented an algorithm to describe a relativistic self-

gravitating fluid. Sunzu et. al. [181] studied charged anisotropic models using a

linear equation of state. Bhar et. al. [22] proposed a compact stellar model in the

presence of pressure anisotropy in modified Finch Skea spacetime using the ansatz

B2
0(r) = (1 + r2

R2 )
n.

3.2 Einstein field equations

To study the structure of compact and massive stars, we use Einstein’s field equa-

tions

Rαβ −
1

2
Rgαβ =

8πG

C4
Tαβ. (3.1)

Ricci tensor and energy-momentum tensor respectively denoted as Rαβ and Tαβ, R is

Ricci scalar and gαβ is metric tensor. The universal gravitational constant and speed

of light are denoted as G and C respectively. We write the Schwarzschild coordinates

for a 4-D spacetime with spherically symmetrical, the line element describing the

interior spacetime x0 = t, x1 = r, x2 = θ, x3 = ϕ as

ds2 = −A2
0(r)dt

2 +B2
0(r)dr

2 + r2(dθ2 + sin2θdϕ2), (3.2)
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where A0(r) and B0(r), the gravitational potentials are yet to be determined. The

energy-momentum tensor for anisotropic fluid distribution is given by

Tα
β = (ρ+ pr)u

αuβ + ptg
α
β + (pr − pt)ν

ανβ, (3.3)

with uαuβ = −νανβ = 1 and uανβ = 0. Here the vector να is the space-like vector

and uα is the fluid 4-velocity and it is orthogonal to να, ρ represents the energy-

density, pr and p⊥ the fluid’s radial and tangential pressures respectively.

The Einstein field equations governing the system are then obtained as (we set

G = c = 1 )

8πρ =

[
1

r2
− 1

r2B2
0

+
2B

′
0

rB3
0

]
, (3.4)

8πpr =

[
−1

r2
− 1

r2B2
0

+
2.A

′
0

rA0B2
0

]
, (3.5)

8πp⊥ =

[
A

′′
0

A0B2
0

+
A

′
0

rA0B2
0

− B
′
0

rB3
0

− A
′
0B

′
0

A0B3
0

]
. (3.6)

In equations (3.4)-(3.6), a ’prime’ denotes differentiation with respect to r.

Making use of equation (3.5) and (3.6),we define the anisotropy as

8π
√
3S = 8π(p⊥ − pr) =

[
A

′′
0

A0B2
0

− A
′
0

rA0B2
0

− B
′
0

rB3
0

− A
′
0B

′
0

A0B3
0

− 1

r2B2
0

+
1

r2

]
, (3.7)

which must be zero at centre r = 0 of stellar object.
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3.3 Generating Model

For solving the system (3.4)-(3.6), we have three equations with five unknowns

(ρ, pr, p⊥, A0(r), B0(r)). We are free to select any two of them to complete this sys-

tem. As a result, there are 10 possible ways to choose any two unknowns. Accord-

ing to studies Sharma and Ratanpal [179], Bhar and Ratanpal [15] select B2 and

pr, Bhar and Rahaman [12] choose ρ along with pr, Murad and Fatema [117] and

Thirukkanesh et. al. [193] select A2
0 with 8π

√
3S to model various compact stars.

However, a very well-liked method is to select B2
0 and an equation of state, which is

a relation between matter density and radial pressure pr. Numerous articles in this

direction have been published like Sunzu et. al. [181], Bhar et. al. [14], Komathiraj

and Maharaj [88], Bhar [11], Bhar [18], Bhar et. al. [16], Thomas and Pandya [200].

Das et. al. [39] have studied the metric potential in the form B2
0(r) =

1

(1− r2

R2 )
4
and

have shown that it can represent a viable model of compact objects. Das et. al. [40]

have studied the metric potential in the form B2
0(r) =

1

(1− r2

R2 )
6
and have shown that

it can represent a viable model of compact star 4U1820-30.

To develop a physically reasonable model of the stellar configuration, we assume

that the metric potential grr is expressed as B2
0 given by

B2
0(r) =

1

(1− r2

R2 )n
, (3.8)

where n > 2 is a positive integer. By selecting this metric potential, the function

B2
0(r) is guaranteed to be finite, continuous, and well-defined within the range of

stellar interiors. Also B2
0(r) = 1 for r = 0 ensures that it is finite at the centre.

Again, the metric is regular at the centre since (B2
0(r))

′
r=0 = 0.
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With the choice of B2
0(r), equation (3.7) reduces to

8π
√
3S =

1(
1− r2

R2

)−n

[
A

′′
0

A0

− A
′
0

A0

(
1

r
+

n r2

R2

(1− r2

R2 )

)
− n

(1− r2

R2 )
− 1

r2
+

(1− r2

R2 )
−n

r2

]
,

(3.9)

rearranging equation (3.9) we get,

A
′′
0

A0

− A
′
0

A0

(
1

r
+

n r2

R2

(1− r2

R2 )

)
− n

(1− r2

R2 )
− 1

r2
+

(1− r2

R2 )
−n

r2
= 8π

√
3S

(
1− r2

R2

)−n

,

(3.10)

We choose 8π
√
3S to solve equation (3.10) as

8π
√
3S =

(
1− r2

R2

)n
(

−n

(1− r2

R2 )
− 1

r2
+

(1− r2

R2 )
−n

r2

)
. (3.11)

The above choice for anisotropy is physically reasonable, as at the centre (r = 0)

anisotropy vanishes as expected. Substituting equation (3.11) in (3.10), we obtain,

A
′′
0

A0

− A
′
0

A0

(
1

r
+

n r2

R2

(1− r2

R2 )

)
= 0. (3.12)

We obtain a simple solution of the equation (3.12)

A0(r) =
C (R2 − r2)

1−n
2

n− 2
+D. (3.13)

Where C and D are integration constants. The interior spacetime metric takes the

form

ds2 = −

(
C (R2 − r2)

1−n
2

n− 2
+D

)2

dt2 +
1

(1− r2

R2 )n
dr2 + r2(dθ2 + sin2θdϕ2). (3.14)
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The matter density, radial pressure, and tangential pressure take the form,

8πρ = −
−1 +

(
1− r2

R2

)n
r2

+
2n
(
1− r2

R2

)−1−n

R2
, (3.15)

8πpr =
−1 +

(
1− r2

R2

)n
r2

−
2C(−2 + n)

(
1− r2

R2

)n
C(r2 −R2)−D(−2 + n)(−r2 +R2)n/2

, (3.16)

8πp⊥ = −

(
1− r2

R2

)n (
C(−4 + n)(r2 −R2) +D(−2 + n)n(−r2 +R2)n/2

)
(r2 −R2) (C(r2 −R2)−D(−2 + n)(−r2 +R2)n/2)

, (3.17)

where integration constants, will be determined using boundary conditions.

3.4 Exterior Spacetime and Boundary Conditions

At the boundary of the star r = b, we match the interior metric (3.14) with the

Schwarzschild exterior spacetime metric.

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2(dθ2 + sin2θdϕ2), (3.18)

which leads to

A2
0(r = b) =

(
1− 2M

b

)
, (3.19)

B2
0(r = b) =

(
1− 2M

b

)−1

, (3.20)

At the boundary of stars pr(r = b) = 0 which gives,

R =

√√√√ b2

1− n

√
1− 2M

b

, (3.21)
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C =
Rn
(
−1 +

(
1− b2

R2

)n)
−2b2

, (3.22)

D =

(
1− b2

R2

)n/2

+
Rn
(
−1 +

(
1− b2

R2

)n)
(R2 − b2)1−

n
2

2(n− 2)b2
, (3.23)

when the values of C and D are substituted in pr and p⊥ we obtain,

8πpr =
−1 +

(
1− r2

R2

)n
r2

+(
1−

(
1− b2

R2

)n)(
1− r2

R2

)n
Rn(R2 − r2)

−n
2

b2
((

1− r2

R2

)n/2
+

(
−1+

(
1− b2

R2

)n)
Rn(R2−b2)1−

n
2

2b2(n−2)
−
(
−1+

(
1− b2

R2

)n)
Rn(R2−r2)1−

n
2

2b2(n−2)

) , (3.24)

8πp⊥ = 8πpr + 8π
√
3S, (3.25)

Table 3.1: The numerical values of the strong energy condition at centre as well as
surface, Gravitational Redshift at surface, and Adiabatic Index at the surface for
the compact star PSR J1903+327.

n ρ− pr− 2p⊥(r=0) ρ− pr − 2p⊥(r=b) Z(r=b) Γ(r=0)

(MeV fm−3) (MeV fm−3) (Gravitational (Adiabatic
Redshift) Index)

n = 4 377.861 346.899 0.44166 3.59
n = 6 418.23 330.826 0.44166 3.15
n = 10 451.728 318.434 0.44166 2.85
n = 15 468.892 312.388 0.44166 2.71
n = 20 477.58 309.402 0.44166 2.65
n = 50 493.40 304.089 0.44166 2.54
n = 70 496.439 303.085 0.44166 2.52

The next section contains a physical analysis.
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Table 3.2: The numerical values of the dpr
dρ

at centre as well as a surface and dp⊥
dρ

at
centre as well as surface for the compact star PSR J1903+327.

n dpr

dρ (r=0)

dp⊥
dρ (r=0)

dpr

dρ (r=b)

dp⊥
dρ (r=b)

(ν2
t − ν2

r )(r=b)

n = 4 0.462272 0.262272 0.360596 0.19339 -0.1672
n = 6 0.3719 0.1719 0.3130 0.1517 -0.1613
n = 10 0.31227 0.1122 0.2806 0.1338 -0.1468
n = 15 0.2858 0.0858 0.2658 0.1236 -0.1434
n = 20 0.2733 0.0733 0.2587 0.1188 -0.1422
n = 50 0.2520 0.052 0.2465 0.1108 -0.1357
n = 70 0.2480 0.0480 0.2443 0.1093 -0.135

Table 3.3: The values of the curvature parameter R for the compact star
PSR J1903+327 whose observed mass and radius is given by 1.66+0.021

−0.021M⊙ and
9.438+0.03

−0.03km respectively

Star Estimated Estimated n R
MassM⊙ Radius Km

PSRJ1903 + 327 1.66 9.438 n = 4 23.085
n = 6 27.856
n = 10 35.533
n = 15 43.257
n = 20 49.796
n = 50 78.309
n = 70 92.560

3.5 Physical Analysis

A physically acceptable stellar model should comply with the following conditions

throughout its region of validity.

(i) ρ(r) ≥ 0, pr(r) ≥ 0, p⊥(r) ≥ 0, for 0 ≤ r ≤ R

(ii) dρ
dr

≤ 0, dpr
dr

≤ 0, dp⊥
dr

≤ 0, for 0 ≤ r ≤ R

(iii) 0 ≤ dpr
dρ

≤ 1 , 0 ≤ dp⊥
dρ

≤ 1, for 0 ≤ r ≤ R

(iv) ρ− pr − 2p⊥ ≥ 0, for 0 ≤ r ≤ R

(v) Γ > 4
3
, for 0 ≤ r ≤ R

The central density, central radial pressure and central tangential pressure in this
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case are:

ρ(0) =
3n

R2
,

pr(0) =
−n

R2
+

2C(n− 2)

−C(R2)−D(n− 2)(R2)
n
2

,

p⊥(0) =
−n

R2
+

2C(n− 2)

−C(R2)−D(n− 2)(R2)
n
2

.

Note that the density is always positive as R is a positive quantity. The radial pres-

sure and tangential pressure at the centre are equal which means pressure anisotropy

vanishes at the centre. The radial and tangential pressures at the centre will be non-

negative if one chooses the model parameters satisfying the conditions n > 2.

3.5.1 Energy Conditions

The most crucial requirement for our model to be physically plausible, i.e. strong

energy condition (SEC).

SEC : ρ− pr − 2p⊥ ≥ 0. (3.26)

Table(3.1) shows the values of ρ− pr − 2p⊥ at a centre as well as the surface of the

star.

3.5.2 Causality and Stability Conditions

(i) Causality condition:

In this model, the square of sound speed is less than 1 in the interior of the star,

i.e.,0 ≤ dpr
dρ

≤ 1 , 0 ≤ dp⊥
dρ

≤ 1 which has been shown graphically in the next section.

Table(3.2) shows the values of dpr
dρ

and dp⊥
dρ

at a centre as well as the surface of the

star. Abreu et. al. [1] proposed that, for a possibly stable configuration, v2⊥−v2r < 0,

the stability factor is negative, as can be seen in Table(3.2). With this, we conclude
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that our model may be stable everywhere in the stellar interior.

(ii) Relativistic adiabatic index:

Bondi [24] investigated whether a Newtonian isotropic sphere will be in equilibrium

for a specific stellar configuration if the adiabatic index (Γ) > 4/3 and it is adapted

for a relativistic anisotropic fluid sphere. Based on these findings, it can be deter-

mined that an anisotropic star configuration’s stability depends on the adiabatic

index Γ by,

Γr =
ρ+ pr
pr

dpr
dρ

,

=
2
(
1− r2

R2

)n (
− n

r2−R2 − C(n−2)
Φ

)
−1+(1− r2

R2 )
n

r2
− 2C(n−2)(1− r2

R2 )
n

Φ

v2r . (3.27)

Adiabatic index indicates that the condition Γ > 4
3
is satisfied in the region 0 ≤ r ≤

9.438. Table (3.1) shows the values of Γ at the centre of the star.

3.5.3 Gravitational Redshift

The gravitational redshift zG should be monotonically decreasing towards the bound-

ary of the star. The central redshift zG and boundary redshift zG must be positive

and finite. That is,

zG =

√
1

eν
− 1. (3.28)

The gravitational redshifts zG are shown in Table (3.1).
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3.5.4 Stability under Three Forces

The equation can be used to describe the stability of our current model under three

forces: gravity force, hydrostatic force and anisotropic force.

−MG(r)(ρ+ pr)

r2
B

A
− dpr

dr
+

2

r
(p⊥ − pr) = 0, (3.29)

The Tolman-Whittaker formula and Einstein’s field equations may be used to cal-

culate MG(r), which stands for the gravitational mass inside the radius r, and is

defined by

MG(r) = r2
A′

B
. (3.30)

Equation (3.29) changes to,

Fg + Fh + Fa = 0, (3.31)

Fg = −
2C(n− 2)r(1− r2

R2 )
n(2C(n− 1)(r2 −R2)−Dn(n− 2)(R2 − r2)

n
2 )

(r2 −R2)(Φ)2
, (3.32)

Fh = −
2(−1 + r2

R2 )
n

r3
−

2n(1− r2

R2 )
n−1

rR2
+

4Cnr(n− 2)(1− r2

R2 )
n−1

R2(Φ)2

+
2C(n− 2)(1− r2

R2 )
n(2Cr +Dnr(n− 2)(R2 − r2)(

n−2
2

))

(Φ)2
, (3.33)

Fa =
2
(
r2
(
1− (1− r2

R2 )
n + (1− r2

R2 )
n
)
+
(
−1 + (1− r2

R2 )
n
)
R2
)

r5 − r3R2
, (3.34)

where

Φ = C(r2 −R2)−D(n− 2)(R2 − r2)
n
2 .

Fig.(3.11) shows the graphical representation of three distinct forces for the compact

star PSR J1903+327 with ’n=10’. According to the graphs, the gravitational force

is a net negative force that predominates in nature. Hydrostatic and anisotropic

forces work together to balance this force and keep the system in equilibrium.
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Figure 3.1: Variation of density (ρ) in MeV Fm−3 with respect to a radial coordinate
r for a star PSR J1903+327 within the range [0,9.438] kms for different values of n.

3.6 Discussion

By assuming pressure anisotropy profile and a metric potential B2
0(r) = 1

(1− r2

R2 )
n

, that are physically plausible, the current work offers a new generalised model

of compact stars. To set the values of the various constants, we compared our

interior solution to the Schwarzschild exterior solution at the boundary r = b of the

star. The compact star PSR J1903+327 with mass and radius M = 1.66M⊙ and

b = 9.438 km respectively. we have studied the values of R, C, and D from the

boundary conditions for various values of the dimensionless parameter ”n”. For the

compact star PSR J1903+327, different values of ”n” satisfy all physical plausibility

conditions for matter density (ρ), radial pressure (pr) and tangential pressure (p⊥),

square of sound speed of radial and tangential (dpr
dρ

and dp⊥
dρ

), adiabatic Index (Γ),

gravitational redshift (Z) and strong energy condition (ρ− pr − 2p⊥).

In Fig.(3.1) we have shown the variation of density for 0 ≤ r ≤ 9.438. It is clear

from the graph that the density is a decreasing function of r. In Fig.(3.2) and

Fig.(3.3), we have shown the variation of radial and tangential pressures through-
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Figure 3.2: Variation of radial pressures (pr) in MeV Fm−3 with respect to a radial
coordinate r for a star PSR J1903+327 within the range [0,9.438] kms for different
values of n.

out the star. It can be seen that both pressures are decreasing radially outwards.

In Fig.(3.4) and Fig.(3.5), we have displayed the variation of dpr
dρ

and dp⊥
dρ

against

r. Both quantities satisfy the restriction 0 < dpr
dρ

< 1 and 0 < dp⊥
dρ

< 1 indicat-

ing that the square of sound speed is less than the speed of light throughout the

star. Fig.(3.6) shows anisotropy decreasing throughout the star. Fig.(3.7) shows the

strong energy condition decreasing and positive throughout the distribution. For

various values of ′n′, the profile of the adiabatic index (Γr) for our current model

is shown in Fig(3.8). The graph shows that the radial adiabatic index profile is a

monotonic increasing function of r and that Γ = ρ+pr
pr

dpr
dρ

> 4
3
everywhere in the star

arrangement, satisfying the stability requirement. The Gravitational redshifts zG

are shown in Fig.(3.9), which indicates the decreasing and finite at the surface as

well as the boundary of the surface. Fig.(3.10) shows that v2⊥ − v2r < 0 through-

out the star. Fig.(3.11) shows the graphical representation of three distinct forces

for the compact star PSR J1903+327. All the physically plausible conditions are

satisfied throughout the distribution. Hence the model is suitable to describe PSR

J1903+327.

50



CHAPTER 3. . . . 3.6. DISCUSSION

n=10

n=20

n=50

n=70

0 2 4 6 8
0

20

40

60

80

100

r (Km)

p
⊥∼

(M
eV

F
m
-
3
)

Figure 3.3: Variation of tangential pressures (p⊥) in MeV Fm−3 with respect to a
radial coordinate r for a star PSR J1903+327 within the range [0,9.438] kms for
different values of n.
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Figure 3.4: Variation of radial sound speed dpr
dρ

with respect to a radial coordinate r

for a star PSR J1903+327 within the range [0,9.438] kms for different values of n.

51



CHAPTER 3. . . . 3.6. DISCUSSION

n=10

n=20

n=50

n=70

0 2 4 6 8
0.0

0.1

0.2

0.3

0.4

0.5

r (Km)

dp
⊥

dρ

Figure 3.5: Variation of tangential sound speed dp⊥
dρ

with respect to a radial coordi-

nate r for a star PSR J1903+327 within the range [0,9.438] kms for different values
of n.
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Figure 3.6: Variation of anisotropy (8π
√
3S) in MeV Fm−3 with respect to a radial

coordinate r for a star PSR J1903+327 within the range [0,9.438] kms for different
values of n.
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Figure 3.7: Variation of strong energy conditions (ρ− pr − 2p⊥) in MeV Fm−3 with
respect to a radial coordinate r for a star PSR J1903+327 within the range [0,9.438]
kms for different values of n.
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Figure 3.8: Variation of Adiabatic Index (Γ) with respect to a radial coordinate r
for a star PSR J1903+327 within the range [0,9.438] kms for different values of n.
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Figure 3.9: Variation of Gravitational Redshift (ZG) with respect to a radial coordi-
nate r for a star PSR J1903+327 within the range [0,9.438] kms for different values
of n.
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Figure 3.10: Variation of a stability expression (dp⊥
dρ

− dpr
dρ
) with respect to a radial

coordinate r for a star PSR J1903+327 within the range [0,9.438] kms for different
values of n.
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Figure 3.11: Variation of three forces Gravitational Force(Blue), Hydrostatic
Force(Orange) and Anisotropic Force(Green) for the compact star PSR J1903+327.
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