
Chapter 4

New Charged Anisotropic Solution

on Paraboloidal Spacetime

New exact solutions of Einstein’s field equations for charged stellar models by as-

suming linear equation of state pr = A(ρ− ρa), where pr is the radial pressure, ρa is

the surface density and A is a constant. Assuming ansatz eλ = 1+ r2

R2 , the physical

acceptability conditions of the model are investigated and the model is compatible

with several compact star candidates like 4U 1820-30, EXO 1785-248, LMC X-4. A

noteworthy feature of the model is that it satisfies all the conditions needed for a

physically acceptable model.

4.1 Introduction

Einstein’s field equations are a system of highly non-linear partial differential second-

order equations. They are essential for modelling relativistic compact objects such

as dark energy stars, gravastars, quark stars, and neutron stars. The pressure dis-

tribution in the star may not be isotropic when the matter distributions have a high

density in the nuclear regime, has been presented by Ruderman [168] and Canuto
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[31]. Bowers and Liang [28] discussed the different causes for anisotropy. Since then,

many researchers have studied the anisotropy Dev and Gleiser [47], Dev and Gleiser

[48], Gleiser and Dev [63], Gokhroo and Mehra [64], Patel and Mehta [154], Thomas

and Ratanpal ([197], [203], [204], [205]) to name a few. The effect of anisotropy

has been studied by Ivanov [81]. A large number of researchers worked on Ein-

stein’s field equations, making different assumptions in the physical content as well

as spacetime metric viz., Sharma and Ratanpal [179], Murad and Fatema [115], Mu-

rad and Fatema [116], Murad and Fatema [117], Thomas and Pandya [199], Thomas

and Pandya [198], Ratanpal et. al. [158].

To construct relativistic compact star models, researchers used generic barotropic

equations of state, in which pressure and density have linear, quadratic, or polytropic

relationships in several modern literary works. Sharma and Maharaj [178] used

linear equation of state to establish relativistic compact models consistent with

observational data. Physically viable relativistic compact stars models studied by

Ngubelanga and Maharaj [139] for a linear equation of state in isotropic coordinates.

Solutions of anisotropic distributions admitting a quadratic equation of state were

studied by Feroze and Siddiqui [56] and Takisa and Maharaj [183]. Thirukkanesh

and Ragel [190] and Takisa and Maharaj [184] have implemented polytropic equation

of state to generate models of relativistic stars. Knutsen [95] gave the conditions for

models to be physically viable. It has been observed that if the tangential pressure

(denoted by p⊥) is higher than the radial pressure (represented by pr), the stellar

system becomes potentially stable. Sharma and Maharaj [178] studied the linear

equation of state for relativistic stars by choosing eλ = 1+ar2

1+(a−b)r2
in the spacetime

metric as the coefficient of dr2 and got the various result for different values of a and

b. Thirukkanesh and Maharaj [189] have studied charged anisotropic matter with a

linear equation of state by specifying a particular form for one of the gravitational

potentials and the electric field intensity. Ivanov [84] has studied generating solutions
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for linear and Ricatti equations in general relativity. The anisotropic analogue for

the work of Durgapal and Fuloria [53] was studied by Maurya et. al. [101]. Maurya

et. al. [108] presented a comprehensive study on relativistic solutions describing

spherically symmetric and static anisotropic stars in hydrostatic equilibrium. A

compact spherically symmetric relativistic body with anisotropic particle pressure

profiles was investigated by Maurya et. al. [109]. Maurya et. al. [110] investigated a

new family of exact solutions to the Einstein system of equations with an anisotropic

fluid distribution for a spherically symmetric spacetime using a conformal killing

vector and Lia dragged metric tensor gab. Maurya et. al. [111] examined the impact

of pressure anisotropy on Buchdahl-type relativistic compact stars. Geng et. al. [62]

indicated that the fascinating recurrent fast radio bursts (FRBs) are produced by

intermittent fractional collapses of a strange star crust caused by accretion material

replenishment from its low-mass companion.

Felice et. al. [59] and Ray et. al. [164] suggested the models generated, which have

been used in describing neutron stars and black hole formation. Several models

of charged relativistic matter have been studied by researchers, Komathiraj and

Maharaj [88], Thirukkanesh and Maharaj [189]. Bare quark stars were considered

by Usov et. al. [210], hybrid proto-neutron stars were studied by Nicotra et. al.

[142] and strange quark star matter was considered by Dicus et. al. [50]. In static

spherically symmetric spacetimes, the existence of a conformal killing vector for

anisotropic relativistic charged matter has been assumed by Esculpi and Aloma

[54]. Mak and Harko [119] have found exact solutions for strange quark matter.

Felice et. al. [59] studied a particular solution relating the radial pressure to the

energy density with a quadratic equation of state. Malaver [131] represented a

relativistic model with the quadratic equation of state with a charged distribution.

Malaver and Kasmaei [132] studied the strange quark star model with the quadratic

equation of state. Sunzu et. al. [181] describe matter distribution that satisfies a
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linear equation of state consistent with quark matter. Maharaj et. al. [128] derived

some simple models for quark stars by considering the charged anisotropic matter

with a linear equation of state.

4.2 The Spacetime Metric

A three-paraboloid immersed in a four-dimensional Euclidean space has the cartesian

equation

x2 + y2 + z2 = 2wR, (4.1)

where w = constants gives a spheres, while x = constants, y = constants, and z =

constants respectively, give 3- paraboloids. The equation (4.1) can be parametrize

as

x = rsinθcosϕ,

y = rsinθsinϕ,

z = rcosθ,

w =
r2

2R
, (4.2)

substituting parametrization (4.2) in Euclidean metric

dσ2 = dx2 + dy2 + dz2 + dw2. (4.3)

we get

dσ2 =

(
1 +

r2

R2

)
dr2 − r2(dθ2 + sin2θdϕ2) (4.4)

59



CHAPTER 4. . . . 4.2. THE SPACETIME METRIC

and we take the interior spacetime metric as

ds2 = eνdt2 −
(
1 +

r2

R2

)
dr2 − r2(dθ2 + sin2θdϕ2), (4.5)

where R is the curvature parameter. We take the energy-momentum tensor for an

anisotropic-charged fluid sphere of the form

Tij = diag
(
ρ+ E2, pr − E2, p⊥ + E2, p⊥ + E2

)
, (4.6)

where ρ is the matter density, pr is the radial pressure, p⊥ is the tangential pres-

sure and E is the electric field intensity. On spacetime metric (4.5) with energy-

momentum technique (4.6) the Einstein’s field equations, takes the form

8πρ+ E2 =
1− e−λ

r2
+

e−λλ′

r
, (4.7)

8πpr − E2 =
e−λν ′

r
+

e−λ − 1

r2
, (4.8)

8πp⊥ + E2 = e−λ

(
ν

′′

2
+

ν2

4
− ν ′λ′

4
+

ν ′ − λ′

2r

)
, (4.9)

8π
√
3S = 8πpr − 8πp⊥, (4.10)

where primes denote differentiation concerning r. The system of equation (4.7-

4.9) governs the behaviour of the gravitational field for an anisotropic charged fluid

distribution. choosing

E2 =
α r2

R2

R2(1 + r2

R2 )2
, (4.11)

where 0 ≤ α ≤ 1. By substituting the value of eλ and E2 in the equation (4.7), we

get

8πρ =
3 + (1− α) r2

R2

R2(1 + r2

R2 )2
. (4.12)
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The expression for density ρ(r) is finite at the centre of the star.

4.3 Linear Equation of State

We anticipate that the matter distribution should meet a barotropic equation of

state for a physically plausible relativistic star pr = pr(ρ). Many researchers have

presented their ideas on the linear equation of state, Thirukkanesh and Maharaj

[189], Thomas and Pandya [200]. We consider a linear equation of state between

the radial pressure pr and matter density ρ as

pr = Aρ−B, (4.13)

where A and B are constants. At the boundary r = a of the star

pr(r = a) = 0,

this gives,

B = Aρa, (4.14)

where ρa represents the surface density. We substitute equation (4.14) in (4.13) and

get

pr = Aρ− Aρa = A(ρ− ρa), (4.15)

substituting equations (4.11) and (4.15) in (4.8)

ν ′ = reλ
[
A(ρ− ρa)−

(
e−λ − 1

r2

)
− E2

]
,
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using the expression of density given in (4.12) we get

ν ′ = r

(
1 +

r2

R2

)(
1

R2(1 + r2

R2 )
+ A

(
(−3 + a2

R2 (α− 1))− r2

R2α

R2(1 + r2

R2 )2
+

3− r2

R2 (1− α)

R6(1 + r2

R2 )2

))
,

(4.16)

integrating (4.16), we get

eν = CR2A+3α

(
1 +

r2

R2

)(α+A(2+α)
2 )

×exp

[
(A+ 1)(1− α)

r2

2R2
− A

2

((
3 + (1− α)

a2

R2

)(
1 +

r2

2R2

)(
1 +

a2

R2

)−2
r2

R2

)]
,

(4.17)

where C is a constant of integration. Substituting α = 0 in the expression of (4.3),

we get the solution given by Thomas and Pandya [200].

4.4 Matching Condition

The spacetime metric (4.5) together with (4.3) should continuously match with the

Reissner-Nordström exterior spacetime metric across the boundary r = a of the star

ds2 =

(
1− 2M

r
+

Q2

r2

)
dt2 −

(
1− 2M

r
+

Q2

r2

)−1

dr2 − r2(dθ2 + sin2θdϕ2). (4.18)

This leads to

M =

a3

R2

(
1 + (1 + α) a2

R2

)
2(1 + a2

R2 )2
, (4.19)

C =
1

RAα+α+2A(1 + a2

R2 )
(A+1)(2+α)

2

× F, (4.20)
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where,

F = exp

(
1

4

(
A+ 2Aα + 2α− 2 + (Aα− A+ 2α− 2)

a2

R2

))
.

The expression of matter density, radial pressure, and tangential pressure takes the

form

8πρ =
3 + (1− α) r2

R2

R2(1 + r2

R2 )2
, (4.21)

pr = Aρ− Aρa = A(ρ− ρa), (4.22)

8πp⊥ =
− r2

R2α

R2(1 + r2

R2 )2
+

A1 + A2 + A3 + r2(A4)
2

4(1 + r2

R2 )
. (4.23)

Where

A1 =
−18A r2

R2 − 12A+ 4A(α− 1) a2

R2 + 6A(α− 1) a2

R2
r2

R2

R2(1 + a2

R2 )2
,

A2 =
4α + 4A(2 + α)− 4 + 2(1 + A)(α + 1) r2

R2

R4(1 + r2

R2 )2
,

A3 =
−6α r2

R2 − 6A(2 + α) r2

R2

R2(1 + r2

R2 )2
− 4(1 + A)(α− 1)

R2
,

A4 =
A(1 + r2

R2 )
2(−3 + (α− 1) a2

R2 )

R2(1 + a2

R2 )2
− (1 + A)(α− 1)

R2
+

2A+ 3α

R2(1 + r2

R2 )
.

In the next section, we will observe the behaviour of density, radial pressure, tan-

gential pressure, and other physically viable conditions.
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4.5 Physical Plausibility Condition and Bound on

α

A physically acceptable stellar model should comply with the following conditions

throughout its region of validity.

(i) ρ(r) ≥ 0, pr(r) ≥ 0, p⊥(r) ≥ 0, for 0 ≤ r ≤ R

(ii) dρ
dr

≤ 0, dpr
dr

≤ 0, dp⊥
dr

≤ 0, for 0 ≤ r ≤ R

(iii) 0 ≤ dpr
dρ

≤ 1 , 0 ≤ dp⊥
dρ

≤ 1, for 0 ≤ r ≤ R

(iv) ρ− pr − 2p⊥ ≥ 0, for 0 ≤ r ≤ R

(v) Γ > 4
3
, for 0 ≤ r ≤ R

We have demonstrated, via a graphical method, the fulfillment of all stated condi-

tions. The expression of density is

8πρ =
3 + (1− α) r2

R2

R2(1 + r2

R2 )2
,

it can be noticed that the condition (ρr=0 > 0 and ρr=a > 0) are satisfies if

0 ≤ α ≤ 1. (4.24)

The value of radial pressure pr should be equal to zero at the surface of the star r = a.

From equations (4.22) and (4.23), it is observed that the conditions pr(r = 0) ≥ 0,

p⊥(r = 0) ≥ 0 and p⊥(r = R) ≥ 0 impose a bound on α, viz.,

0 ≤ α ≤ 0.251789 (4.25)
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4.5.1 Energy Condition

The strong energy conditions ρ− pr − 2p⊥ ≥ 0 at the centre r = 0 and at surface of

the star r = a, restricts the value of α viz.,

0 ≤ α ≤ 0.3215. (4.26)

The value of strong energy conditions is described in Table (4.1)

Table 4.1: Values of strong energy condition at centre as well as surface for α = 0.1

STAR M a R ρ− pr − 2p⊥(r=0) ρ− pr − 2p⊥(r=a)

(M⊙) (Km) (Km) (MeV fm−3) (MeV fm−3)

4U 1820-30 1.58 9.1 9.31 834.813 279.409
PSR J1903+327 1.66 9.438 9.54 793.228 258.666
EXO 1785-248 1.3 8.849 10.48 677.869 297.572
LMC X-4 1.04 8.301 11.14 614.904 322.681
SMC X-4 1.29 8.831 10.51 674.657 298.486
Cen X-3 1.49 9.178 9.98 735.062 278.061

4.5.2 Causality and Stability Conditions

(i) Causality condition:

The values of square of sound of the radial speed dpr
dρ

and the square of sound of

tangential speed dp⊥
dρ

at r = 0 and r = a for different stars have been calculated

in Table 4.4. These velocities are in the range of 0 and 1. The bounds on α for

0 ≤ dpr
dρ

≤ 1, 0 ≤ dp⊥
dρ

≤ 1 are

0 ≤ α ≤ 2.28165, (4.27)

0 ≤ α ≤ 1.11724. (4.28)

(ii) Relativistic adiabatic index:
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According to Chan et. al. [32], the collapsing condition for the classical, relativistic

case

Γ ≤ 4

3
+

[
1

3
k
ρ0pr0
|p′

r0
|
+

4

3

p⊥0 − pr0
|p′

r0
|r

]
max

, (4.29)

with ρ0, pr0 , p⊥0 denoting the initial density, radial and tangential pressures of the

fluid at static equilibrium. The second term on the right side represents the relativis-

tic fluid correction and the third term accounts for anisotropy. Now Heintzmann and

Hillebrandt [71] demonstrated that since anisotropy effectively slows the growth of

instability, increasing the anisotropic factor ( 8π
√
3 = pr−p⊥ ) changes the stability

condition as Γ > 4
3
. Moustakidis [135] proposed a more stringent condition for the

critical value of the adiabatic index. The critical value of adiabatic index (Γcrit) is

determined by the compactness factor (u = M
R
),

Γcrit =
4

3
+

19

21
u, (4.30)

for stability, it is essential to have Γ ≥ Γcrit. The following expression is used to find

the adiabatic relativistic index Γ,

Γ = (
ρ+ pr
pr

)
dpr
dρ

,

Γ ≥ 4
3
at r = 0 imposes a restriction on α as

0 ≤ α ≤ 1.8686. (4.31)

Table (4.2) shows the adiabatic index Γ at the origin and critical values of the

adiabatic index.
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4.5.3 Gravitational Redshift

The redshift z =
√

1/eν − 1 must be a decreasing function of r and finite for 0 ≤

z ≤ a. For a relativistic star, it is expected that the redshift must decrease towards

the boundary and be finite throughout the distribution. The value of redshift at

origin is described in Table (4.2)

4.5.4 Mass-Radius Relation

The compactness (mass-radius ratio) is the most important factor in determining

the surface redshift of any charged stellar model. According to Buchdahl [30], the

mass radius relation must satisfy the inequality, M
a
≤ 4

9
. But when we introduce the

electric field inside the matter distribution, it modifies this upper limit as proposed

by Buchdahl. Later, Andréasson [3] (upper limit of Mch

a
) and Böhmer and Harko [27]

(lower limit of Mch

a
) give the modified mass-radius limit in the presence of electric

charge inside the matter distribution, which can be described as follows:

Q2(18a2 +Q2)

2a2(12a2 +Q2)
≤ Mch

a
≤ 2a2 + 3Q2 + 2a

√
a2 + 3Q2

9a2
, (4.32)

where, Mch is the total mass of the compact object for the charged perfect fluid

matter distribution. The table (4.3) shows the inequality (4.32) is satisfied for

various stars.

4.5.5 Stability under Three Forces Acting on the System

According to Tolman [208] and Oppenheimer and Volkof [143], the energy conser-

vation equation of motion for our system is defined as

∇µTµν = 0.
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We want to examine the stability of our present model under three different forces

viz., gravitational force, hydrostatics force, and anisotropic force, which is described

by the following equation

−MG(r)(ρ+ pr)

r2
e(λ−ν)/2 − dpr

dr
+

2

r
(p⊥ − pr) = 0, (4.33)

known as Tolman-Oppenheimer-Volkov (TOV) equation. The quantity MG(r) rep-

resents the gravitational mass within the radius r, which can be derived from the

Tolman-Whittaker formula and Einstein’s field equations and is defined by

MG(r) =
1

2
r2e

(ν−λ)
2 ν ′, (4.34)

Adding the value of (4.34) into equation (4.33), we get,

−ν ′

2
(ρ+ pr)−

dpr
dr

+
2

r
(p⊥ − pr) = 0, (4.35)

the above expression may also be written as

Fg + Fh + Fa = 0, (4.36)

Fg = −ν ′

2
(ρ+ pr), (4.37)

Fh = −dpr
dr

, (4.38)

Fa =
2

r
(p⊥ − pr), (4.39)

the three different forces act on the system.

The figure shows that gravitational force is negative and dominating in nature which

is counterbalanced by the combined effect of hydrostatics and anisotropic forces to

keep the system in equilibrium. Fig. (4.11) shows these three forces in graphical
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method for the star 4U 1820-30, EXO 1785-248, LMC X-4.

From the equations (4.24), (4.25), (4.26), (4.27), (4.28), and (4.31) the bound for α

is 0 ≤ α ≤ 0.251789.

Table 4.2: Values of gravitational redshift and Adiabatic Index

STAR M a Zr=0 Z(r=a) Γ(r=0) Γcrit

(M⊙) (Km) (Gravitational) (Gravitational) (Adiabatic (Adiabatic
Redshift) Redshift) Index) Index)

4U 1820-30 1.58 9.1 0.779 0.383 1.60 1.56
PSR J1903+327 1.66 9.438 0.8010 0.3900 1.59 1.56
EXO 1785-248 1.3 8.849 0.5673 0.2985 1.80 1.52
LMC X-4 1.04 8.301 0.4351 0.2401 2.03 1.50
SMC X-4 1.29 8.831 0.5614 0.2960 1.81 1.52
Cen X-3 1.49 9.178 0.6823 0.3452 1.68 1.54

4.6 Discussion

We have studied the compatibility of the model developed using linear equation of

state in the background of paraboloidal spacetime for compact stars like 4U 1820-30,

EXO 1785-248, LMC X-4. Our model satisfies the elementary physical requirements

for representing a superdense compact star through the graphical method. It is

found that the model can accommodate the mass and radius of the compact star

candidates given by Gangopadhyay et. al. [61]. We have displayed the graphical

Table 4.3: Values of Mass radius ratio and Buchdahl ratio.

STAR M Q2(18a2+Q2)
2a2(12a2+Q2)

Mch

a

2a2+3Q2+2a
√

a2+3Q2

9a2 u(= M
a )

(M⊙) (Lower ) (Mass Radius ) (Upper (Buchdahl
Limit Ratio Limit) Ratio

4U 1820-30 1.58 0.01789 0.256 0.4602 0173
PSR J1903+327 1.66 0.0183 0.2599 0.4606 0.175
EXO 1785-248 1.3 0.0129 0.217 0.4559 0.146
LMC X-4 1.04 0.0095 0.185 0.4529 0.125
SMC X-4 1.29 0.0128 0.215 0.4557 0.146
Cen X-3 1.49 0.0157 0.2399 0.458 0.162
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Table 4.4: The numerical values of the dpr
dρ

at centre as well as surface and dp⊥
dρ

at
centre as well as surface.

STAR
(

dpr

dρ

) (
dp⊥
dρ

) (
dpr

dρ

) (
dp⊥
dρ

)
(ν2

t − ν2
r ) (ν2

t − ν2
r )

r=0 r=0 r=a r=a r=0 r=a

4U 1820-30 0.1 0.0707 0.1 0.0567 -0.0292071 -0.043
PSR J1903+327 0.1 0.0703 0.1 0.0572 -0.0296019 -0.042
EXO 1785-248 0.1 0.0757 0.1 0.0547 -0.0313115 -0.043
LMS X-4 0.1 0.0801 0.1 0.0569 -0.0312131 -0.040
SMC X-4 0.1 0.0759 0.1 0.0547 -0.0341674 -0.032
Cen X-3 0.1 0.0728 0.1 0.0551 -0.028962 -0.048
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EXO 1785-248

LMC X-4
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m
-
3
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Figure 4.1: Variation of density (ρ) against the radial parameter r.

analysis only for a few compact star models here, but it can be applied to a larger

class of known pulsars. In Fig. (4.1) we have shown the variation of density for

the star 4U 1820-30, EXO 1785-248, LMC X-4. It is clear from the graph that

the density is a decreasing function of r. In Fig.(4.2) and Fig.(4.3) we have shown

the variation of radial and tangential pressure throughout the star. It can be seen

that both pressures are decreasing radially outward. In Fig.(4.4) and Fig.(4.5) we

have displayed the variation of dpr
dρ

and dp⊥
dρ

against r. Both quantities satisfy the

restriction 0 < dpr
dρ

< 1 and 0 < dp⊥
dρ

< 1 indicating that the sound speed is less than

the speed of light throughout the star.
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Figure 4.2: Variation of radial pressures (pr) against the radial parameter r.
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Figure 4.3: Variation of tangential pressures (p⊥) against the radial parameter r.

The variation of anisotropy is shown in Fig.(4.6). It can be noticed that anisotropy

vanishes at the centre and decreases towards the boundary. Fig.(4.7) indicates that

the strong energy condition ρ− pr − 2p⊥ > 0 is satisfied througout the distribution.

For a relativistic equilibrium model of a compact star to be stable model, the adi-

abatic index Γ = ρ+pr
pr

dpr
dρ

> 4
3
throughout the distribution. Fig.(4.8) indicates that

the condition Γ > 4
3
is satisfied for the star 4U 1820-30, EXO 1785-248, LMC X-4.

For a relativistic star, it is expected that the redshift must be decreasing towards

the boundary and finite throughout the distribution. Fig.(4.9) shows that gravi-
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Figure 4.4: Variation of dpr
dρ

against the radial parameter r.
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Figure 4.5: Variation of dp⊥
dρ

against the radial parameter r.

tational redshift is decreasing throughout the star under consideration. Fig.(4.10)

shows that dp⊥
dρ

− dpr
dρ

is negative throughout the star. Fig.(4.11) shows the graphical

representation of three distinct forces for the compact star 4U1820-30. According

to the graphs, the gravitational force is a net negative force that predominates in

nature. Hydrostatic and anisotropic forces work together to balance this force and

keep the system in equilibrium. Fig.(4.12) shows the Mass-Radius relation for the

star 4U 1820-30, EXO 1785-248, LMC X-4.

It has been concluded that a large number of pulsars with known masses and radii

can be accommodated in the present model, satisfying the linear equation of state.
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Figure 4.6: Variation of anisotropy (pr − p⊥) against the radial parameter r.

4U 1820-30

EXO 1785-248

LMC X-4

0 2 4 6 8

400

600

800

1000

r (Km)

ρ
-
p
r
-
2
p
⊥∼

(M
eV

F
m
-
3
)

Figure 4.7: Variation of strong energy condition (ρ − pr − 2p⊥) against the radial
parameter r.
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Figure 4.8: Variation of adiabatic Index against radial variable r.

4U 1820-30

EXO 1785-248

LMC X-4

0 2 4 6 8
0.2

0.3

0.4

0.5

0.6

0.7

r (Km)

G
ra
vi
ta
tio
na
lR
ed
sh
ift

Figure 4.9: Variation of gravitational redshift against radial variable r.
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Figure 4.10: Variation of a stability expression (dp⊥
dρ

− dpr
dρ
) with respect to a radial

coordinate r.
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Figure 4.11: Variation of three forces like Gravitational Force(Blue), Hydrostatic
Force(Orange) and Anisotropic Force(Green) for 4U1820-30 star.
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Figure 4.12: Variation of a mass M with a radius R for various stars.
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