List of Figures | 2.1 | Variation of density against radial variable r | 31 | |------|---|----| | 2.2 | Variation of radial pressures against radial variable r | 31 | | 2.3 | Variation of tangential pressures against radial variable r | 32 | | 2.4 | Variation of $\frac{dp_r}{d\rho}$ against radial variable r | 32 | | 2.5 | Variation of $\frac{dp_{\perp}}{d\rho}$ against radial variable r | 33 | | 2.6 | Variation of anisotropy against radial variable r | 33 | | 2.7 | Variation of strong energy condition against radial variable r | 34 | | 2.8 | Variation of adiabatic Index against radial variable r | 34 | | 2.9 | Variation of gravitational redshift against radial variable r | 35 | | 2.10 | Variation of a stability expression $\left(\frac{dp_{\perp}}{d\rho} - \frac{dp_r}{d\rho}\right)$ with respect to a radial coordinate r | 35 | | 2.11 | Variation of three forces like Gravitational Force(Blue), Hydrostatic Force(Orange) and Anisotropic Force(Green) | 36 | | 3.1 | Variation of density (ρ) in MeV F m^{-3} with respect to a radial coordinate r for a star PSR J1903+327 within the range $[0,9.438]$ kms for different values of n | 49 | | 3.2 | Variation of radial pressures (p_r) in MeV F m^{-3} with respect to a radial coordinate r for a star PSR J1903+327 within the range $[0,9.438]$ kms for different values of n | 50 | | 3.3 | Variation of tangential pressures (p_{\perp}) in MeV F m^{-3} with respect to a radial coordinate r for a star PSR J1903+327 within the range [0,9.438] kms for different values of n | 51 | | 3.4 | Variation of radial sound speed $\frac{dp_r}{d\rho}$ with respect to a radial coordinate r for a star PSR J1903+327 within the range [0,9.438] kms for | | | 3.5 | different values of n | 51 | | | for different values of n | 52 | | 3.6 | Variation of anisotropy $(8\pi\sqrt{3}S)$ in MeV F m^{-3} with respect to a radial coordinate r for a star PSR J1903+327 within the range [0,9.438] kms for different values of n | 52 | |------|---|--------| | 3.7 | Variation of strong energy conditions $(\rho - p_r - 2p_\perp)$ in MeV Fm ⁻³ with respect to a radial coordinate r for a star PSR J1903+327 within | 52 | | | the range [0,9.438] kms for different values of n | 53 | | 3.8 | Variation of Adiabatic Index (Γ) with respect to a radial coordinate r for a star PSR J1903+327 within the range [0,9.438] kms for different | | | 2.0 | values of n | 53 | | 3.9 | Variation of Gravitational Redshift (Z_G) with respect to a radial coordinate r for a star PSR J1903+327 within the range $[0,9.438]$ kms for different values of n | 54 | | 3.10 | Variation of a stability expression $\left(\frac{dp_{\perp}}{d\rho} - \frac{dp_r}{d\rho}\right)$ with respect to a radial | 0.1 | | | coordinate r for a star PSR J1903+327 within the range $[0,9.438]$ kms for different values of n | 54 | | 3.11 | Variation of three forces Gravitational Force(Blue), Hydrostatic Force(On | range) | | | and Anisotropic Force(Green) for the compact star PSR J1903+327. | 55 | | 4.1 | Variation of density (ρ) against the radial parameter r | 70 | | 4.2 | Variation of radial pressures (p_r) against the radial parameter r | 71 | | 4.3 | Variation of tangential pressures (p_{\perp}) against the radial parameter r . | 71 | | 4.4 | Variation of $\frac{dp_r}{d\rho}$ against the radial parameter r | 72 | | 4.5 | Variation of $\frac{dp_{\perp}}{d\rho}$ against the radial parameter r | 72 | | 4.6 | Variation of anisotropy $(p_r - p_\perp)$ against the radial parameter r | 73 | | 4.7 | Variation of strong energy condition $(\rho - p_r - 2p_{\perp})$ against the radial | | | | parameter r | 73 | | 4.8 | Variation of adiabatic Index against radial variable r | 74 | | 4.9 | Variation of gravitational redshift against radial variable r | 74 | | | Variation of a stability expression $\left(\frac{dp_{\perp}}{d\rho} - \frac{dp_r}{d\rho}\right)$ with respect to a radial coordinate r | 74 | | 4.11 | Variation of three forces like Gravitational Force(Blue), Hydrostatic Force(Orange) and Anisotropic Force(Green) for 4U1820-30 star | 75 | | 4.12 | Variation of a mass M with a radius R for various stars. $\ \ldots \ \ldots \ \ldots$ | 75 | | 5.1 | Variation of density against radial variable r | 89 | | 5.2 | Variation of radial pressures against radial variable r | 90 | | 5.3 | Variation of tangential pressures against radial variable r | 91 | | 5.4 | Variation of $\frac{dp_r}{d\rho}$ against radial variable r | 91 | | 5.5 | Variation of $\frac{dp_{\perp}}{dp_{\perp}}$ against radial variable r | 92 | | 5.6 | Variation of anisotropy against radial variable r | 92 | |------|--|-----------| | 5.7 | Variation of strong energy condition against radial variable $r.$ | 93 | | 5.8 | Variation of adiabatic Index against radial variable r | 93 | | 5.9 | Variation of gravitational redshift against radial variable r | 93 | | 5.10 | Variation of a stability expression $\left(\frac{dp_{\perp}}{d\rho} - \frac{dp_r}{d\rho}\right)$ with respect to a radial coordinate r | 94 | | | Variation of three forces like Gravitational Force
(Blue), Hydrostatic Force
(Orange) and Anisotropic Force
(Green) for the value $\alpha=0.07$. | 94 | | | Variation of three forces like Gravitational Force
(Blue), Hydrostatic Force
(Orange) and Anisotropic Force
(Green) for the value $\alpha=0.15$. | 94 | | 5.13 | The relation between the pressure p_r and density ρ is plotted for the compact star | 95 | | 6.1 | Variation of density against radial variable r | 116 | | 6.2 | Variation of radial pressures against radial variable r | 116 | | 6.3 | Variation of tangential pressures against radial variable r | 117 | | 6.4 | Variation of $\frac{dp_r}{d\rho}$ against radial variable r | 117 | | 6.5 | Variation of $\frac{dp_{\perp}}{d\rho}$ against radial variable r | | | 6.6 | Variation of anisotropy against radial variable r | | | 6.7 | Variation of strong energy condition against radial variable r | 119 | | 6.8 | Variation of adiabatic Index against radial variable r | 119 | | 6.9 | Variation of Gravitational redshift against radial variable r | 120 | | 6.10 | The causality condition with respect to the radial coordinate r | 120 | | 6.11 | Variation of three forces (QoS) like Gravitational Force(Blue), Hydrostatic Force(Orange) and Anisotropic Force(Green) with respect to the radial coordinate r | с
121 | | 6.12 | Variation of three forces (LoS) like Gravitational Force(Blue), Hydrostatic Force(Orange) and Anisotropic Force(Green) with respect to the radial coordinate r | | | 6.13 | Variation of three forces (PoS) like Gravitational Force(Blue), Hydrostati Force(Orange) and Anisotropic Force(Green) with respect to the radial coordinate r | c | | 6.14 | Variation of three forces (CoS) like Gravitational Force(Blue), Hydrostatic Force(Orange) and Anisotropic Force(Green) with respect to the radial coordinate r | | | 6.15 | Variation of three forces (CFL) like Gravitational Force(Blue), Hydrostat Force(Orange) and Anisotropic Force(Green) with respect to the radial coordinate r | ic
193 |