
Chapter 5

Anisotropic star with Linear

equation of state

A family of solutions defining the interior of a static, spherically symmetric, com-

pact anisotropic star is described by considering a new form of the equation of state.

The analytic solution is derived by using the Finch and Skea ansatz for the metric

potential grr, which has a clear geometric interpretation for the related background

spacetime. The model parameters are fixed by smooth matching of the interior solu-

tion to the Schwarzschild exterior metric over the bounding surface of the compact

star, together with the requirement that the radial pressure vanishes at the bound-

ary. Data available for the pulsar 4U1802030 has been utilized to analyze physical

viability of the developed model. The model is shown to be stable.

5.1 Introduction

Since the groundbreaking work of Schwarzschild, generating an exact solution for a

spherically symmetric perfect fluid distribution in general relativity has been sub-

ject of extensive study. Solutions to Einstein’s field equations for geometrically
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meaningful spacetimes satisfying all the physical criteria are crucial in theoretical

astrophysics. However, the non-linear nature of the Einstein field equations makes

it difficult to find regular exact solutions fulfilling all the physical requirements. In

addition, a feasible solution should also be able to describe realistic objects.

In the high density regime of compact stars, linearity of the equation of state of

the matter composition appears to be a good approximation. Nilsson and Uggla

[141] studied static spherically symmetric perfect fluid stellar models with a lin-

ear barotropic equation of state. Ivanov [80] investigated relativistic static fluid

spheres assuming a linear equation of state. Maharaj and Chaisi [124] developed

new class of exact interior solutions to Einstein field equations and analyzed its

physical behaviour. Sharma and Maharaj [178] obtained new exact solution to Ein-

stein field equations making use of a linear equation of state. New class of exact

solutions to Einstein-Maxwell system was obtained by Thirukkanesh and Maharaj

[189]. Maharaj and Thirukkanesh [126] also studied charged anisotropic matter dis-

tributions by assuming a linear equation of state. Varela et al [212] analyzed charged

anisotropic star by considering linear as well as nonlinear equation of state. Ma-

haraj et al [128] developed a model for a quark star by considering a linear equation

of state. Ngubelanga et al [140] obtained solutions to field equations in isotropic

coordinates. Harko and Mak [70] analyzed a power series solution for a stellar struc-

ture composed of an isotropic fluid which admits a linear barotropic or polytropic

equation of state. Anisotropic compact stellar objects admitting a linear equation

of state was studied by Banerjee [9]. Prasad and Jitendra [152] presented a class

of relativistic solutions to Einstein field equations for an anisotropic matter distri-

bution utilizing the Buchdahl ansatz for the metric function grr. Recently, Patel et

al [155] investigated a charged anisotropic stellar solution in paraboloidal spacetime

using a linear equation of state. All these studies are aimed at developing stellar

models which are compatible with observational data.
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While developing such models, one assumes a linear equation of state of the form

pr = αρ − β, where ρ is the density and pr is the radial pressure and α and β are

constants. Note that the linearity is in terms of density and not in terms of the

radial variable r. This implies that α and β might not be constants and could be

the functions of the radial variable r as well. Keeping this in mind in our work,

to develop an anisotropic stellar model, we assume a linear equation of state of the

form pr = α
(
1− r2

R2

)
ρ, where 0 < α < 1. This assumption allows us to generate a

new class of exact solution to the Einstein field equations which is physical plausible.

5.2 Field Equation

To develop the model of a static, spherically symmetric anisotropic star, we assume

the spacetime metric in the form

ds2 = eν(r)dt2 − eλ(r)dr2 − r2(dθ2 + sin2θdϕ2). (5.1)

The energy-momentum tensor is assumed of the form

Tij = (ρ+ p⊥)uiuj + pgij + πij, (5.2)

where ρ and p represent energy-density and isotropic pressure respectively and ui is

the unit 4-velocity of fluid. The anisotropic stress-tensor πij is assumed to be of the

form

πij =
√
3S[CiCj −

1

3
(uiuj − gij)], (5.3)

where S = S(r) denotes the magnitude of anisotropy and Ci = (0,−e
λ
2 , 0, 0) is a

radially directed vector. We calculate the non-vanishing components of the energy-
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momentum tensor as

T 0
0 = ρ, T 1

1 = −
(
p+

2S√
3

)
, T 2

2 = T 3
3 = −

(
p− S√

3

)
, (5.4)

and define the radial and tangential pressures as

pr = p+
2S√
3
, p⊥ = p− S√

3
. (5.5)

The magnitude of anisotropy obtained as

S =
pr − p⊥√

3
. (5.6)

The Einstein field equations, for the spacetime metric (5.1), together with the energy

momentum tensor (5.2), leads to the following independent equations

8πρ =
e−λλ′

r
+

1− e−λ

r2
, (5.7)

8πpr =
e−λν ′

r
+

e−λ − 1

r2
, (5.8)

8πp⊥ = e−λ

(
ν

′′

2
+

ν ′2

4
− ν ′λ′

4
+

ν ′ − λ′

2r

)
, (5.9)

8π
√
3S = e−λ

(
−ν

′′

2
− ν ′2

4
+

ν ′

2r
+

1

r2
− eλ

r2
+

λ′

2r
+

ν ′λ′

4

)
. (5.10)

The technique to solve the system is discussed in the next section.

5.3 Technique to Generate New Stellar Solutions

We are presented with a system of three equations involving five unknowns

(ρ, pr, p⊥, e
λ(r), eν(r)). The system can be solved completely by choosing any two
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unknowns from this collection; there are 10 possible combinations for these pairs.

In various studies, different pairs of variables have been chosen to model compact

stars. Bhar et al [14], and Bhar and Ratanpal [15] opted for eλ(r) and pr. Bhar and

Rahaman [12] selected ρ and pr. Thirukkanesh et al [193] considered eν(r) along with

the measure of anisotropy. On the other hand, Sharma and Maharaj [178], Bhar et

al [14], Sunzu et al [181], Komathiraj and Maharaj [88], Bhar [11], Bhar et al [18],

Bhar et al [16], Das et al [39], Das et al [40], and Ratanpal and Patel [162] chose

eλ(r) and the equation of state for their respective analyses. To develop a physically

reasonable model of the stellar configuration, we assume the linear equation of state

of the form

8πpr = α

(
1− r2

R2

)
ρ, (5.11)

where R is the radius of the star and 0 < α < 1. Equation (5.11) guarantees that

the radial pressure is positive at the center and vanishes at the boundary of the star.

We further use the Finch and Skea ansatz for the metric potential grr as

eλ(r) = 1 +
r2

R2
, (5.12)

where R is the curvature parameter. The ansatz (5.12) has a geometric interpreta-

tion as can be found in reference [206].

Combining equations (5.8) and (5.11), we obtain

ν
′
= r

[
eλ
(
αρ(1− r2

R2
) +

1

r2

)
− 1

r2

]
. (5.13)

Integration of (5.13) yields

eν = CR4α(1 +
r2

R2
)2α × exp

(
(1− α) r2

R2

2
−

α r4

R4

4

)
, (5.14)
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where C is a constant of integration. Thus, the interior spacetime metric takes the

form

ds2 = CR4α(1+
r2

R2
)2α×exp

(
(1− α) r2

R2

2
−

α r4

R4

4

)
dt2−(1+

r2

R2
)dr2−r2(dθ2+sin2θdϕ2),

(5.15)

which is non-singular at r = 0.

Making use of Eqs. (5.11), (5.12), (5.13) and (5.14), the system of equations ((5.7)-

(5.9)) reduces to

8πρ =
3 + r2

R2

R2(1 + r2

R2 )2
, (5.16)

8πpr =
α(1− r2

R2 )(3 +
r2

R2 )

R2(1 + r2

R2 )2
, (5.17)

8πp⊥ =

12α+ α2 r10

R10 + 2α(2α− 1) r8

R8 + (1− 12α− 2α2) r6

R6 − 2(6α2 + 7α− 2) r4

R4 + (3− 16α+ 9α2) r2

R2

4R2(1 + r2

R2 )3
,

(5.18)

8π
√
3S =

− r2

R2

(
(3− 20α+ 9α2)− 2 r2

R2 (6α
2 + α− 2) + r4

R4 (1− 8α− 2α2) + 2α r6

R6 (2α− 1) + r8

R8α
2
)

4R2(1 + r2

R2 )3
.

(5.19)

5.4 Exterior Spacetime and Boundary Conditions

The model has three independent parameters, namely, α, C, and R. Two of these

constants can be evaluated by matching the interior spacetime metric (5.15) to the

Schwarzschild exterior metric

ds2 =

(
1− 2M

r

)
dt2 −

(
1− 2M

r

)−1

dr2 − r2(dθ2 + sin2θdϕ2), (5.20)
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across the boundary r = R of the star together with the condition that the radial

pressure should vanish at the surface (pr(r = R) = 0). The process fixes the

constants as

C =
exp

(
3α
4
− 1

2

)
2(2α+1)R4α

, (5.21)

M =
R

4
, (5.22)

The constant C depends on α, which remains as a free parameter.

5.5 Physical Conditions

For a physically acceptable stellar model, the following conditions should be satisfied

(Finch and Skea [58], Delgaty and Lake [45]):

(i) ρ(r) ≥ 0, pr(r) ≥ 0, p⊥(r) ≥ 0, for 0 ≤ r ≤ R.

(ii) dρ
dr

≤ 0, dpr
dr

≤ 0, dp⊥
dr

≤ 0, for 0 ≤ r ≤ R

(iii) 0 ≤ dpr
dρ

≤ 1 , 0 ≤ dp⊥
dρ

≤ 1, for 0 ≤ r ≤ R

(iv) ρ− pr − 2p⊥ ≥ 0, for 0 ≤ r ≤ R

(v) Γ > 4
3
, for 0 ≤ r ≤ R.

Using graphical method, we demonstrate that all of the above mentioned conditions

are satisfied in this model. The energy density in this model takes the form

8πρ =
3 + r2

R2

R2(1 + r2

R2 )2
. (5.23)

Thus, the central density takes the value

ρ(0) =
3

R2
.
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Obviously, we have ρr=0 > 0 and ρr=R > 0. The gradient of density is obtained as

dρ

dr
= −

2 r
R

(
5 + r2

R2

)
R3 (r2 +R2)3

, (5.24)

it can be shown from equation (5.24) that the density is a decreasing function of r.

The condition (dρ
dr r=0

< 0 and dρ
dr r=R

< 0) puts the restriction on 0 < α < 1. The

radial pressure

8πpr =
α(1− r2

R2 )(3 +
r2

R2 )

R2(1 + r2

R2 )2
, (5.25)

calculated the centre takes the form

pr(0) =
3α

R2
.

We note that the condition pr(r = 0) > 0 and pr(r = R) > 0 are satisfies if

0 < α < 1. Differentiating (5.25) with respect to r, we obtain

dpr
dr

= −
16α r

R

R3 (r2 +R2)3
, (5.26)

which is a decreasing function of r provided 0 < α < 1
4
. The tangential pressure p⊥

has the form 8πp⊥ =

12α+ α2 r10

R10 + 2α(2α− 1) r8

R8 + (1− 12α− 2α2) r6

R6 − 2(6α2 + 7α− 2) r4

R4 + (3− 16α+ 9α2) r2

R2

4R2(1 + r2

R2 )3
,

(5.27)

and its central value is

p⊥(0) =
3α

R2
.

Thus, p⊥(r = 0) > 0. Also, the gradient of tangential pressure dp⊥
dr

=

r
R (9α2 − 52α+ 3) + 2(1 + 2α− 21α2) r3

R3 + (6α2 − 22α− 1) r5

R5 + 8α r7

R7 + α(9α− 2) r9

R9 + 2α2 r11

R11

2R3 (r2 +R2)
4 ,
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remains negative if α > 1
20
. We also note that the radial pressure and tangen-

tial pressure are equal at the centre implying regularity of the anisotropic factor.

Fig.(5.1) shows the variation of density inside the star which decreases radially out-

ward. Fig.(5.2) and Fig.(5.3) show variations of the radial and tangential pressures

respectively. The pressures are also decreasing functions of r. Fig.(5.6) shows the

anisotropy which is a decreasing throughout the distribution.

Let us now check whether the bound on α also satisfies the causality condition

0 < dpr
dρ

< 1 and 0 < dp⊥
dρ

< 1. We have

dpr
dρ

=
8α

5 + r2

R2

,

dp⊥
dρ

=

α(2− 9α) r8

R8 + 8α(1− 2α) r6

R6 + (1 + 22α− 6α2) r4

R4 + 2(21α2 − 2α− 1) r2

R2 + (−3 + 52α− 9α2)

4(1 + r2

R2 )(5 +
r2

R2 )
,

The conditions 0 ≤ dpr
dρ (r=0)

≤ 1 and 0 ≤ dpr
dρ (r=R)

≤ 1 are evidently satisfied at the

centre as well as at the boundary.

The condition 0 ≤ dp⊥
dρ (r=0)

≤ 1 and 0 ≤ dp⊥
dρ (r=R)

≤ 1 are evidently satisfied at the

centre as well as at the boundary provided 1
9

(
26−

√
649
)
< α < 1

9

(
26−

√
469
)
and

1
20

< α < 13
20
. In Fig.(5.4) and Fig.(5.5), we show the variation of dpr

dρ
and dp⊥

dρ
against

r. Both quantities satisfy the condition 0 < dpr
dρ

< 1 and 0 < dp⊥
dρ

< 1, indicating

that the sound speed is less than the speed of light throughout the star. Table (5.3)

shows the values of dpr
dρ

and dp⊥
dρ

at the center as well as the surface of the star.
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5.5.1 Energy Conditions

Conditions (i) and (ii) imply fulfillment of the weak and dominant energy conditions.

Condition (iv) ensures regular behaviour of the energy density. Now, we have

(ρ− pr − 2p⊥)(r=0) =
3(1− 3α)

R2
, (5.28)

and

(ρ− pr − 2p⊥)(r=R) =
4α + 1

2R2
. (5.29)

In order to examine fulfillment of the strong energy condition, we evaluate ρ−pr−2p⊥

at the centre and at the boundary of the star. It is observed that the bound on

0 < α < 1
3
fulfills this condition. Fig.(5.7) indicates that the strong energy condition

ρ−pr−2p⊥ > 0 is satisfied throughout the distribution within the bound of α where

we have used the data obtained for the pulsar 4U1820− 30. Table (5.1) shows the

values of ρ− pr − 2p⊥ at the center as well as the surface of the star.

5.5.2 Stability

(i) Causality condition and method of cracking: The stability of a stellar structure

is critical in relativistic astrophysics. The causality criterion states that a physically

plausible model’s radial sound velocity v2r and tangential sound velocity v2⊥ must

fall within the interval [0, 1]. The expressions for the radial v2r and tangential v2⊥

velocities of sound are obtained as

v2r =
p′r
ρ′
, v2⊥ =

p′⊥
ρ′

, (5.30)

(v2⊥ − v2r)(r=0) =
1

20

(
−9α2 + 20α− 3

)
, (5.31)
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(v2⊥ − v2r)(r=R) =
1

12
(4α− 1), (5.32)

For (v2⊥ − v2r)(r=0) < 0, we must have (−9α2 + 20α− 3) < 0 i.e., 0 < α < 0.161777.

At the boundary of the star, we have (v2⊥ − v2r)(r=R) < 0. Thus, we must have

(4α− 1) < 0 i.e., 0 < α < 0.240885.

Herrera [73] introduced the concept of “cracking” to determine the stability of

anisotropic matter distribution. Abreu et al [1] showed that the region for which

−1 ≤ v2⊥ − v2r ≤ 0 are potentially stable and the region for which 0 ≤ v2⊥ − v2r ≤ 1

are potentially unstable inside a stellar configuration. Ratanpal [161] analyzed

the role of anisotropy in potentially stable or unstable regions based on the cri-

teria put forward by Abreu. According to the theorem used by Ratanpal [161], if

8π
√
3S = pr − p⊥ is a decreasing function of r, then the stellar configuration is

potentially stable. Table (5.3) shows that numerical values of the (v2⊥−v2r) at center

as well as boundary of the star for the compact object 4U1820 − 30. Fig.(5.10)

shows that v2⊥− v2r < 0. Thus, the solution is potentially stable within the following

bound: 0 < α < 0.161777.

(ii) Adiabatic index:

Bondi [24] showed that a Newtonian isotropic sphere will be in equilibrium if the

adiabatic index (Γ) > 4/3 which turns out to be true for a relativistic anisotropic

fluid sphere as well. The adiabatic index Γ is given by

Γr =
ρ+ pr
pr

dpr
dρ

,

=
8α r2

R2 − 8(α + 1)(
r4

Rr + 4 r2

R2 − 5
) . (5.33)

Within the prescribed bound of α, the profile of the adiabatic index (Γr) is shown

in Fig.(5.8). The plot shows that the radial adiabatic index profile is a monotonic
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increasing function of r and that Γ = ρ+pr
pr

dpr
dρ

> 4
3
everywhere inside the star thereby

satisfying the stability requirement. Table 5.1 shows the value of Γr at the center

of the star.

5.5.3 Gravitational Redshift

The redshift z =
√
1/eν − 1 must be a decreasing function of r and finite for 0 ≤

z ≤ a. For a relativistic star, it is expected that the redshift must decrease towards

the boundary and be finite throughout the distribution. The value of redshift at

origin is described in Table (5.1)

As above all the conditions are satisfied in the range of α is 0.06 < α < 0.17.

Therefore, our model is stable in the region 0.06 < α < 0.17.

5.5.4 Stability under Three Different Forces

To assess the stability of the model, it is crucial to analyze the equilibrium state

using the Tolman-Oppenheimer-Volkoff (TOV) equation. This stability equation,

originally formulated by Tolman [208] and further developed by Oppenheimer and

Volkoff [143], characterizes the internal structure of a spherically symmetric, static

compact object that maintains equilibrium in the presence of anisotropy. The gen-

eralized form of the TOV equation serves to express the intricate balance within

such a system

−(ρ+ pr)

2
ν ′ − dpr

dr
+

2

r
(p⊥ − pr) = 0, (5.34)

The TOV equation can be expressed in a simple form to describe the equilibrium

condition by defining the forces as gravitational forces (Fg), hydrostatic forces (Fh)
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and anisotropic forces (Fa). Thus,

Fg(r) + Fh(r) + Fa(r) = 0, (5.35)

where,

Fg(r) = −1

2
(ρ(r) + pr(r))

dν

dr
, (5.36)

Fh(r) = −dpr(r)

dr
, (5.37)

Fa(r) =
2(p⊥ − pr)

r
. (5.38)

Hydrostatic and anisotropic forces work together to counteract gravitational force,

maintaining equilibrium in the system.

Table 5.1: Fulfillment of the strong energy condition and values of the gravitational
redshift at the center as well as at the surface and adiabatic index at the surface
where we have used the data for the pulsar 4U1820− 30.

α ρ− pr − 2p⊥(r=0) ρ− pr − 2p⊥(r=R) Z(r=0) Z(r=R) Γ(r=0)

(Redshift) (Redshift) (Adiabatic
Index)

0.07 861.84 232.73 0.312942 0 1.71
0.08 829.114 240.007 0.317126 0 1.72
0.09 796.38 247.28 0.321323 0 1.74
0.10 763.65 254.55 0.325533 0 1.76
0.11 730.93 261.82 0.329757 0 1.77
0.12 698.201 269.09 0.333994 0 1.79
0.13 665.47 276.37 0.338245 0 1.8
0.14 632.74 283.644 0.342509 0 1.82
0.15 600.017 290.917 0.346787 0 1.84
0.16 567.28 298.19 0.351079 0 1.85

88



CHAPTER 5. . . . 5.6. DISCUSSION

Table 5.2: Values of dρ
dr
, dpr

dr
and dp⊥

dr
at center as well as surface.

α dρ
dr (r=0)

dρ
dr (r=R)

dpr

dr (r=0)
dpr

dr (r=R)
dp⊥
dr (r=0)

dp⊥
dr (r=R)

0.07 0 -59.94 0 -5.59 0 -1.99
0.08 0 -59.94 0 -6.39 0 -2.99
0.09 0 -59.94 0 -7.19 0 -3.99
0.10 0 -59.94 0 -7.99 0 -4.99
0.11 0 -59.94 0 -8.79 0 -5.99
0.12 0 -59.94 0 -9.59 0 -6.99
0.13 0 -59.94 0 -10.38 0 -7.99
0.14 0 -59.94 0 -11.18 0 -8.99
0.15 0 -59.94 0 -11.98 0 -9.99
0.16 0 -59.94 0 -12.78 0 -10.98

α = 0.07

α = 0.15

0 2 4 6 8
0

200

400

600

800

1000

1200

r (Km)

ρ
∼
(M
eV

F
m
-
3
)

Figure 5.1: Variation of density against radial variable r.

5.6 Discussion

In the present work, we solved Einstein’s field equations defining a spherically sym-

metric anisotropic matter by assuming the Finch and Skea ansatz and considering

a linear equation of state of the form pr = α
(
1− r2

R2

)
ρ, where 0 < α < 1. Phys-

ical grounds have been used to get bounds on the model parameters, and it has

been demonstrated that the model is stable for 0.06 < α < 0.17. All the physi-

cal quantities are regular and well-behaved throughout the stellar interior for the

star 4U1820-30 with radius R = 9.1 km and mass M = 1.58M⊙. In Fig.(5.1),
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Table 5.3: Values of dpr
dρ

and dp⊥
dρ

at the center as well as at the surface and at center.

α dpr

dρ (r=0)

dp⊥
dρ (r=0)

dpr

dρ (r=R)

dp⊥
dρ (r=R)

(ν2
t − ν2

r )(r=0) (ν2
t − ν2

r )(r=R)

0.07 0.112 0.029 0.093 0.033 -0.082 -0.06
0.08 0.128 0.055 0.106 0.055 -0.072 -0.056
0.09 0.144 0.08 0.12 0.066 -0.063 -0.053
0.10 0.16 0.105 0.13 0.083 -0.054 -0.05
0.11 0.176 0.130 0.146 0.1 -0.045 -0.046
0.12 0.192 0.15 0.16 0.11 -0.036 -0.043
0.13 0.208 0.180 0.173 0.133 -0.027 -0.04
0.14 0.224 0.205 0.186 0.15 -0.018 -0.036
0.15 0.24 0.229 0.2 0.16 -0.010 -0.033
0.16 0.256 0.254 0.213 0.183 -0.0015 -0.03
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∼
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F
m
-
3
)

Figure 5.2: Variation of radial pressures against radial variable r.

Fig.(5.2) and Fig.(5.3), we examine the physical matter variables ρ, pr, p⊥ graphi-

cally. Fig.(5.4) and Fig.(5.5) shows both the radial and tangential square of sound

speed. In addition, the anisotropy for the model is shown to decreasing, as seen in

Fig.(5.6). The energy criterion is met within the stellar structure. Since positive

density and pressure are bound to be ≥ 0, we investigate the profile of the SEC

(ρ− pr − 2p⊥) graphically to confirm the stability in Fig.(5.7), and it is found to be

satisfied for our model. We examined the adiabatic index, which is greater than 4
3

across the structure (see Fig.(5.8)). It can be seen that the redshift maximizes at
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Figure 5.3: Variation of tangential pressures against radial variable r
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Figure 5.4: Variation of dpr
dρ

against radial variable r.

the centre shown in Fig.(5.9). Fig.(5.10) shows that v2⊥−v2r < 0 throughout the star.

Fig.(5.11) and Fig.(5.12) shows the graphical representation of three distinct forces

for the α = 0.07 and α = 0.15. We have shown that the model admits an equation

of state which is linear in nature which is shown with graphical representation in

Fig.(5.13). So the presented model satisfies all the physical criteria of a physically

well-behaved compact object in the region 0.06 < α < 0.17.
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Figure 5.5: Variation of dp⊥
dρ

against radial variable r.
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Figure 5.6: Variation of anisotropy against radial variable r.
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Figure 5.7: Variation of strong energy condition against radial variable r.
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Figure 5.8: Variation of adiabatic Index against radial variable r.
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Figure 5.9: Variation of gravitational redshift against radial variable r.
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Figure 5.10: Variation of a stability expression (dp⊥
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− dpr
dρ
) with respect to a radial

coordinate r.
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Figure 5.11: Variation of three forces like Gravitational Force(Blue), Hydrostatic
Force(Orange) and Anisotropic Force(Green) for the value α = 0.07.
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Figure 5.12: Variation of three forces like Gravitational Force(Blue), Hydrostatic
Force(Orange) and Anisotropic Force(Green) for the value α = 0.15.

94



CHAPTER 5. . . . 5.6. DISCUSSION

α = 0.07

α = 0.15

400 500 600 700 800 900 1000 1100

0

20

40

60

ρ

p
r

Figure 5.13: The relation between the pressure pr and density ρ is plotted for the
compact star
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