
Chapter 6

A Various Equation of State for

Anisotropic Model of Compact

Star

In this chapter, we obtain models of compact stars having pressure anisotropy on

Finch Skea spacetime by considering generalized equation of state, whose particular

cases are linear, quadratic, polytropic, Chaplygin and colour - flavor locked (CFL)

equation of states. The physical viability of models is tested for strange star can-

didate 4U 1820 - 30 having mass M = 1.58M⊙ and radius R = 9.1 km. All the

models are found to be physically plausible. The stability of our model with various

equation of state have been compared with work of Nasheeha et. al. [137].

6.1 Introduction

A compact star, as defined by general relativity, is a celestial object with an ultra-

high density and a strong gravitational field. These stellar bodies, such as neutron

stars and black holes, challenge our understanding of the cosmos and provide insights
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into the extreme nature of spacetime. General relativity is crucial in modelling

and understanding the physics regulating compact stars, unraveling the secrets of

their structure, behaviour, and gravitational interactions. There are several models

available in the literature describing relativistic compact objects.

At extremely high densities, the stellar interior may experience asymmetrical radial

and tangential stresses and the pressure inside the stellar object may be anisotropic

in nature studied by Ruderman [168]. Since the pioneering work of Bowers and

Liang [28], various reasons for the appearance of anisotropy are available in the

literature. Many authors have reported the origin and effects of local anisotropy

on astrophysical objects ( Herrera and Santos [75], Mak and Harko [120], Mak and

Harko [119], Chan et. al. [33]). Anisotropy may occur due to type-3A superfluid

(Harko and Mak [69]), phase transitions (Sokolov [182], Herrera and Nunez [72]),

pion condensation (Sokolov [182], Herrera and Santos [74]), slow rotation of a fluid

by Herrera and Santos [74], viscosity by Ivanov [82], strong electromagnetic fields

(Weber [214], Mart́inez et. al. [130], Usov [209]).

Within the framework of general relativity, the equation of state relates the energy

density, pressure, and other thermodynamic parameters to the curvature of space-

time. This interaction between the equation of state and general relativity is critical

for adequately modelling compact objects such as neutron stars and black holes.

By adopting a quadratic equation of state relating radial pressure to energy density,

Maharaj and Takisa [127] provide innovative exact solutions to the Einstein-Maxwell

set of equations. Malaver [131] used a quadratic equation of state to describe the

interior of stellar configuration. Takisa et. al. [185] modeled a charged anisotropic

relativistic star with a quadratic equation of state. Malaver and Kasmaei [132] pro-

posed new relativistic star configuration with charged anisotropic fluid distribution.

Ivanov [80] investigated relativistic static fluid spheres with a linear equation of
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state. Maharaj and Thirukkanesh [126] examined the linear equation of state for

matter distributions with anisotropic pressures in the presence of an electromag-

netic field using the metric potential grr =
1

a+bxn . Maharaj et. al. [128] derived the

solutions by considering charged anisotropic matter with a linear equation of state

pr =
1
3
(ρ− β) consistent with quark stars. By selecting a particular form for one of

the gravitational potentials and the electric field intensity, Ngubelanga et. al. [140]

derived a new exact solution in isotropic coordinates. Ivanov [83] did an analyti-

cal study of anisotropic compact star models that are similar to charged isotropic

solutions. Prasad and Jitendra [152] used a linear equation of state to study three

different classes of innovative exact solutions for anisotropy factor by considering

metric potential eλ = k(1+cr2)
k+cr2

with k < 0 and c > 0. Recently Patel et. al. [155]

investigated a new charged anisotropic solution on paraboloidal spacetime using a

linear equation of state that is compatible with several compact stars.

Polytropic equations of state are useful in a wide range of astrophysical applications.

Binnington and Poisson [23] used polytropic equation of state to define electric-type

and magnetic-type love numbers in the context of a spherical body affected by an

external tidal field. Chavanis [38] developed a simple universe model with a gener-

alized equation of state p = (α + kρ(1/n))ρc2 that has a linear component p = αρc2

and a polytropic component p = kρ(1+1/n)c2. Takisa and Maharaj [184] studied

charged anisotropic polytropic models. Herrera et. al. [77] investigated confor-

mally flat spherically symmetric fluid distributions that meet a polytropic equation

of state. Considering the polytropic equation of state Ngubelanga and Maharaj

[139] investigated the Einstein-Maxwell system of equations in isotropic coordinates

for anisotropic matter distributions in the presence of an electric field. Herrera et.

al. [78] investigated the impact of modest fluctuations in local anisotropy of pres-

sure and energy density on the incidence of cracking in spherical compact objects

satisfying a polytropic equation of state. Azam et. al. [5] studied the theory of
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Newtonian and relativistic polytropes with generalized polytropic equations of state

with anisotropic fluid distribution in the presence of charge. Azam and Mardan [6]

investigated the possibility of cracking in charged anisotropic polytropes with a gen-

eralized polytropic equation of state under two alternative assumptions. Recently,

Nazar et. al. [136] proposed relativistic polytropic models of charged anisotropic

compact objects.

Rahaman et. al. [165] examined singularity-free solutions for anisotropic charged

fluids with the Chaplygin equation of state. Bhar et. al. [19] investigated closed-

form solutions for modelling compact stars with interior matter distributions that

obey a generalized Chaplygin equation of state. Prasad et. al. [151] proposed

a new model of an anisotropic compact star in Buchdahl spacetime assuming the

Chaplygin equation of state. Malaver and Iyer [133] investigated the analytical

model of a compact star using a modified Chaplygin equation of state.

Nasheeha et. al. [137] have taken metric potential grr = 1+ar2

1+(a−b)r2
for various

equation of state viz. quadratic, linear, polytropic, Chaplygin, and color-flavor-

locked equation of state. It is observed that the metric potential gtt and many

physical entities are not well-behaved in the case of a = b for various equation of

states viz. quadratic, linear, polytropic, Chaplygin, and color-flavor-locked equation

of state. The reason is specified in Chapter 1. Hence we need to consider a = b

in grr = 1+ar2

1+(a−b)r2
separately. We consider metric potential grr = 1 + ar2 which

is particular case of grr = 1+ar2

1+(a−b)r2
considered by Nasheeha et. al. [137] when

a = b. We develop new models for anisotropic stars using a generalized version of

the nonlinear barotropic equation of state with a specific gravitational potential

grr and demonstrate how it can be reduced to other types of equation of state to

explain acceptable anisotropic matter distributions. Graphical analysis is done to

investigate the physical acceptability of models.
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6.2 The Field Equations

The static spherically symmetric spacetime metric in the interior of stellar configu-

ration is given by

ds2 = eν(r)dt2 − eλ(r)dr2 − r2(dθ2 + sin2θdϕ2). (6.1)

We take the energy-momentum tensor of the form

Tij = (ρ+ p⊥)uiuj + p⊥gij + (pr − p⊥)χiχj, (6.2)

where ρ is the matter density, pr is the radial pressure, p⊥ is the tangential pressure,

ui is the four-velocity of the fluid and χi is a unit spacelike four-vector along the

radial direction so that uiui = −1, χiχj = 1 and uiχj = 0, with spacetime metric

(6.1) and energy-momentum tensor (6.2), the Einstein’s field equations takes the

form

8πρ =
1− e−λ

r2
+

e−λλ′

r
, (6.3)

8πpr =
e−λν ′

r
+

e−λ − 1

r2
, (6.4)

8πp⊥ = e−λ

(
ν

′′

2
+

ν ′2

4
− ν ′λ′

4
+

ν ′ − λ′

2r

)
, (6.5)

8π
√
3S = 8πpr − 8πp⊥. (6.6)

where primes denote differentiation with respect to r. The system of equation (6.3-

6.6) governs the behaviour of the gravitational field for an anisotropic fluid distri-

bution.
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6.3 Equation of State for Various Models

A generalized equation of state considered by Nasheeha et. al. [137] of the form

pr = τρ(1+
1
p
) + ηρ− ω, (6.7)

where τ, η, ω and p are real constants. If we put p=1 in equation (6.7), then it

becomes a quadratic equation of state. If we put τ = 0 in equation (6.7), then

it becomes a linear equation of state. If we fix η = 0, in equation (6.7), then it

becomes a polytrope with polytropic index p. If we set p = −1
2
, ω = 0 and τ = −α,

in equation (6.7), then it becomes a Chaplygin equation of state. If we set p = −2,

then it becomes color-flavor-locked (CFL)equation of state.

We solve Einstein’s field equations (6.3 - 6.6) together with the equation of state

(6.7), to obtain an anisotropic model with the equation of state. For solving the

system (6.3-6.6), we have three equations with five unknowns (ρ, pr, p⊥, e
λ, eν). We

are free to select any two of them to complete this system. As a result, there are

ten different ways to select any two unknowns. There are four ways to choose the

method, (i) choose ρ along with pr (ii) select eν with ∆ (iii) select eλ and pr and

(iv) choose eλ and equation of state, which is a relationship between matter density

and radial pressure pr.

To develop a physically reasonable model of the stellar configuration, we assume

that the metric potential grr coefficient is expressed as eλ given by

eλ = 1 + ar2, (6.8)

by selecting this metric potential, the function eλ is guaranteed to be finite, contin-

uous, and well-defined within the range of stellar interiors.
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ρ =
a(3 + ar2)

(1 + ar2)2
, (6.9)

pr = τ

((
a(3 + ar2)

(1 + ar2)2

)(1+ 1
p
)

−
(
a(3 + aR2)

(1 + aR2)2

)(1+ 1
p
)
)
+η

(
a(3 + ar2)

(1 + ar2)2
− a(3 + aR2)

(1 + aR2)2

)
,

(6.10)

p⊥ =
a

4 (ar2 + 1)3

(
f1 + f2 +

ar2(f3 + f4)
2

(aR2 + 1)4
+

2(f3 + f5 + f6)

(aR2 + 1)2

)
, (6.11)

x =

(
a (ar2 + 3)

(ar2 + 1)2

)1/p

,

y =

(
a (aR2 + 3)

(aR2 + 1)2

)1/p

,

f1 = −
4ar2τx

(
ar2 + 5

)
p

+
2a
(
r2(−5η + τ(x− 6y) + 1) +R2(5η + 6τx− τy + 2)

)
2 + 6τ(x− y)

(aR2 + 1)
2 −4(1+ar2),

f2 =
2a2

(
−3r4(η + τy) + 2r2R2(τ(x− y) + 1) +R4(3η + 3τx+ 1)

)
− 2a3r2R2

(
r2(η + τy)−R2(η + τx+ 1)

)
(aR2 + 1)

2 ,

f3 = a
(
r2(−5η + τx− 6τy + 1) +R2(5η + 6τx− τy + 2)

)
+ 3τ(x− y) + 1,

f4 = a2
(
−3r4(η + τy) + 2r2R2(τx− τy + 1) +R4(3η + 3τx+ 1)

)
−a3r2R2

(
r2(η + τy)−R2(η + τx+ 1)

)
,

f5 = a4r4R2
(
R2(η + τx+ 1)− 3r2(η + τy)

)
+a3

(
−9r6(η + τy) + r4R2(−5η + 2τx− 7τy + 2) + 2r2R4

)
,

f6 = a2
(
r4(−20η + τx− 21τy + 1)− r2R2(5η + 5τy − 4) +R4(3η + 3τx+ 1)

)
.

eν = C (1 + ar2)ηexp(f7 + f8), (6.12)

f7 =
pτx

(
ar2 + 1

)
Hypergeometric 2F1

(
1
p − 1,− 1

p ;
1
p ;−

2
ar2+1

)
2(p− 1)

(
2

ar2+1 + 1
)1/p −

(
ar2 + 1

)2 (
aR2 + 3

)
(η + τy)

4 (aR2 + 1)
2 ,
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f8 =
(η + 1) (ar2 + 1)

4
−

pτHypergeometric 2F1

(
−1

p
, 1
p
; 1 + 1

p
;− 2

ar2+1

)
(

2
ar2+1

+ 1
)1/p .

where, C is a constant of integration.

C =
1

(1 + aR2)(η+1)
exp

(aR2 + 3
)
(η + τy)− 2(η + 1)

(
aR2 + 1

)
4

+
2(p− 1)pτyf9

2(p− 1)
(

2
aR2+1 + 1

)1/p
 ,

(6.13)

f9 = Hypergeometric 2F1

(
−1

p
,
1

p
; 1 +

1

p
;− 2

aR2 + 1

)

−
(
aR2 + 1

)
Hypergeometric 2F1

(
1

p
− 1,−1

p
;
1

p
;− 2

aR2 + 1

)
.

The mass function within the sphere of radius R for the metric potential equation

(6.8) is given by

M =
aR3

2(1 + aR2)
. (6.14)

In our generated model, equation (6.12) is the solution for different values of p.

Subsequently, we consider the different cases in the following sections which are of

physical interest.

6.3.1 Quadratic Equation of State

If we set p = 1 then equation (6.7) takes the form of quadratic equation of state

pr = τρ2 + ηρ− ω, (6.15)

eλ = 1 + ar2, (6.16)

ρ =
a(3 + ar2)

(1 + ar2)2
, (6.17)
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pr = τ

((
a(3 + ar2)

(1 + ar2)2

)2

−
(
a(3 + aR2)

(1 + aR2)2

)2
)

+ η

(
a(3 + ar2)

(1 + ar2)2
− a(3 + aR2)

(1 + aR2)2

)
,

(6.18)

p⊥ =
a

4 (ar2 + 1)
(f10 + f11 + f12 + f13) , (6.19)

f10 =
16aτ − 2ar2(aτ + 2η)

(ar2 + 1)2
− 2ar2 + 4 + 2aηr2 − (4aτ + 8η)

ar2 + 1
+ 4(η + 1),

f11 = (2ar2 − 4
(
ar2 + 1

)
− 8a2τr2)p14 +

16aτ − 8a2τr2

(ar2 + 1)3
,

f12 = 4ar2
(
−f14 −

aτ + 2η

(ar2 + 1)2
− 8aτ

(ar2 + 1)3
− 12aτ

(ar2 + 1)4

)
,

f13 = ar2
(
(−ar2 + 1)f14 +

aτ + 2η

ar2 + 1
+

4aτ

(ar2 + 1)2
+

4aτ

(ar2 + 1)3
+ η + 1

)2

,

f14 =
(aR2 + 3) (a2R2 (τ + ηR2) + a (3τ + 2ηR2) + η)

(aR2 + 1)4
,

eν = C (1 + ar2)(
aτ+2η

2
)exp(f15), (6.20)

f15 = − aτ

(1 + ar2)2
− 2aτ

(1 + ar2)
+

(1 + ar2)(1 + η)

2

−(3 + aR2)(1 + ar2)2 (η + a2R2(τ +R2η) + a(3τ + 2R2η))

4(1 + aR)4
,

where,

C =

exp

(
− aτ

(1+aR2)2
− 2aτ

(1+aR2)
+ (1+aR2)(1+η)

2
− (3+aR2)(η+a2R2(τ+R2η)+a(3τ+2R2η))

4(1+aR)2

)
(1 + aR2)(

aτ+2η
2

+1)
.

(6.21)

The same metric potential is used by Sharma and Ratanpal [179], but assuming

radial pressure in the form of 8πpr =
p0(1− r2

R2 )

R2(1+ r2

R2 )
2
. Similarly Feroze and Siddiqui [56]

used same ansatz for metric potential grr considering charged anisotropic matter

with quadratic equation of state.
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6.3.2 Linear Equation of State

If we set τ = 0, equation (6.7) becomes

pr = ηρ− ω, (6.22)

eλ = 1 + ar2, (6.23)

ρ =
a(3 + ar2)

(1 + ar2)2
, (6.24)

pr = η

(
a(3 + ar2)

(1 + ar2)2
− a(3 + aR2)

(1 + aR2)2

)
, (6.25)

p⊥ =

a

(
4(1 + η) + 8η−4−2ar2(1+η)

1+ar2
+ 2η

(
−ar2(aR2+3)

(aR2+1)2
− 2(ar2+1)(aR2+3)

(aR2+1)2
− 6ar2

(ar2+1)2

))
4(1 + ar2)

+

ar2
(

2η
ar2+1

− η(ar2+1)(aR2+3)
(aR2+1)2

+ η + 1

)2

4(1 + ar2)
, (6.26)

eν = C (1 + ar2)ηexp

(
(1 + ar2)(1 + η)

2
− η(3 + aR2)(1 + ar2)2

(1 + aR2)2

)
, (6.27)

where,

C =
exp

(
−2+η−aR2(2+η)

4

)
(1 + aR2)(η+1)

. (6.28)

which is similar to the solution of Thomas and Pandya [200] with a = 1
L2 .

6.3.3 Polytropic Equation of State

When p = 2 and η = 0, equation (6.7) takes a polytropic form

pr = τρ(3/2) − ω, (6.29)
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so Einstein’s field equations become,

pr = τ

((
a(3 + ar2)

(1 + ar2)2

)(3/2)

−
(
a(3 + aR2)

(1 + aR2)2

)(3/2)
)
, (6.30)

p⊥ =

a

(
−2
(
ar2 + 1

)3 (
aR2 + 1

)2
f16 − ar2

(
ar2 + 1

)2
f17

(
2
(
aR2 + 1

)2 − f17

)
+

2(aR2+1)
2

l f18

)
4 (ar2 + 1)

5
(aR2 + 1)

4 ,

(6.31)

l =

√
a (ar2 + 3)

(ar2 + 1)2
, m =

√
a (aR2 + 3)

(aR2 + 1)2
,

f16 = a3
(
mr4R2τ − r2R4(lτ + 1)

)
+a2

(
−2r2R2(lτ −mτ + 1) +R4(1− 3lτ) + 3mr4τ

)
−3lτ + 3mτ + 1− a

(
r2(lτ − 6mτ + 1) +R2(6lτ −mτ − 2)

)
,

f17 = a3
(
r2R4(lτ + 1)−mr4R2τ

)
+a2

(
2r2R2(lτ −mτ + 1) +R4(3lτ + 1)− 3mr4τ

)
+a
(
r2(lτ − 6mτ + 1) +R2(6lτ −mτ + 2)

)
+ 3τ(l −m) + 1,

f18 = a5
(
−9lmr10τ + lr8R2(2− 13mτ) + 4lr6R4 − 5r4R4τ

)
+ l(1− 3mτ)

+a4
(
lr8(1− 39mτ) + 2lr6R2(4− 11mτ) + 2r4

(
3lR4 − 5R2τ

)
− 12r2R4τ

)
+a2

(
6lr4(1− 9mτ) + r2

(
lR2(8− 7mτ)− 12τ

)
+ lR4 + 18R2τ

)
+al

(
r2(4− 21mτ) +R2(2−mτ + 9τ)

)
+ a6lr8R2

(
R2 − 3mr2τ

)
+a3

(
2lr6(2− 33mτ) + r4

(
−6lR2(3mτ − 2)− 5τ

)
+ 4r2

(
lR4 − 6R2τ

)
+ 9R4τ

)
,

eν = C exp

(
f19

4 (aR2 + 1)2

)
, (6.32)

f19 = 2− 3mτ + a3r2R2(−r2mτ +R2(2+4lτ))+ a(r2(2+4lτ − 6mτ)+R2(4−mτ))
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+a2(2R4−3r4mτ+2r2R2(2+4lτ−mτ)−6
√
2
√
aτ
(
aR2 + 1

)2
tanh−1

(
(ar2 + 1)m√

2
√
a

)
,

where,

C =

exp

−
a3R6(3τm+2)+a2R4(3τm+6)+a2R2(6−3τm)−3τm−6

√
2
√
aτ(aR2+1)

2
tanh−1

(
(aR2+1)m

√
2
√
a

)
+2

4(aR2+1)2


aR2 + 1

.

This is the new solution for this gravitational potential in polytropic equation of

state.

6.3.4 Chaplygin Equation of State

If we set p = −1
2
, τ = −α and ω = 0 then equation (6.7) becomes Chaplygin

equation of state as

pr = ηρ− α

ρ
, (6.33)

p⊥ =
f20 + f21 + f22

4a2 (ar2 + 1)3 (ar2 + 3)2
, (6.34)

f20 = a8r10
(
η − αr4 + 1

)2
+ 2a7r8

(
6η2 + 11η + 4α2r8 − α(10η + 13)r4 + 5

)
+2a2αr2

(
−9η + 14αr4 − 48

)
+ 4aα

(
2αr4 − 3

)
+ α2r2,

f21 = 2a6r6
(
27η2 + 43η + 14α2r8 − 3α(13η + 22)r4 + 18

)
+2a3

(
54η + 28α2r8 − 3α(14η + 47)r4

)
,

f22 = 2a5r4
(
54η2 + 75η + 28α2r8 − 4α(19η + 40)r4 + 27

)
+a4r2

(
9
(
9η2 + 16η + 3

)
+ 70α2r8 − 2α(79η + 205)r4

)
,
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eν = C (1 + ar2)η(3 + ar2)
4α
a2 exp

(
−(1 + ar2)(10α− ar2α + a2(−3 + r4α− 3η))

6a2

)
,

(6.35)

where,

C =
(3 + aR2)(

−4α

a2
)exp

(
−(−(1+aR2)(10α−aR2α+a2(−3+R4α−3η))

6a2
)
)

(1 + aR2)(η+1)
. (6.36)

6.3.5 CFL Equation of State

When the internal structure of a compact star formed of strange matter is in the

CFL phase, CFL equation of state is used. If we set p = −2, then equation (6.7)

becomes CFL equation of state (Thirukkanesh and Ragel [195], Rocha et. al. [167])

pr = τρ
1
2 + ηρ− ω, (6.37)

p⊥ = −f23 + f24 + f25 + f26
36 (ar2 + 1)

, (6.38)

f23 =
108a2ηr2

(ar2 + 1)2
+
18aη (aR2 + 3) (ar2 (ar2 + 1))

(aR2 + 1)2
−36a(η+1+r2τp)−48τ

(
ar2 + 2

)
p,

f24 =
18a2(η + 1)r2 + 24ar2τ (ar2 + 2) + 36a(1− 2η)− 6ar2τp (ar2 + 5)

ar2 + 1
,

f25 =
6a2r2τ (ar2 + 5) (4 (ar2 + 2)− (ar2 + 5))

(ar2 + 1)3 p
+ 18qτ(3ar2 + 2) + 12τ

(
ar2 + 5

)
p,

f26 = r2
(
−3a(η + 1)− 6aη

ar2 + 1
+ 3q(1 + ar2)(qη + τ)− 4τ

(
ar2 + 2

)
p+ τ

(
ar2 + 5

)
p

)2

,

eν = C (1 + ar2)η
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exp

(
τ
(
a2r4 + 4ar2 + 3

)
p

3a
+

2(η + 1)
(
ar2 + 1

)
4

−
η
(
ar2 + 1

)2 (
aR2 + 3

)
4 (aR2 + 1)

2 −
τ
(
ar2 + 1

)2
q

4a

)
,

(6.39)

where,

C =

exp

(
− τq(a2R4+4aR2+3)

3a
− (η+1)(aR2+1)

2
+

η(aR2+3)
4

+
pτ(aR2+1)

2

4a

)
(aR2 + 1)(η+1)

. (6.40)

All of the physical plausibility conditions are representing in the next section.

6.4 Matching conditions

At the boundary of the star r = R, we match the interior metric with the Schwarzschild

exterior spacetime metric.

ds2 =

(
1− 2M

r

)
dt2 −

(
1− 2M

r

)−1

dr2 − r2(dθ2 + sin2θdϕ2), (6.41)

which leads to

(
1− 2M

R

)−1

= 1 + aR2 = eλ (6.42)

(
1− 2M

R

)
= eν (6.43)

M =
aR3

2(1 + aR2)
(6.44)

where eν is given in (6.20), (6.27), (6.32), (6.35), (6.39) for quadratic, linear, poly-

tropic, Chaplygin, and color-flavor-locked equation of state, respectively. We use a

graphical approach to examine and physically validate the remaining physical con-

ditions for a realistic star by fixing the radius R = 9.1 km and mass M = 1.58M⊙

in analogy with the strange star candidate 4U 1820-30. Therefore, using a graphical
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presentation, we demonstrate that the models created for parameters a = 0.01 for

all types of equation of states satisfy the majority of the physical conditions given

above. Table (6.1) lists the additional parameters selected for various equations of

states.

Table 6.1: The numerical values of the τ, η, ω and constant(a) for the compact star
4U 1820-30.
Equation of states τ η ω a ρ(0) ρ(R)

(MeV fm−3) (MeV fm−3)
Quadratic 0.1 0.15 1 0.01 903.407 344.942
Linear 0 0.15 1 0.01 903.407 344.942
Polytropic 1.5 0 0 0.01 903.407 344.942
Chaplygin 0.1 0.1 0 0.01 903.407 344.942
CFL 0.01 0.15 0 0.01 903.407 344.942

Table 6.2: The numerical values of the strong energy condition and redshift at the
centre as well as surface, and adiabatic index at the surface for the compact star 4U
1820-30.
Equation ρ− pr − 2p⊥ ρ− pr − 2p⊥ Z(r=0) Z(r=R) Γ(r=0)

of states (r=0) (r=R) (Redshift) (Redshift) (Adiabatic
Index)

Quadratic 645.152 274.575 0.707848 0.352072 1.79312
Linear 652.098 273.485 0.706874 0.352072 1.76766
Polytropic 365.402 316.69 0.747744 0.352072 2.3529
Chaplygin 602.444 325.82 0.722774 0.352072 1.49029
CFL 592.312 295.712 0.718688 0.352072 1.73714

6.5 Conditions for Physical Acceptability

Following are the condition for model to be physically plausible.

(i) ρ(r) ≥ 0, pr(r) ≥ 0, p⊥(r) ≥ 0, for 0 ≤ r ≤ R

(ii) dρ
dr

≤ 0, dpr
dr

≤ 0, dp⊥
dr

≤ 0, for 0 ≤ r ≤ R

(iii) 0 ≤ dpr
dρ

≤ 1 , 0 ≤ dp⊥
dρ

≤ 1, for 0 ≤ r ≤ R
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Table 6.3: The numerical values of the dρ
dr
,dpr
dr

and dp⊥
dr

at centre as well as surface
for the compact star 4U 1820-30.

Equation dρ
dr (r=0)

dρ
dr (r=R)

dpr

dr (r=0)
dpr

dr (r=R)
dp⊥
dr (r=0)

dp⊥
dr (r=R)

Quadratic 0 -52.283 0 -7.96223 0 -6.3821
Linear 0 -52.283 0 -7.84246 0 -6.29418
Polytropic 0 -52.283 0 -12.5903 0 -8.71212
Chaplygin 0 -52.283 0 -13.5936 0 -23.8567
CFL 0 -52.283 0 -10.285 0 -10.6138

Table 6.4: The numerical values of the dpr
dρ

at centre as well as surface and dp⊥
dρ

at
centre as well as surface for the compact star 4U 1820-30.

Equation dpr

dρ
dp⊥
dρ

dpr

dρ
dp⊥
dρ

(ν2
t − ν2

r ) (ν2
t − ν2

r )

of states (r=0) (r=0) (r=R) (r=R) (r=0) (r=R)

Quadratic 0.156 0.10074 0.152291 0.122068 -0.05526 -0.030223
Linear 0.15 0.0904949 0.15 0.120387 -0.0595051 -0.029613
Polytropic 0.389711 0.492584 0.24081 0.166634 0.102873 -0.074176
Chaplygin 0.148953 0.0757274 0.26 0.456299 -0.0732256 0.1962
CFL 0.178868 0.132934 0.204667 0.203006 -0.045934 -0.001661

(iv) ρ− pr − 2p⊥ ≥ 0, for 0 ≤ r ≤ R

(v) Γ > 4
3
, for 0 ≤ r ≤ R

Let’s now examine the physical acceptability of the models created using five distinct

types of equations of states.

In our models, for all types of equation of state (eν)′(r=0) = (eλ)′(r=0) = 0, eλ(0) = 1

and eν becomes for

Quadratic equation of state :

eν(0) = C exp

[
−(aR2+3)(a2R2(τ+ηR2)+a(3τ+2ηR2)+η)

4(aR2+1)4
− 3aτ + η+1

2

]
,

Linear equation of state :

eν(0) = C exp

[
ω+1
2

− ω(aR2+3)
4(aR2+1)2

]
,

Polytropic equation of state :
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eν(0) = C exp

2a2R4+aR2

(
4−τ

√
a(aR2+3)

(aR2+1)2

)
−3τ

√
a(aR2+3)

(aR2+1)2
+3i

√
2τ

√
a(π+i log(2

√
6+5))(aR2+1)

2
+2

4(aR2+1)2

 ,

Chaplygin equation of state :

eν(0) = C exp
[
a2(−(−3η−3))−10α+24α log(3)

6a2

]
,

CFL equation of state :

eν(0) = C exp

1
4

−η(aR2+3)
(aR2+1)2

−
τ

√
a(aR2+3)

(aR2+1)2

a
+ 4

√
3τ√
a

+ 2(η + 1)


 ,

which are constants. The gravitational potentials are regular at the origin for all

types of equations of state, satisfying requirements. In all kinds of equation of

states, Fig.(6.1), Fig.(6.2), and Fig.(6.3) show that monotonically decreasing density,

radial pressure, and tangential pressure from the centre to the surface of the star.

Additionally, the density, radial pressure, and tangential pressure at the centre are

positive. Fig.(6.2) shows that the radial pressure disappears at the star’s boundary,

at R = 9.1 km for all types of equation of state.

6.5.1 Energy Condition

The most crucial requirement for our model is to be a physically plausible, i.e. strong

energy condition (SEC).

SEC : ρ− pr − 2p⊥ ≥ 0. (6.45)

Table(6.2) shows the values of ρ− pr − 2p⊥ at a centre as well as the surface of the

star.

6.5.2 Causality and Stability Conditions

(i) Causality Condition:

The causality condition demands that 0 ≤ dpr
dρ

≤ 1 and 0 ≤ dp⊥
dρ

≤ 1 at all interior
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points of the star. Fig.(6.4) and Fig.(6.5) demonstrate that all equation of state

models satisfy the causality criterion because the square of the radial and tangential

sound speeds obeys the condition throughout the star’s interior. For the compact

star 4U 1820-30, the values of the dpr
dρ
, dp⊥

dρ
at the centre and surface are provided

in Table (6.4). For the stability of a star it is required to satisfy the condition

−1 ≤ dp⊥
dρ

− dpr
dρ

≤ 1. Abreu et. al. [1] have demonstrated that the ratio of variations

in anisotropy to energy density for some specific dependent perturbations may be

explained in terms of the difference in sound speeds. i.e. δ∆
δρ

∼ dp⊥
dρ

− dpr
dρ
, and for

physically reasonable models |dp⊥
dρ

− dpr
dρ
| ≤ 1, implies that the magnitude of perturba-

tions in anisotropy should always be smaller than those in density (i.e.|δ∆| ≤ |δρ|).

According to research by Abreu et. al. [1], a criterion based on the dp⊥
dρ

− dpr
dρ

can

be used to evaluate the relative magnitude of density and anisotropy perturbations

and to assess the stability of bounded distributions that may cause instabilities that

cause the configuration to crack, collapse, or expand. Fig.(6.10) shows that for the

models with linear, quadratic, and CFL equations of states, the condition is satisfied

everywhere in the interior of the stars. According to the theorem used by Ratanpal

[161], if 8π
√
3S = pr−p⊥ is a decreasing function of r, then the stellar configuration

is potentially stable. It has been observed that the stellar models with linear and

quadratic equation of state are potentially stable as the work of Nasheeha et. al.

[137]. The models with Chaplygin equation of state are potentially unstable as in

the work of Nasheeha et. al. [137]. However, stellar model with CFL equation of

state are potentially stable in our case and potentially unstable in work of Nasheeha

et. al. [137]. Further the stellar models with polytropic equation of state are po-

tentially unstable in our case and potentially stable in work of Nasheeha et. al.

[137].

(ii) Relativistic Adiabatic Index:
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The adiabatic index which is defined as

Γ =

(
ρ+ pr
pr

)
dpr
dρ

, (6.46)

is related to the stability of a relativistic anisotropic stellar configuration. If the

adiabatic index, which physically describes the stiffness of the equation of state for

a given density, is larger than 4/3, then any star configuration will continue to be

stable. The first person to look at this was Chandrasekhar [35], who used equation

(6.46) to show that, in the context of general relativity, the Newtonian lower limit

4
3
has a large impact. Later, a number of researchers including Heintzmann and

Hillebrandt [71], Hillebrandt and Steinmetz [79], Barreto et. al. [10], Chan et. al.

[32], Doneva and Yazadjiev [51], Moustakidis [135] investigated the adiabatic index

within a dynamically stable stellar system in the presence of an infinitesimal radial

adiabatic perturbation. We have graphically depicted the nature of the relativistic

adiabatic index variation for the quadratic, linear, polytropic, Chaplygin, and CFL

equation of state in Fig.(6.8). Inside the stellar interior, the profile is monotonically

increasing and greater than 4/3 everywhere. The value of the adiabatic Index is

shown in Table (6.2).

6.5.3 Gravitational Redshift

The gravitational redshift zG should be monotonically decreasing towards the bound-

ary of the star. The central redshift zG and boundary redshift zG must be positive

and finite. That is,

zG =

√
1

eν
− 1. (6.47)

For the compact star 4U 1820-30, the values of the gravitational redshift at the

centre and surface are provided in Table (6.2).
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6.5.4 Stability under Three Forces

Three forces, including gravitational force (Fg), hydrostatic force (Fh), and anisotropy

force (Fa), can be used to confirm the static equilibrium of a star model. In the

interior of the star, the sum of these forces must be zero.

Fg + Fh + Fa = 0, (6.48)

which is formulated from the Tolman-Oppenheimer-Volkoff (TOV) equation

−MG(r)(ρ+ pr)

r2
e(λ−ν)/2 − dpr

dr
+

2

r
(p⊥ − pr) = 0, (6.49)

where the effective gravitational mass MG(r) is given by

MG(r) =
1

2
r2e

(ν−λ)
2 ν ′, (6.50)

from the equation (6.48),(6.49) and (6.50), it can be written

Fg = −ν ′

2
(ρ+ pr),

Fh = −dpr
dr

,

Fa =
2

r
(p⊥ − pr).

Fig.(6.11), Fig.(6.12), Fig.(6.13), Fig.(6.14), and Fig.(6.15) show, the hydrostatic

balance behaviour of anisotropic fluid spheres for models created with quadratic,

linear, and CFL equation of states respectively. It is obvious from the graphs that

Fh, Fa, and Fg maintain the system’s equilibrium in all cases. In this way, a positive

anisotropy factor (∆) brings a repulsive force into the arrangement that works to

balance the gravitational gradient created by gravitational force Fg. The gravita-
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tional collapse of the structure onto a point singularity is prevented by the existence

of this anisotropic force repulsive in nature.
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Figure 6.1: Variation of density against radial variable r.
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Figure 6.2: Variation of radial pressures against radial variable r.

6.6 Discussion

It is observed that the work of Nasheeha et. al. [137] does not give the exact solution

for all equations of state linear, quadratic, polytrope, Chaplygin, and color-flavor-

locked for metric potential grr = 1+ar2

1+(a−b)r2
in the case of a = b. We develop new
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Figure 6.3: Variation of tangential pressures against radial variable r
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Figure 6.4: Variation of dpr
dρ

against radial variable r.

models for anisotropic stars using a generalized version of the nonlinear barotropic

equation of state with a specific gravitational potential grr = 1+ ar2. A generalized

form of equation of state of the kind pr = τρ(1+
1
p
) + ηρ − ω helped us to solve the

Einstein’s field equations to describe static spherically symmetric anisotropic stars.

By fixing the parameters involved in the equation of state, we then extracted models

with different types of equations of state, including linear, quadratic, polytrope,

Chaplygin, and color-flavor-locked. By fixing the radius R = 9.1 km and mass

M = 1.58M⊙ in analogy with the strange star candidate 4U 1820-30, the physical
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Figure 6.5: Variation of dp⊥
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against radial variable r.
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Figure 6.6: Variation of anisotropy against radial variable r.

accuracy of the generated models was evaluated.

In Fig. (6.1) we have shown the variation of density for the star 4U 1820-30. It

is clear from the graph that the density is decreasing throughout the distribution.

In Fig.(6.2) and Fig.(6.3), we have shown the variation of radial and tangential

pressure throughout the star. It can be seen that both pressures are decreasing

radially outward. For all varieties of the equation of state, the tangential pressure

is not zero at the surface while the radial pressure vanishes at the surface. In

Fig.(6.4) and Fig.(6.5), we have displayed the variation of dpr
dρ

and dp⊥
dρ

against r.
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Figure 6.7: Variation of strong energy condition against radial variable r.
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Figure 6.8: Variation of adiabatic Index against radial variable r.

Both quantities satisfy the restriction 0 < dpr
dρ

< 1 and 0 < dp⊥
dρ

< 1 indicating that

the square of sound speed is less than the speed of light throughout the star.

The variation of anisotropy is shown in Fig.(6.6). According to the theorem used

by Ratanpal [161], if 8π
√
3S = pr − p⊥ is a decreasing function of r, then the stellar

configuration is potentially stable. It has been observed that the stellar models

with linear, quadratic and CFL equation of state are potentially stable in our case

according to Fig.(6.6). It can be noticed that anisotropy vanishes at the centre and

decreases towards the boundary for quadratic, linear, and CFL equation of states.
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Figure 6.9: Variation of Gravitational redshift against radial variable r.
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Figure 6.10: The causality condition with respect to the radial coordinate r.

Fig.(6.7) indicates that the strong energy condition ρ − pr − 2p⊥ > 0 is satisfied

througout the distribution. For a relativistic equilibrium model of a compact star

is stable model, the adiabatic index Γ = ρ+pr
pr

dpr
dρ

> 4
3
throughout the distribution.

Fig.(6.8) indicates that the condition Γ > 4
3
is satisfied for the star 4U 1820-30. For

a relativistic star, it is expected that the redshift must be decreasing towards the

boundary and finite throughout the distribution. Fig.(6.9) shows that gravitational

redshift is decreasing throughout the star under consideration . Fig.(6.10) shows that

dp⊥
dρ

− dpr
dρ

is negative throughout the star for Quadratic, Linear and CFL equation

of state. Fig.(6.11), Fig.(6.12), Fig.(6.13), Fig.(6.14), Fig.(6.15) shows the graphical
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Figure 6.11: Variation of three forces (QoS) like Gravitational
Force(Blue),Hydrostatic Force(Orange) and Anisotropic Force(Green) with
respect to the radial coordinate r.

representation of three distinct forces for all equation of state linear, quadratic,

polytrope, Chaplygin, and color-flavor-locked for the compact star 4U1820-30. The

developed model can be used to study and compare the effect of the equation of

states with different metric potentials.
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Figure 6.12: Variation of three forces (LoS) like Gravitational
Force(Blue),Hydrostatic Force(Orange) and Anisotropic Force(Green) with
respect to the radial coordinate r.
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Figure 6.13: Variation of three forces (PoS) like Gravitational
Force(Blue),Hydrostatic Force(Orange) and Anisotropic Force(Green) with
respect to the radial coordinate r.
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Figure 6.14: Variation of three forces (CoS) like Gravitational
Force(Blue),Hydrostatic Force(Orange) and Anisotropic Force(Green) with
respect to the radial coordinate r.
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Figure 6.15: Variation of three forces (CFL) like Gravitational
Force(Blue),Hydrostatic Force(Orange) and Anisotropic Force(Green) with
respect to the radial coordinate r.
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