List of Figures

Figure 1.1 Principal alloying element in aluminium alloys and designation ^[2] 1
Figure 1.2 Application of aluminium alloys on the Boeing 777 ^[6] 2
Figure 1.3 Major high-strength aluminium alloy ranking ^[7] 2
Figure 1.4 Spectrum of aluminium alloys used in space applications. Practically, every grade
of wrought aluminium alloy is used for various applications based on its characteristics. The
age-hardenable aluminium alloys of 2XXX are used for earth-storable and cryogenic
propellant tanks, 6XXX alloys for water tanks of liquid engines, and 7XXX series are used
for engine components and heat shields. Aluminium alloy castings are used in liquid engines
^[12]
Figure 1.5 Curiosity rover wheels of 7075-T7351; a) on the ground, b) under operation
conditions on Mars ^[13]
Figure 1.6 Structure of the thesis
Figure 2.1 Characteristics of Al7075-T6 with rating A= Excellent, B= Good, C= Fair, and
D= Poor ^[42]
Figure 2.2 Microstructural changes during hot stamping of heat-treatable alloy sheet ^[49] 8
Figure 2.3 Isothermal section of the ternary phase diagram of Al-Cu-Zn at 350 °C with Al-
Cu, Al-Zn, and Cu-Zn binary phase diagrams ^[73] 11
Figure 2.4 Solvus of the (Al) phase and three-phase equilibrium (Al) + θ + τ at different
temperatures [°C] ^[74]
Figure 2.5 Calculated vertical section of the Al-Zn-Mg-Cu phase diagram for (a) Al-10.5Zn-
2.2Mg-xCu, (b) Al-11Zn-2.2Mg-xCu, (c) Al-12Zn-2.2Mg-xCu ^[4]
Figure 2.6 Polythermal section of Al-4% Zn-1.5% Mg-Cu ^[82]
Figure 2.7 Projection of liquidus surface in the aluminium corner of (a) Al-Cu-Zn system;
T–Al ₃ Cu ₃ Zn ₂ , ϵ –CuZn ₅ ; and δ –a solid solution based on AlCu, (b) Al-Mg-Zn system ^[83] ,
and (c) Al-Zn-Mg (red line shows Al-5.1Zn-1.9Mg) ^[84] 14
Figure 2.8 Vertical section ternary phase diagram of Al-Zn-Mg at 5.3 at.% [86]
Figure 2.9 Aluminium-rich corner of Al-Zn-Mg-Cu phase diagram ^[64, 88] 16
Figure 2.10 Aspect of 3D view of Al-Cu-Zn-Mg phase diagram with compositional ranges
of phases ^[66, 89]
Figure 2.11 Calculated TTT, and CCT curve for 7075 (start temperature = 475 °C) by
JMatPro ^[92]

Figure 2.12 List of different reinforcement, modifier, macro and micro-alloying elements,
and hybrid reinforcement in 7075 aluminium alloy ^[10]
Figure 2.13 Several ways to change the segregation pattern/morphology of cast Al 7075
microstructure
Figure 2.14 Effect of solidification stages on the solidified microstructure [124]21
Figure 2.15 Schematic illustration of different treatments applied to alter the segregation
pattern ^[15, 19, 34, 40, 61–64, 126]
Figure 2.16 Percentage utilization of grain refiners and modifiers in Al 7075 ^[160] 24
Figure 2.17 Schematic illustration of Ti in Al-xTi and formation of Al ₃ (Ti, Zr) $^{[27]}$
Figure 2.18 Strength of Al 7075/xTiO ₂ (x= 0, 1, 3, 5, 7, 9) ^[188]
Figure 2.19 Micrographs of as-cast Al 7075/xSr (x = a. 0, b. 0.05, c. 0.1, d. 0.2 wt.%) before
T6 treatment ^[189]
Figure 2.20 Micrographs of homogenized at 460 $^{\circ}\mathrm{C}$ for 6 h, and extruded at 460 $^{\circ}\mathrm{C}$, followed
by T6 treatment ^[189]
Figure 2.21 SEM images of Al 7055/Y-xSc (x = a. 0, b. 0.2, c. 0.25, d. 0.3, e. 0.35) ^[191] . 31
Figure 2.22 Average grain size variation AA7075 before and after nano-treating by TiC ^[184] .
Figure 2.23 Mechanical properties of Al 7075/ZrO ₂ ; a) UTS and YS, b) % Elongation $^{[203]}$.
Figure 2.24 Mechanical properties of TiC and red mud added Al 7075 before and after HT
[204]
Figure 2.25 Machanical properties and grain size relation of $A1.7075/7r(0, 0.20 \text{ wt} \%)$
Figure 2.25 Mechanical properties, and grain size relation of Al $7075/21$ (0 – 0.50 wt.%)
[205]
^[205]

Figure 2.45 Temperature gradient, solute distribution for cellular growth ^[243]
Figure 2.46 A decanted interface of a cellular solidified Pb-Sn alloy (x 120) ^[244] (a), and
Longitudinal view of cells in carbon tetra-bromide (x 100) ^[245] (b)
Figure 2.47 Solute profile and temperature gradient illustrating cellular segregation with
eutectic cell walls where less segregation at the tip, and higher segregation at the lateral
lower side between the cell walls ^[229]
Figure 2.48 Cellular dendrites, dendritic arms in {100} planes (a), growth of dendrites are
independent of its adjacent ^[230, 234]
Figure 2.49 Cellular dendrite grows opposite to the heat extraction (a), and a combination of
free dendrites and cellular dendrite in microstructure (b) ^[226]
Figure 2.50 (a) Shrinkage can occur between the dendrite arms. (b) Small secondary dendrite
arm spacing results in smaller, more evenly distributed shrinkage porosity. (c) Short primary
arms can help avoid shrinkage. (d) Inter-dendritic shrinkage in an aluminium alloy (X 80)
Figure 2.51 Schematic illustration of solidification shrinkase, thermal contraction, and linear
Figure 2.51 Schematic mustration of solidification shrinkage, thermatic intraction, and intear $[252]$ (c). Solidification behavioural characteristic noints in the solidification renorm
(1-6) and aritical fraction related to be to ensure (right) (b) [18]
Figure 2.52 Costing process permeters, arein refiner(modifiers, and swerching modio
somelation between structure and accreation noticers, and quenching media
correlation between structure and segregation pattern. 55
Figure 2.53 Microstructures of as-cast material (a) with a low level of magnification, (b)
with a high level of magnification and EDS results of the intermetallic phases, (c) Mg $(ZnCuAl)_2$ and (d) Al ₂ Cu ^[254] 56
Figure 2.54 Optical micrograph of homogenised alloy at 465 °C for (a) 15 min. (b) 6 h. (c)
12 h, (d) 24 h, (e) 48 h, and (f) 96 h $^{[254]}$
Figure 2.55 The aluminum-rich end of the aluminum-copper phase diagram showing the
three steps in the age-hardening heat treatment (above), and the effect of slow cooling and
rapid cooling on the microstructure ^[219]
Figure 2.56 Tempers' designations for aluminium alloys ^[257]
Figure 2.57 Difference between GP-I and GP-II (above), and GP zone morphology in
different aluminium alloys (below) ^[259, 260]
Figure 2.58 Schematic illustration of solute segregation at grain boundaries during GP zone
and PFZ formation of ageing treatment ^[221]
Figure 2.59 (a) Effect of ageing time on strength (solid line) and particle size (dashed line)

during the thermal ageing process ^[261] , (b) Precipitation hardening mechanisms with each
successive stage in the strength-time graph ^[261] , and (c) dislocation hindrance by solution
hardening (I), work hardening (II), and precipitation hardening with Friedel cutting (Soft
ppt.) & Orowan looping (hard ppt.) ^[263]
Figure 2.60 Illustration of the distribution of precipitates in the matrix and their morphology
for greater strengthening effect: (a) hard and discontinuous precipitates with continuous and
soft matrix, (b) precipitates particles should be round, (c) precipitates should be small and
many, and (d) large amount of precipitates ^[219]
Figure 2.61 (a) Solidification curve for Al 6061, (b) generalised solidification curve for alloy ^[282]
Figure 2.62 Variation of undercooling with alteration in the thermal gradient, showing
different grain morphology ^[37]
Figure 2.63 Microstructures of the material after sand and permanent casting ^[283]
Figure 2.64 Metal-mould reaction (a) schematic representation grain formation in shell
mould, (b) fine grain structure as metal-mould interface (c) EDX graph representing metal-
mould reactions and (d) formation of intermetallic phases due to metal-mould reactions ^[284] .
Figure 2.65 Strength spectrum of aluminium alloys ^[77]
Figure 3.1 Plan of experimental work: Phase I & II with modifiers addition (right side), and
Phase III, IV, and V without modifiers (left side)70
Figure 3.2 Raw material for the experiment (Al7075-T6)
Figure 3.3 Experimental set-up for melting Al7075 (left), and metallic die with dimensions
to pour liquid melt71
Figure 3.4 Schematic of metallic die (right), and solidified casting in the die (left)
Figure 3.5 Process flow diagram for Phase I
Figure 3.6 Process flow for Phase II73
Figure 3.7 Schematic diagram of quenching of cast Al 7075 during solidification with
different quenching conditions: a) ice, b) hot water for 30 min, and c) hot water until cooled
down
Figure 3.8 Process flow for Phase III
Figure 3.9 Double-step ageing cycle for oxide-added cast Al 707574
Figure 3.10 Process flow of Phase IV
Figure 3.11 Schematic illustration of casting techniques: a) gravity die casting, b) sand

casting and c) investment casting75
Figure 3.12 Process adopted to develop cast Al 7075
Figure 3.13 Olympus GX41 metallurgical microscope
Figure 3.14 Analytical scanning electron microscope (JEOL JSM 9600F)
Figure 3.15 XRD analysis Malvern PANanalytical X'Pert Pro machine
Figure 3.16 (a) Brinell hardness tester, (b) micro-hardness tester (Omnitech MVH-S Auto).
Figure 3.17 Tensile testing specimen as per ASTM E8M
Figure 3.18 Table top tensometer for tensile testing ("MONSANTO" make Tensometer20)
with specimen holder for round samples and %RA & %EL. Gauges
Figure 3.19 Pin-on-disc wear testing machine DUCOM make model: TR-20E-PHM-300.
Figure 3.20 (a) Pin-on-disc wear testing specimen as per ASTM G99, b) counterformal
contact of sliding wear
Figure 4.1 SEM images and particle size measurement of oxide powder a) ZrO ₂ Powder; b)
scaling of ZrO ₂ powder; c) TiO ₂ powder; d) scaling of TiO ₂ powder; e) ZrTiO ₄ powder; f)
scaling of ZrTiO ₄
Figure 4.2 Optical microstructure of Al7075; (a) as-cast; and 2.5 wt.% added (b) ZrO ₂ ; (c)
TiO ₂ ; (d) ZrTiO ₄
Figure 4.3 SEM photographs of (a) as-cast Al7075; (b to f) ZrO ₂ -added Al7075; (g) TiO ₂ -
added Al7075; (h) ZrTiO ₄ added Al7075
Figure 4.4 XRD patterns of Al7075 systems; A) as-cast; B) ZrO ₂ ; C) TiO ₂ ; and D) ZrTiO ₄ .
Figure 4.5 Grain size measurement of Al7075; (a) as-cast; and 2.5 wt.% added (b) ZrO_2 ; (c)
TiO ₂ ; (d) ZrTiO ₄
Figure 4.6 Grain area measurement of Al7075; (a) as-cast; and 2.5 wt.% added (b) ZrO ₂ ; (c)
TiO ₂ ; (d) ZrTiO ₄
Figure 4.7 Graphical presentation of mechanical properties of Al 7075; as-cast, and 2.5 wt.%
added oxides
Figure 4.8 The plot of micro-hardness of as-cast, and oxide-added Al 7075 versus grain size
D ⁻¹ / ₂
Figure 4.9 Micrograph of natural ageing of oxide added Al 7075 (a) as-cast, and 2.5 wt.%
added (b) ZrO ₂ ; (c) TiO ₂ ; (d) ZrTiO ₄ 94

Figure 4 10 As-cast Al 7075 SEM-EDS area mapping
Figure 4.11 SEM-EDS area mapping of ZrO ₂ added A17075.
Figure 4.12 SEM-EDS area mapping of TiO ₂ added A1 7075
Figure 4.13 SEM-EDS area mapping of $ZrTiO_4$ added Al 7075
Figure 4.14 BSE as-cast sample showing IDC (inter-dendritic channel) of 7055 with EDS
analysis ^[300]
Figure 4.15 Optical micrographs of cast Al 7075 (a) as-cast, (b) ice quench, c) hot water fo
30 min, and d) hot water until cooled down
Figure 4.16 Micrographs of natural ageing of Al 7075 a) as-cast, b) ice quench, c) hot wate
for 30 min, and d) hot water until cooled down
Figure 4.17 Elemental mapped EDS layered images of Al 7075: a) as-cast, b) ice, c) H30
and d) HTC
Figure 4.18 Graphical presentation of as-cast and quenched Al 7075
Figure 4.19 XRD plot for as-cast, ice, H30, and HTC quenched Al 7075
Figure 4.20 Grain size measurement of Al7075; (a) as-cast; and quenched (b) ICE; (c) H30
(d) HTC
Figure 4.21 Grain area measurement of Al7075; (a) as-cast; and quenched (b) ICE; (c) H30
(d) HTC
Figure 4.22 Double-step ageing cycle for oxide-added cast Al 7075
Figure 4.23 Binary phase diagram of Al-Zn for a temperature range of solution treatmen
and precipitation treatment ^[305]
Figure 4.24 Optical micrographs of oxide-added cast Al 7075 of as-cast, ZrO ₂ -added, TiO ₂
added, and ZrTiO ₄ -added before heat treatment (a-d) and after heat treatment (e-h)
respectively
Figure 4.25 Elemental mapping of as-cast and oxide added Al 7075 (a-d) before double-step
ageing, and (e-h) after double-step ageing11
Figure 4.26 XRD analysis of as-cast and oxide added Al 7075 before ageing treatment. 112
Figure 4.27 XRD analysis of as-cast, oxide added Al 7075 after ageing treatment 114
Figure 4.28 Grain size measurement of as-cast and oxide added Al 7075 110
Figure 4.29 Grain area measurement of as-cast and oxide added A17075
Figure 4.30 Wear analysis of as-cast, 2.5 wt.% ZrO ₂ added and 2.5wt.% TiO ₂ added Al707.
at 500, 700, and 1000 rpm at 10, 20, 30, and 50 N applied loads, respectively
Figure 4.31 Surface Morphology of wear samples of Al 7075 at 1000 rpm at 10 N load a

as-cast, c) ZrO_2 added Al7075, and e) TiO_2 added Al7075; at 50 N load, b) as-cast, d) ZrO_2
added Al7075, and f) TiO ₂ added Al7075120
Figure 4.32 Optical micrographs of different casting techniques of cast Al 7075; a) gravity
die casting, b) sand casting, and c) investment casting; natural ageing for 2 years (d-f),
respectively
Figure 4.33 SEM and Elemental mapping of as-cast Al 7075 by sand casting technique. 123
Figure 4.34 SEM and Elemental mapping of as-cast Al 7075 by investment casting
technique
Figure 4.35 Raw materials and their form used to develop Al 7075
Figure 4.36 Optical micrographs of Al 7075; a) developed cast 7075, b) cast 7075 from
wrought, and c) wrought 7075126
Figure 4.37 Elemental mapping of developed Al 7075 126