
Chapter 2

Compact Relativistic Stars under

Karmarkar Condition

A class of new solutions for Einstein’s field equations, by choosing the ansatz eλ(r) =

1+k r2

R2

1+ r2

R2

for metric potential grr, are obtained under Karmarkar condition. It is found

that several pulsars like 4U 1820-30, PSR J1903+327, 4U 1608-52, Vela X-1, PSR

J1614-2230, Cen X-3 can be accommodated in this model. We have displayed the

nature of physical parameters and energy conditions throughout the distribution

using numerical and graphical methods for a particular pulsar 4U 1820-30 and found

that the solution satisfies all physical requirements.

2.1 Introduction

Ever since Schwarzschild [169] obtained the first solution of Einstein’s field equations,

a plethora of exact solutions are available at present, in literature. The interest in

the study of anisotropic distributions has started with theoretical investigations of

Ruderman [168] and Canuto [31] regarding the anisotropic nature of matter distri-

bution in ultra-high densities. The impact of anisotropy on an equilibrium of stellar
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configuration can be seen in the pioneering work of Bowers and Liang [28]. Herrera

and Santos [76] have studied matter distributions incorporating anisotropy in pres-

sure. A class of anisotropic solutions of spherically symmetric distribution of matter

has been studied by Mak and Harko [121]. Maharaj and Chaisi [123] have shown

a procedure to generate anisotropic solutions from known isotropic solutions. The

impact of shear and electromagnetic field on stellar configuration has been studied

by Sharma and Maharaj [178].

A number of researchers have worked on spacetimes whose physical space obtained

by considering t-sections has a definite geometry. Vaidya and Tikekar [211] have

studied spherical distributions of matter on spacetime whose physical space has 3-

spheroidal geometry. Charged analog of this metric has been studied by Patel and

Koppar [153]. Tikekar and Patel [201] have obtained models of non-adiabatic grav-

itationally collapsing models with radial heat flux on the background of spheroidal

spacetime. The impact of anisotropy on Vaidya and Tikekar [211] model has been

studied by karmakar et. al. [87].

Tikekar and Thomas [203] have studied relativistic models of stars on the background

of pseudo-spheroidal spacetime and have shown that it can be used to describe

equilibrium models of superdense stars. It has further shown that these models

are stable under radial modes of pulsation. Non-adiabatic gravitational collapse

of spherical stars incorporating radial heat flux has been studied by Thomas and

Ratanpal [197] on the background of pseudo-spheroidal spacetime. Chattopadhyay

and Paul [36] have obtained the higher dimensional analog of pseudo-spheroidal

stellar models of Tikekar and Thomas [204]. Ratanpal et. al. [158] have studied

the spherical distribution of matter by choosing a specific form for radial pressure

on pseudo-spheroidal spacetime. Ratanpal et. al. [159] have studied anisotropic

models of superdense stars on the background of pseudo-spheroidal spacetime.
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Another useful and geometrically significant spacetime widely used by researchers is

the paraboloidal spacetime studied by Tikeker and Jotania [206]. Tikeker and Jota-

nia [207] have used this spacetime to obtain core-envelope models of superdense stars.

Anisotropic models of stars on paraboloidal spacetime admitting quadratic equation

of state have been studied by Sharma and Ratanpal [179]. A new anisotropic solu-

tions of a relativistic star on paraboloidal spacetime have been obtained by Ratan-

pal et. al. [160]. Thomas and Pandya [200] have obtained anisotropic compact star

models with linear equation of state on the background of paraboloidal spacetime.

The embedding problems are geometrically significant in the general theory of rel-

ativity. Nash [138] proposed the first isometric embedding theorem. The condition

for embedding 4-dimensional spacetime in 5-dimensional Euclidean space was de-

rived by Karmarkar [86]. Such spacetimes are usually referred to as spacetimes of

class I. The Karmarkar condition is given by

R1414R2323 = R1212R3434 +R1224R1334, (2.1)

Pandey and Sharma [148] have found that for spherically symmetric spacetime met-

ric to be of class-I, it is further required that R2323 ̸= 0 in (2.1). Relativistic models

of stars satisfying Karmarkar’s condition have been extensively studied by Maurya

et. al. ([100], [102],[103], [104], [105], [106], [112], [113]), Maurya and Govender[107],

Bhar et. al. [16], Tello-Ortiz et. al. [187], Singh et. al. ([174], [175]).

In this article we have studied solutions of Einstein’s field equations satisfying Kar-

markar condition (2.1) by choosing the metric potential the ansatz eλ(r) = 1+ar2

1+br2
.

If a = − k
R2 and b = − 1

R2 , the metric in Schwarzschild coordinates represents the

spheroidal spacetime metric proposed by Vaidya and Tikekar [211]. If a = k
R2 and

b = 1
R2 , the spacetime metric reduces to pseudo-spheroidal spacetime metric consid-

ered by Tikekar and Thomas [203]. If we take b = 0 and a = 1
R2 , the spacetime metric
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reduces to the paraboloidal spacetime metric discussed by Tikekar and Jotania [206].

Pant et. al. [147] considered a = − K
R2 and b = − 1

R2 which represents spheroidal

spacetime metric and studied Vaidya-Tikekar solution under Karmarkar condition.

Pandya and Thomas [150] considered a = 1
R2 and b = 0 that represents paraboloidal

spacetime metric and studied models of compact stars on paraboloidal spacetime sat-

isfying Karmarkar condition. We have studied compact stars on pseudo-spheroidal

spacetime by considering positive values of a and b namely a = K
R2 and b = 1

R2 and

obtained restrictions on a and b using the physical acceptability conditions.

2.2 Einstein’s Field Equations and Karmarkar Con-

dition

We consider the interior spacetime metric for static spherically symmetric fluid dis-

tribution as

ds2 = eν(r)dt2 − eλ(r)dr2 − r2
(
dθ2 + sin2 θdϕ2

)
, (2.2)

with energy-momentum tensor

Tij = (ρ+ p)uiuj − pgij + πij, uiui = 1, (2.3)

where ρ and p represent density and isotropic fluid pressure respectively, ui is the

unit four-velocity and anisotropic stress tensor πij is given by Maharaj and Maartens

[122]

πij =
√
3S[cicj −

1

3
(uiuj − gij)], (2.4)

where S = S(r) denotes the magnitude of anisotropy and ci = (0,−eλ/2, 0, 0) denotes

radially directed vector. The non-vanishing components of the energy-momentum
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tensor are given by

T 0
0 = ρ, T 1

1 = −
(
p+

2S√
3

)
, T 2

2 = T 3
3 = −

(
p− S√

3

)
. (2.5)

We shall denote

pr = p+
2S√
3

p⊥ = p− S√
3
, (2.6)

and hence magnitude of anisotropy is given by

S =
pr − p⊥√

3
. (2.7)

The Einstein’s field equations, for spacetime metric (2.2) with energy-momentum

tensor (2.3), are given by

8πρ =
e−λλ′

r
+

1− e−λ

r2
, (2.8)

8πpr =
e−λν ′

r
+

e−λ − 1

r2
, (2.9)

8πp⊥ = e−λ

(
ν

′′

2
+

ν2

4
− ν ′λ′

4
+

ν ′ − λ′

2r

)
. (2.10)

The spacetime metric (2.2) is said to be of class-I type if it satisfies the Karmarkar

condition (2.1). The components of Riemann curvature tensor Rijkl for spacetime

metric (2.2) are given by

R2323 = r2sin2θ
(
1− e−λ

)
,

R1212 =
1

2
rλ

′
,

R2424 =
1

2
rν

′
eνe−λ,
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R1224 = 0,

R1414 = eν(
ν ′′

2
+

ν ′2

4
− λ′ν ′

4
),

R3434 = R2424sin
2θ.

The Karmarkar condition (2.1) now takes the form

ν
′′

ν ′ +
ν

′

2
=

λ
′
eλ

2 (eλ − 1)
. (2.11)

The general solution of equation (2.11) is given by

eν =

[
A+B

∫ √
(eλ(r) − 1)dr

]2
, (2.12)

where A and B are constants of integration and eλ(r) ̸= 1. Using (2.9), (2.10), (2.12)

in (2.7), the magnitude of anisotropy can be expressed in the form (Maurya et.

al.[104])

8π
√
3S = −ν ′e−λ

4

[
2

r
− λ

′

eλ − 1

] [
ν ′eν

2rB2
− 1

]
. (2.13)

In the case of isotropic distribution of matter, we have S = 0 which leads to either

2
r
− λ′

eλ−1
= 0 or ν′eν

2rB2 − 1 = 0. The former case leads to Schwarzschild [169] exterior

solution and the latter gives the solution given by Kohler and Chao [92].
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2.3 Anisotropic Solution under Karmarkar Con-

dition

The explicit expression for the potential ν can be obtained by choosing appropriate

form for λ. We choose eλ in the form

eλ =
1 + ar2

1 + br2
, (2.14)

where a and b are constants.

We shall assume here, that both a and b are not equal to zero. Substitution (2.14)

in (2.12), gives eν in the form

eν =

(
A+B

√
a− b

√
1 + br2

b

)2

. (2.15)

The spacetime metric (2.2) now takes the explicit form

ds2 =

[
A+B

√
a− b

√
1 + br2

b

]2
dt2−

(
1 + ar2

1 + br2

)
dr2−r2

(
dθ2 + sin2 θdϕ2

)
. (2.16)

The expressions of matter density, radial pressure, and tangential pressure are given

by

8πρ =
(a− b)(3 + ar2)

(1 + ar2)2
, (2.17)

8πpr =
Ab(b− a) +B

√
a− b

√
1 + br2(3b− a)

(1 + ar2)(Ab+B
√
a− b

√
1 + br2)

, (2.18)

8πp⊥ =

√
a− b[−Ab

√
a− b+B

√
1 + br2(3b− a+ abr2)]

(1 + ar2)2(Ab+B
√
a− b

√
1 + br2)

. (2.19)
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The hydrostatic equilibrium equation for the matter under consideration can be

written as

dpr
dr

+ (ρ+ pr)

(
m+ 4πr3pr
r(r − 2m)

)
− 2

r
(p⊥ − pr) = 0, (2.20)

in the case of isotropic pressure distribution (p⊥ − pr), equation (2.20) takes the

form of Tolman-Oppenheimer-Volkov (TOV) equation. The difference p⊥ − pr in

equation (2.20) represents the force due to pressure anisotropy, which is directed

inward if p⊥ < pr and outward if p⊥ > pr.

The spacetime metric (2.16) should match continuously with Schwarzschild exte-

rior metric

ds2 =

(
1− 2M

r

)
dt2 −

(
1− 2M

r

)−1

dr2 − r2(dθ2 + sin2θdϕ2), (2.21)

at the boundary of the star r = R. It leads to the following equations

1− 2M

R
=

1 + bR2

1 + aR2
, (2.22)

√
1− 2M

R
= A+B

√
a− b

√
1 + bR2

b
. (2.23)

Further, the boundary condition Pr (r = R) = 0 gives

Ab
√
a− b = B

√
1 + bR2 (3b− a) . (2.24)

Equations (2.22), (2.23) and (2.24) determine the constants A, B and the total mass

enclosed inside the radius R as

A =
(3b− a)

√
1 + bR2

2b
√
1 + aR2

, (2.25)
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B =

√
a− b

2
√
1 + ar2

, (2.26)

M =
(a− b)R3

2 (1 + aR2)
. (2.27)

Equations (2.17) through (2.19) now take the form

8πρ =
(a− b)(3 + ar2)

(1 + ar2)2
, (2.28)

pr =
(3b− a) (b− a)

1 + ar2

[ √
1 + bR2 −

√
1 + br2

(3b− a)
√
1 + bR2 − (b− a)

√
1 + br2

]
, (2.29)

p⊥ =
−(a− b)[3b(1 + br2 −

√
1 + br2

√
1 + bR2) + a(−1 + b2r4 +

√
1 + br2

√
1 + bR2)]

(1 + ar2)2
√
1 + br2[b(

√
1 + br2 − 3

√
1 + bR2) + a(−

√
1 + br2 +

√
1 + bR2)]

.

(2.30)

The expression for anisotropy (2.13) can be explicitly written as

8π
√
3S =

a(a− b)r2[a(1 + br2 −
√
1 + br2

√
1 + bR2) + b(−2− 2br2 + 3

√
1 + br2

√
1 + bR2)]

(1 + ar2)2
√
1 + br2[b(

√
1 + br2 − 3

√
1 + bR2) + a(−

√
1 + br2 +

√
1 + bR2)]

.

(2.31)

It can be noticed that the anisotropy of the distribution is zero at the centre of the

star.

2.4 Physical Plausibility Conditions

A physically acceptable stellar model should comply with the following conditions

throughout its region of validity.

(i) ρ(r) ≥ 0, pr(r) ≥ 0, p⊥(r) ≥ 0, for 0 ≤ r ≤ R

(ii) dρ
dr

≤ 0, dpr
dr

≤ 0, dp⊥
dr

≤ 0, for 0 ≤ r ≤ R

(iii) 0 ≤ dpr
dρ

≤ 1 , 0 ≤ dp⊥
dρ

≤ 1, for 0 ≤ r ≤ R

(iv) ρ− pr − 2p⊥ ≥ 0, for 0 ≤ r ≤ R

(v) Γ > 4
3
, for 0 ≤ r ≤ R
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Table 2.1: Estimated values of physical parameters based on the observational data

STAR M R ρc ρR u(= M
R
)

(M⊙) (Km) (MeV fm−3) (MeV fm−3)

4U 1820-30 1.25 9.1 804.032 309.128 0.137
PSR J1903+327 1.35 9.438 804.032 293.779 0.142
4U 1608-52 1.31 9.31 804.032 299.495 0.140
Vela X-1 1.38 9.56 804.032 288.439 0.144
PSR J1614-2230 1.42 9.69 804.032 282.863 0.146
Cen X-3 1.27 9.178 804.032 305.513 0.138

2.4.1 Positive Definiteness of Density and Pressure

We shall use the above conditions to find the bounds on the model parameters a

and b. Density ρ is positive and decreasing throughout the distribution if a > b. The

radial pressure pr is positive and decreasing throughout the distribution if a ≤ 4
R2

and a > 3b, the tangential pressure p⊥ is positive and decreasing throughout the

distribution if 0.2749
R2 < a < 4

R2 .

2.4.2 Subluminal Sound Speed and Energy Conditions

The radial sound speed condition 0 < (dpr
dρ
)r=0 < 1 impose the restrictions 0 < a ≤

2.7847
R2 and 0 < (dpr

dρ
)r=R < 1 impose the restrictions 0 < a ≤ 5.4721

R2 and a > 5.4721
R2 .

Combining these restrictions, it shows that 0 < a ≤ 2.7847
R2 . The tangential sound

speed condition 0 < (dp⊥
dρ

)r=0 < 1 impose the restrictions 0.4384
R2 < a ≤ 2.705

R2 and

0 < (dp⊥
dρ

)r=R < 1 impose the restrictions 0.2749
R2 < a ≤ 4

R2 ,
4
R2 < a ≤ 7

R2 , a > 7
R2 .

combining this restrictions, It shows that 0.4384
R2 < a ≤ 2.705

R2 . The strong energy

condition ρ− pr − 2p⊥ ≥ 0 is satisfied if 0 < a ≤ 2
R2 and a > b.
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2.4.3 Stability Criteria

The adiabatic index Γ > 4
3
if a ≤ 0.8202

R2 . Thus the conditions (i) through (v) are

satisfied if

0.4384

R2
< a ≤ 0.8202

R2
, a > 3b. (2.32)

We shall examine the viability of the present model to represent some well-known

pulsars whose mass and size are known.
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Figure 2.1: Variation of density against radial variable r.
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Figure 2.2: Variation of radial pressures against radial variable r.
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Figure 2.3: Variation of tangential pressures against radial variable r

0 2 4 6 8

0.082

0.084

0.086

0.088

0.090

0.092

r (Km)

dp
r

dρ

Figure 2.4: Variation of dpr
dρ

against radial variable r.

2.5 Discussion

We have used the present model to a large variety of compact stars like 4U 1820-30,

PSR J1903+327, 4U 1608-52, Vela X-1, PSR J1614-2230, Cen X-3, whose masses

and radii are known Gangopadhyay et. al. [61]. The central and surface densities

are calculated and displayed in Table (2.1) along with the compactification factor u.

Due to the complexity of expressions involved, it is difficult to examine the physical

acceptability conditions analytically. Hence we have adopted the graphical method.

In order to examine the nature of physical quantities throughout the distribution,
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Figure 2.5: Variation of dp⊥
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against radial variable r.
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Figure 2.6: Variation of anisotropy against radial variable r.

we have considered the pulsar 4U 1820-30 whose estimated mass is M = 1.25 M⊙

and radius R = 9.1 km. The conditions (2.32) now take the form

0.0053 < a ≤ 0.0099, a > 3b. (2.33)

We have taken the value of a as the upper bound 0.0099, b = 0.001 and examined

the physical, energy, and stability conditions of the pulsar throughout its region of

validity.

In Fig. (2.1) we have shown the variation of density for 0 ≤ r ≤ 9.1. It is clear from
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Figure 2.7: Variation of strong energy condition against radial variable r.
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Figure 2.8: Variation of adiabatic Index against radial variable r.

the graph that the density is a decreasing function of r. In Fig.(2.2) and Fig.(2.3)

we have shown the variation of radial and tangential pressure throughout the star.

It can be seen that both pressures are decreasing radially outwards. In Fig.(2.4) and

Fig.(2.5) we have displayed the variation of dpr
dρ

and dp⊥
dρ

against r. Both quantities

satisfy the restriction 0 < dpr
dρ

< 1 and 0 < dp⊥
dρ

< 1 indicating that the sound speed

is less than the speed of light throughout the star.

The variation of anisotropy is shown in Fig.(2.6). It can be noticed that anisotropy

vanishes at the centre and decreases towards the boundary. Fig.(2.7) indicates that
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Figure 2.9: Variation of gravitational redshift against radial variable r.
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Figure 2.10: Variation of a stability expression (dp⊥
dρ

− dpr
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) with respect to a radial

coordinate r.

the strong energy condition ρ− pr − 2p⊥ > 0 is satisfied througout the distribution.

So that a relativistic equilibrium model of a compact star to be stable model, the

adiabatic index Γ = ρ+pr
pr

dpr
dρ

> 4
3
throughout the distribution. Fig.(2.8) indicates

that the condition Γ > 4
3
is satisfied in the region 0 ≤ r ≤ 9.1. For a relativistic

star, it is expected that the redshift must be decreasing towards the boundary and

finite throughout the distribution. Fig.(2.9) shows that gravitational redshift is

decreasing throughout the star under consideration. Fig.(2.10) shows that dp⊥
dρ

− dpr
dρ

is negative throughout the star. Fig.(2.11) shows the graphical representation of
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Figure 2.11: Variation of three forces like Gravitational Force(Blue), Hydrostatic
Force(Orange) and Anisotropic Force(Green).

three distinct forces for the compact star 4U1820-30. According to the graphs, The

gravitational force is a net negative force that predominates in nature. Hydrostatic

and anisotropic forces work together to balance this force and keep the system in

equilibrium.

It has been concluded that a large number of pulsars with known masses and radii

can be accommodated under a model having pseudo-spheroidal geometry satisfying

the Karmarkar condition.
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