Synopsis

of

The Thesis Entitled

Synthesis and Applications of Oxygen/Nitrogen Containing Five/Six Membered Heterocyclic Compounds

To be submitted to M. S. University of Baroda

For the Degree

Of

DOCTOR OF PHILOSOPHY

In Chemistry

By

Ms. Jayashree V Patil

Under guidance of

Prof. Shubhangi S. Soman

Department of Chemistry,

Faculty of Science,

The M. S. University of Baroda

Vadodara- 390 002 (India)

January-2023

Synopsis

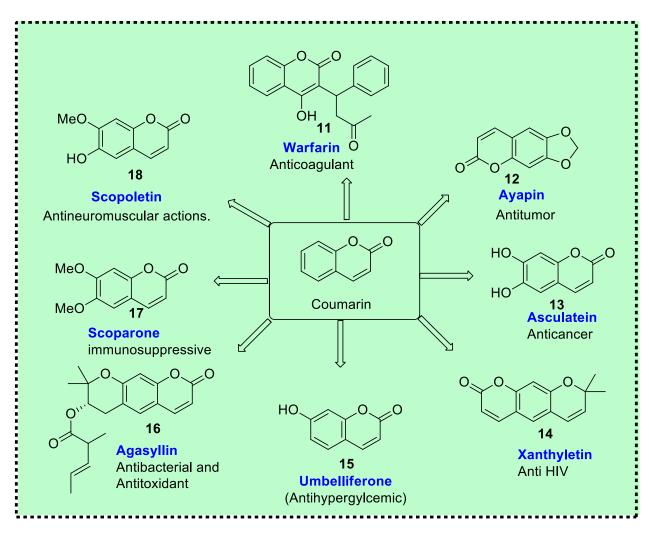
To be submitted to The Maharaja Sayajirao University of Baroda

For the degree of **DOCTOR OF PHILOSOPHY**

Name of the student	: Jayashree Vishvasrao Patil
Faculty	: Science
Subject	: Chemistry
Name of Guide	: Dr. Shubhangi S. Soman (M.Sc. PhD)
Title of the Thesis	: Synthesis and Applications of Oxygen/Nitrogen Containing Five/Six Membered
	Heterocyclic Compounds.
Registration Number	: FOS/2271
Date of Registration	: 16-02-2021
Place of Work	: Department of Chemistry, Faculty of Science,
	The M. S. University of Baroda
	Vadodara
	(Gujarat, India)

Contents	of	Thesis
----------	----	--------

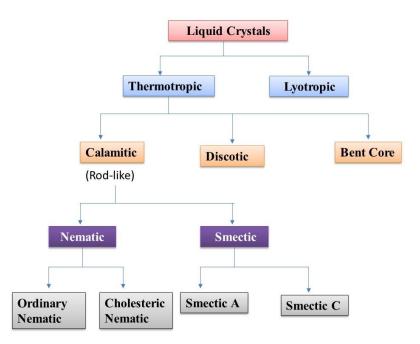
Declaration			Ι
Acknowledge	ments		II
Abbreviation	5		\mathbf{V}
Summary			i-viii
Chapter-1	Intro	duction to benzopyran derivatives and their applications	1-32
	1.1	Coumarin	1
	1.2	Benzofuran	11
	1.3	Pyrazolone	13
	1.4	Cancer	15
	1.5	Liquid Crystals	20
	1.6	References	28
Chapter-2	Desig	n, synthesis and anticancer activity of amide derivatives of	33-83
	subst	ituted 3-methyl benzofuran-2-carboxylic acid	
	2.1	Introduction	33
	2.2	Results and discussion	35
		2.2.1 Chemistry	35
		2.2.2 Biological evaluation	63
	2.3	DFT Study	69
	2.4	Conclusion	71
	2.5	Experimental	72
	2.6	Biological activity screening	79
	2.7	References	82
Chapter-3a	Desig	n and synthesis of pyrazolone derivatives of coumarin as	84-143
	antica	ancer agents	
	3a.1	Introduction	84
	3a.2	Results and discussion	85
		3a.2.1 Chemistry	85
		3a.2.2 Biological evaluation	120
	3a.3	DFT Study	124
	3a.4	Conclusion	127
	3a.5	Experimental	128
	3a.6	Biological activity screening	140
	3a.7	References	142
Chapter-3b	-	n and synthesis of piperazine derivatives of coumarin as	144-181
		ancer agents	
	3b.1	Introduction	144
	3b.2	Results and discussion	145


		3b.2.1 Chemistry	145
		3b.2.2 Biological evaluation	171
	3b.3	Conclusion	173
	3b.4	Experimental	174
	3b.5	Biological activity screening	180
	3b.6	References	181
Chapter-4	Desig	n of unsymmetric coumarin chalcone derivatives with	182-227
	tunal	ble self-assembling behavior	
	4.1	Introduction	182
	4.2	Result and discussion	184
		4a.2.1 Chemistry	184
		4a.2.2 Study of mesomorphic properties	205
	4.3	DFT calculations	210
	4.4	Conclusion	217
	4.5	Experimental	218
	4.6	References	226
Chapter-5	Syntl	nesis of Schiff base derivatives of 6-amino coumarin as	228-287
	meso	gens	
	5.1	Introduction	228
	5.2	Result and discussion	231
		5.2.1 Chemistry	231
		5.2.2 Study of mesomorphic properties	259
	5.3	DFT calculations	264
	5.4	Conclusion	276
	5.5	Experimental	277
	5.6	References	285
Appendix I		List of Conferences and Seminars attended	
Appendix II		Publications	

Contents of Executive Summary

Chapter-1	Introduction to benzopyran derivatives and their applications
Chapter-2	Design, synthesis and anticancer activity of amide derivatives of substituted 3-methyl benzofuran-2-carboxylic acid
Chapter-3	3a) Design and synthesis of pyrazolone derivatives of coumarin as anticancer Agents
	3b) Design and synthesis of piperazine derivatives of coumarin as anticancer Agents
Chapter-4	Design of unsymmetric coumarin chalcone derivatives with tunable self- assembling behavior
Chapter-5	Synthesis of Schiff base derivatives of 6-amino coumarin as mesogens
Bibliography	and Webliography

Chapter-1: Introduction to benzopyran derivatives and their applications


Coumarin- (2H-chromen-2-one) is an oxygen containing heterocyclic organic compound in the benzopyrone chemical class, which is a colourless crystalline substance in standard state. It is found naturally in many plants families having fragrance. Coumarin was first isolated by Vogel in 1820 from Tonka beans. Coumarins belong to the benzopyrone family commonly found in many medicinal plants. Natural coumarins demonstrated a wide spectrum of pharmacological activities, including anti-inflammatory, anticoagulant, anticancer, antibacterial, antimalarial, antifungal, antiviral, Alzheimer's disease inhibition, neuroprotective, anticonvulsant, phytoalexins, ulcerogenic, and antihypertensive. There are very few studies on the bioavailability of coumarins On the evidence of varied pharmacological properties, the present work presents an overall review of the derivation, availability, and biological capacities of coumarins with further consideration of the essential mode of their therapeutic actions. In conclusion, a wide variety of coumarins are available, and their pharmacological activities are of current interest thanks to their synthetic accessibility and riches in medicinal plants. Coumarins perform the valuable function as therapeutic agents in a range of medical fields.

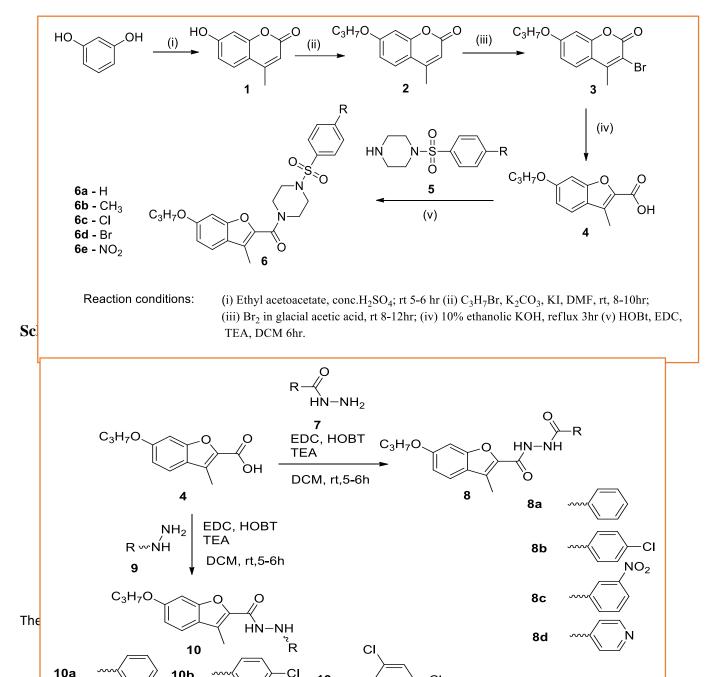
Apart from this biological applications coumarins have been used in a wide range of applications, such as dye-sensitised solar cells, laser dyes and optical sensors. Coumarin derivatives have been explored in field of fluorescence materials, laser dyes, nonlinear optical materials, photorefractive materials. In coumarin compounds, the studied properties are fluorescence, colouring agents, liquid crystalline and gelation behaviour in water and organic solvents. These properties received special attention because they are considered as promising candidates for the next generation of materials, due to their dynamic response, environmental compatibility and low energy processing.

Mesogenic Behaviour of Coumarin -

Liquid Crystal- Liquid crystal is a delicate state of matter that exist between crystalline solid and amorphous liquids.

Most liquid crystals are thermotropic; their degree of orientational and positional order depends on temperature and so their liquid crystalline phase occurs within a limited temperature range between the solid and liquid phase. Calamitic liquid crystals are characterized by their elongated, rod-like shape, and composed of three main structural elements: rigid ring systems, connective linkage groups, and flexible terminal groups.

Objectives of Work:


- ✤ To design and synthesize benzofuran carboxamide derivatives.
- To design and synthesize pyrazolones derivatives of 7-amino-4-methyl coumarin and 6aminocoumarin.
- ✤ To design and synthesize 6-aminocoumarins combined them with phenyl sulphonyl piperazine and phenyl piperazines.
- Anticancer activity of all synthesized compounds by using MTT assay.to screen the most active compound and study Ethidium Bromide/Acridine Orange staining assay, LDH assay.
- ✤ To explore coumarin as a liquid crystal design and synthesis of coumarin based unsymmetric chalcone derivatives and schiff base derivatives of coumarin
- ✤ To characterize all the compounds with spectral techniques.
- ◆ To study all compounds for its mesomorpic properties and DFT study.

Chapter 2: Design, synthesis and anticancer activity of amide derivatives of substituted 3-methyl benzofuran-2-carboxylic acid

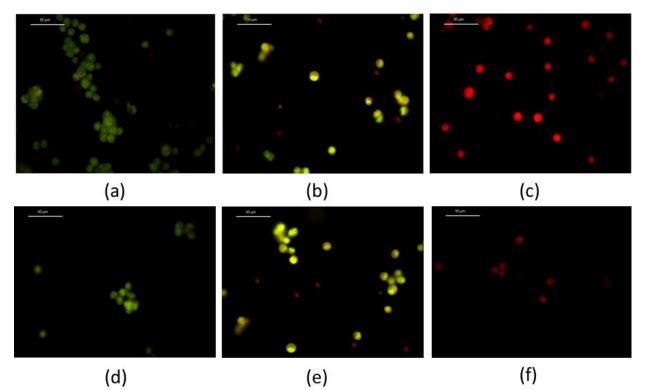
Research Methodology

We have designed and synthesized amide derivatives of substituted 3-methyl-benzofuran-2carboxylic acid with aryl sulfonamide piperazines, aryl hydrazides and aryl hydrazines. All the synthesized compounds were screened for their anticancer activity against lungs cancer cell line(A549) and breast cancer cell line (MCF7) using MTT assay. Compound **8b** showed excellent activity against lungs cancer cell line (A549) with IC₅₀ value of 0.858 μ M and compound **6d** showed good activity against breast cancer cell line (MCF7) with IC₅₀ value of 2.07 μ M. Hence, compounds 10d and 12b were studied further for their mechanism of cytotoxicity by using EtBr/AO and LDH assay in respective cell lines. The cytostatic potential of compound **6d** and **8b** was uncurtail by Trypan blue exclusion assay and active involvement of ROS was quantified using DCFH-DA dye. The drug-likeliness and toxicity predictions were done using in-silico-based SwissADME and ProTox-II webserver, which confirmed negligible toxicity (Class IV)

Scheme-1

All synthesized compounds are characterized by ¹HNMR, ¹³CNMR, IR and Mass. Compounds screen for their anticancer activity against- 1) A549-Lung cancer cell line 2) MCF-7 Breast cancer cell line

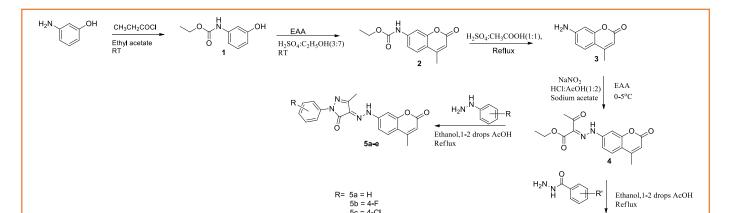
Key Findings:

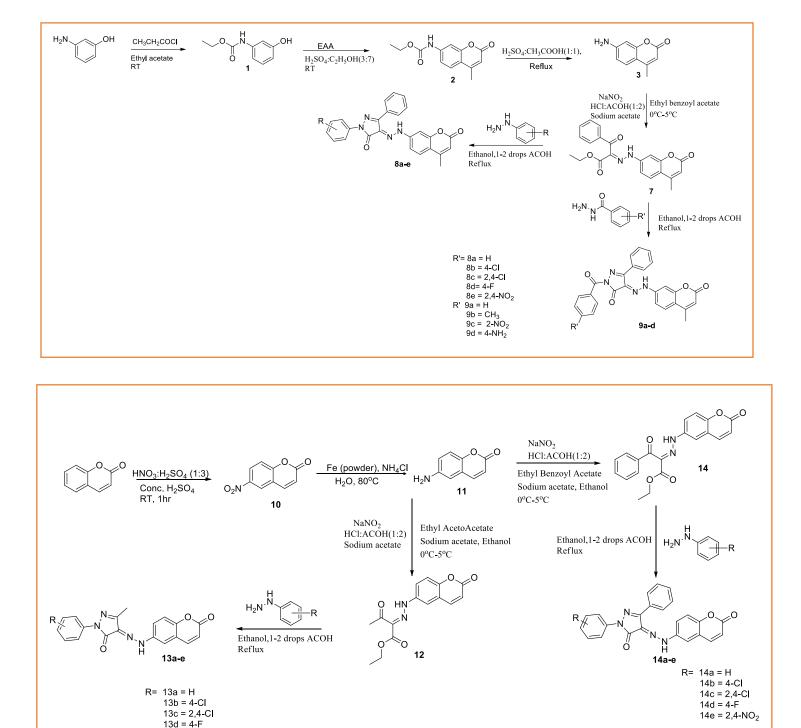

Table 1: Anticancer activity against A549 (Lungs cancer cell line), MCF-7 (Breast cancer cellline) for compounds 6a-e, 8a-d and 10a-c.

C	$IC_{50} \ \mu M^a$	
Compound	A549	MCF7
6a	16.77±.034	10.22±.045
6b	$3.08 \pm .003$	4.9±.0239
6c	$8.97 {\pm} .092$	$2.74 \pm .026$
6d	$1.504 \pm .056$	2.07±0.65
6e	$1.04 \pm .006$	4.391±.032
8a	16.41±.401	13.45±.25
8b	0.858±.0049	7.756±1.03
8c	9.07±0.21	$7.49 \pm .042$
8d	22.61±.96	4.86±0.72
10a	3.66±.073	9.34±.019
10b	$1.822 \pm .029$	4.19±1.27
10c	1.86±.023	23.1±1.02
Fluorouracil	11.13 ±0.083	45.04 ±1.02

^aIC₅₀ values were determined based on MTT assay using GraphPad Prism software

Conclusion:


The cytotoxic studies of compound **8b** and **6d** have shown the apoptosis in both A549 and MCF-7 cell lines using LDH assay, Trypan blue assay and the EtBr/AO assay. The increased level of ROS concentration in compound **8b** and **6d** in A549 and MCF-7 cell line at IC₅₀ value confirmed apoptosis. The In-silico based ADME and toxicity study of **8b** and **6d** compounds indicated that both compounds showed drug-likeliness and can be studied further in detail as anticancer drug.


Chapter-3a: Design and synthesis of pyrazolone derivatives of coumarin as anticancer agents Research Methodology:

In this chapter Pyrazolone derivatives of 7-amino,4-methyl coumarin and 6-amino coumarin was synthesized for their anticancer activity. Characterizations of all synthesized compounds were carried out by ¹HNMR, ¹³CNMR, Mass and IR.

Scheme-1

Scheme-2

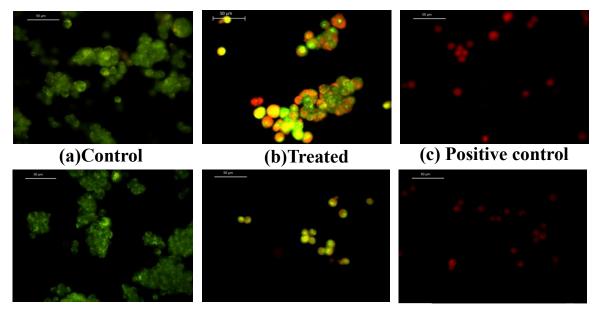
All synthesized compounds screen for their anticancer activity which are shown in table-1 with their IC_{50} value in micromolar concentration. It was observed that pyrazolone with phenyl group show improvement in the anticancer activity of the drug.

Key Findings:

Table 3a.1: Anticancer activity against A549 (Lungs cancer cell line), MCF-7 (Breast cancer cellline) for compounds 10a-c, 11a-d, 12 and 13

Common d	$IC_{50} \mu M^a$		
Compound	A549	MCF-7	
10a	141.7±2.4	86.9±6.08	
10b	2.32±0.06	18.6±0.08	
10c	1145±17.9	624.0±12.2	
11a	62.40±3.6	32.6±4.02	
11b	1.26 ± 0.005	5.9 ± 0.074	
11c	809.3±7.69	301.2±8.5	
11d	167.8±3.98	206.5±10.23	
12	382.0±12.1	417.5±13.2	
13	2.34±0.063	10.3±0.056	
Fluorouracil	11.13 ± 0.083	45.04 ± 1.02	

^aIC₅₀ values were determined based on MTT assay using GraphPad Prism software **Table 3a.2:** Anticancer activity against A549 (Lung cancer cell line), MCF-7 (Breast cancer cell

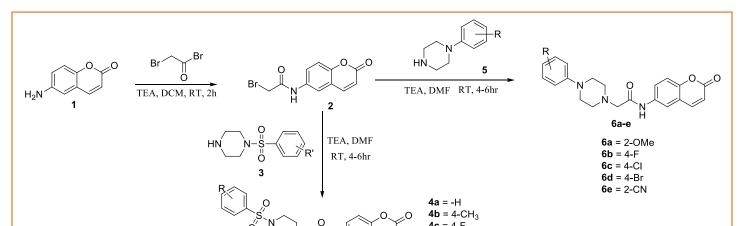

line) for compounds **17a-d** and **19a-d**

0	IC ₅₀ µM ^a	
Compound	A549	MCF-7
17a	1.44±0.068	9.14±0.98
17b	12.48±1.06	8.60 ± 0.056
17c	1.22±0.048	65.29±1.81

17d	34.34±1.67	59.60±3.8
19 a	4.11±0.048	2.21±0.014
19b	3.32±0.058	1.66±0.015
19c	6.10±0.050	14.00 ± 0.011
19d	2.20±0.053	19.76±0.089
Fluorouracil	11.13 ±0.083	45.04 ± 1.02

^aIC₅₀ values were determined based on MTT assay using GraphPad Prism software

Ethidium bromide and Acridine orange assay- Etbr/AO assay was carried out for most potent anticancer compounds shows apoptosis pathway



Chapter-36-Design and synthesis of piperazine derivatives of coumarin as anticancer agent

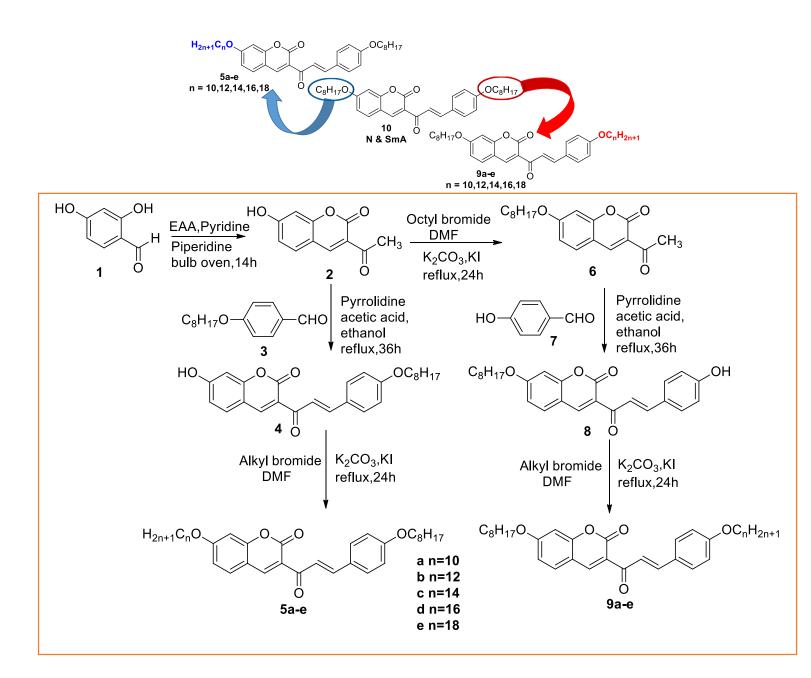
Research Methodology:

In this chapter design and synthesized amide derivatives of 6-aminocoumarin combined them with phenyl sulphonyl piperazines and phenyl piperazines to evaluate the anticancer activity of all synthesized compounds by using MTT assay.

Scheme:

Anticancer activity by using MTT assay against A549 (lung cancer cell line) and MCF-7 (breast cancer cell line)

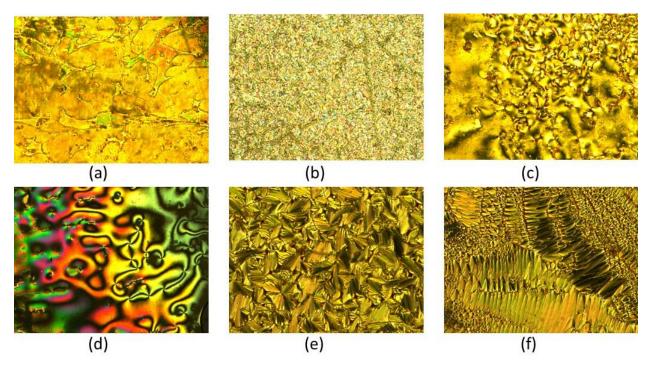
Key Findings:


Comp	R =	A549	MCF7
		$IC_{50}^{a}(\mu M^{a})$	$IC_{50}^{a}(\mu M^{a})$
4 a	Н	3.39±.15	8.14±.033
4 b	4-CH3	460±5.66	50.413±1.71
4c	4 -F	5.62±.053	338.1±2.52
4 d	4-Cl	2.06±.057	4.93±.029
4e	4 -Br	92.62±1.23	0.85±.03
4f	4-NO ₂	3.5±.045	3.95±.027

Comp	R'	A549	MCF7
		$IC_{50}^{\ a}(\mu M^{a})$	$IC_{50}^{a}(\mu M^{a})$
6a	4- F	7.74±0.038	4.74±0.042
6b	2-OMe	1.7±0.059	39.17±1.6
6c	4-Cl	0.4±0.032	0.51±0.031
6d	4-Br	5.04±0.071	11.43±0.014
6e	2-CN	14.5±0.12	11.15±0.019

Chapter-4 Design of Unsymmetric Coumarin Chalcone Derivatives with Tunable Self-Assembling Behavior

Research Methodology:


In this chapter design and synthesize coumarin based unsymmetric chalcone derivatives. To characterize all the compounds with spectral techniques. And study all compounds for its mesomorpic properties with differential scanning calorimetry and polarizing optical microscope DFT study of all synthesised compounds.

Key Findings:

Mesomorphic Study-

Further study of mesomorphic properties of all compounds by using by POM, confirmation of mesogens by using DSC and DFT calculation was carried out.

Liquid crystal phase transition (a) nematic marble for compound 5a on cooling (b) SmC broken fan texture 5d (c) nematic marble for compound 9a (d) nematic schlieren texture for compound 9c (e) SmA focal conic for compound 9d in cooling cycle (f) SmA focal conic for compound 9d in heating cycle

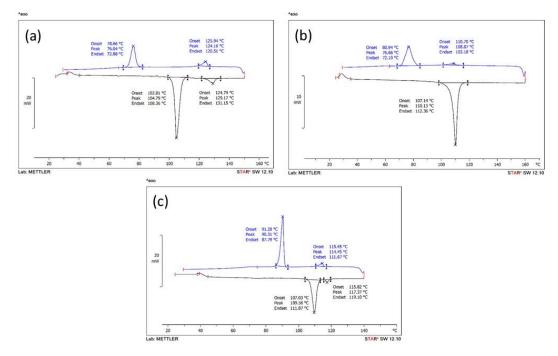


Figure 4: DSC plot in both heating and cooling cycles along with transition temperatures (a) compound 5d (b) compound 9a (c) compound 9d.

DFT Study-

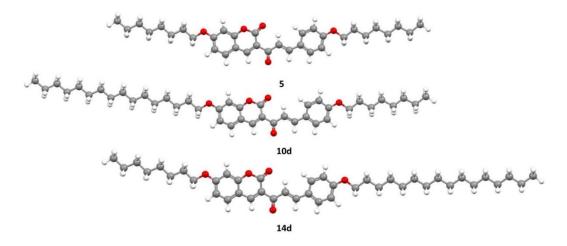
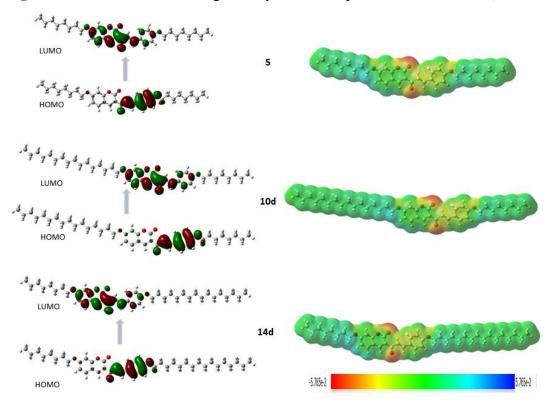
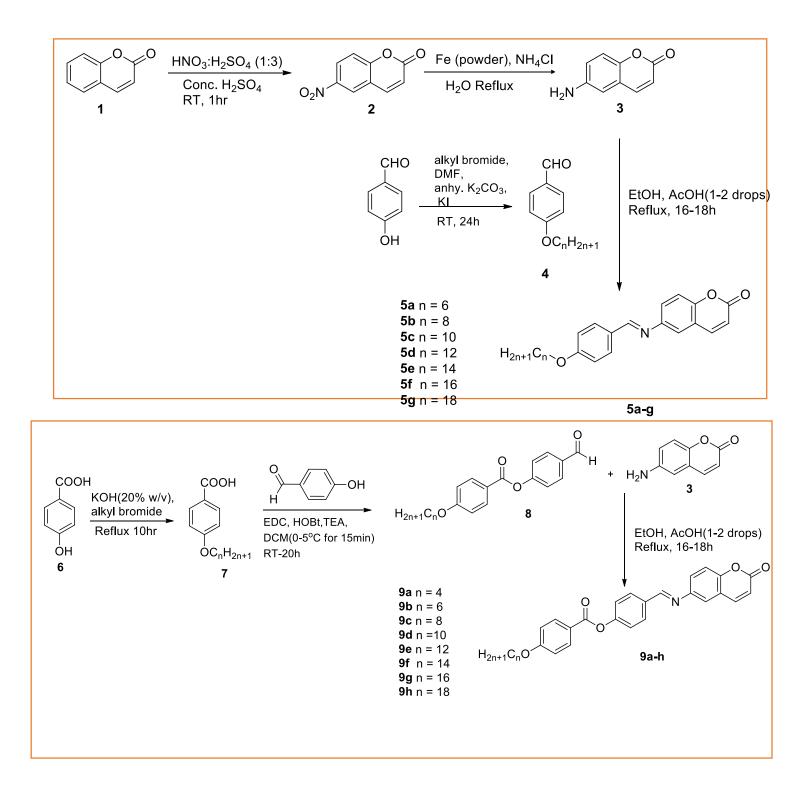
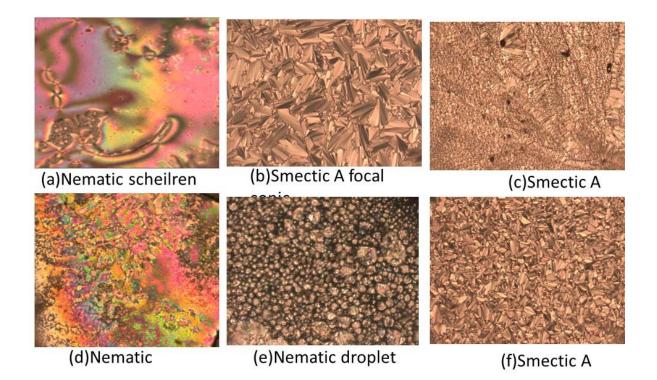




Figure 7: Calculated molecular geometry of the compounds 10, 5d and 9d (Colour online).


Figure 8: Frontier Molecular orbitals (FMOs) and Molecular electrostatic potentials (MEP) for the prepared compounds **5**, **10a-e** and **14a-e**.

Chapter-5: Synthesis of Schiff Base derivatives of 6-aminocoumarin as mesogens Research Methodology: Scheme-1

Key Findings:

Mesomorphic properties-

Liquid crystal phase transition (a) nematic marble for compound **5b** on cooling (b) SmC broken fan texture **5d** (c) smectic A for compound **9c** (d) nematic schlieren texture for compound **9c** (e) nematic droplet compound **9d** in cooling cycle (f) SmA focal conic for compound **9d** in heating cycle

DSC plots-

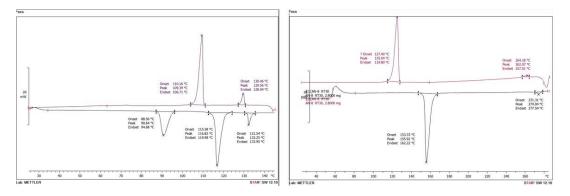


Figure 2: DSC plot in both heating and cooling cycles along with transition temperatures (a) compound 5d (b) compound 9c.

Powdered XRD and DFT study carried out for all synthesized compounds

Bibliography and Webliography -

[1] Khan, Z.; Bisen, P. S. Rev. Cancer, 2013, 1836 (1), 123–145.

- [2] Soni, J. N.; Soman, S. S. Eur. J. Med. Chem., 2014, 75, 77–81.
- [3] Kawasaki, K. ichi; Masubuchi, M.; Morikami, K.; Sogabe, S.; Aoyama, T.; Ebiike, H.; Niizuma, S.; Hayase, M.; Fujii, T.; Sakata Bioorganic Med. Chem. Lett., 2003, 13 (1), 87–91.
- [4] Yadav, P.; Singh, P.; Tewari, A. K. Design, Bioorganic Med. Chem. Lett., 2014, 24 (10), 2251–2255.
- [5] Chand, K.; Rajeshwari; Hiremathad, A.; Singh, M.; Santos, M. A.; Keri, R. S. A Pharmacol. Reports, 2017, 69 (2), 281–295.
- [6] Khanam, H.; Shamsuzzaman, Eur. J. Med. Chem., 2015, 97 (1), 483–504.
- [7] Li, X. Y.; He, B. F.; Luo, H. J.; Huang, N. Y.; Deng, W. Q, Bioorganic Med. Chem. Lett., 2013, 23 (16), 4617–4621.
- [8] Choi, M.; Jo, H.; Park, H. J.; Sateesh Kumar, A.; Lee, J.; Yun, J.; Kim, Y.; Han, S. B.; Jung, J. K.; Cho, J.; Bioorganic Med. Chem. Lett., 2015, 25 (12), 2545–2549.
- [9] Hranjec, M.; Sović, I.; Ratkaj, I.; Pavlović, G.; Ilić, N.; Valjalo, L.; Pavelić, K.; Kraljević Pavelić, S.; Karminski-Zamola, G. Eur. J. Med. Chem., 2013, 59, 111–119.
- [10] Xu, X. li; Yang, Y. rui; Mo, X. fei; Wei, J. lian; Zhang, X. jin; You, Q. dong. Eur. J. Med. Chem., 2017, 137, 45–62.
- [11] Al-Sanea, M. M.; Al-Ansary, G. H.; Elsayed, Z. M.; Maklad, R. M.; Elkaeed, E. B.; Abdelgawad, M. A.; Bukhari, S. N. A.; Abdel-Aziz, M. M.; Suliman, H.; Eldehna, Enzyme Inhib. Med. Chem., 2021, 36 (1), 987–999.
- [12] Karandikar, S.; Soni, R.; Soman, S. S.; Umar, S.; Suresh, B. Synth. Commun., 2018, 48 (22), 2877–2887.
- [13] Durgapal, S. D.; Soman, S. S. Synth. Commun., 2019, 49 (21), 2869–2883.
- [14] Trachootham, D.; Zhou, Y.; Zhang, H.; Demizu, Y.; Chen, Z.; Pelicano, H.; Chiao, P. J.; Achanta, G.; Arlinghaus, R. B.; Liu, J.; et al. Cancer Cell, 2006, 10 (3), 241–252.
- [15] Reinehr, R.; Becker, S.; Eberle, A.; Grether-Beck, S.; Häussinger, D. J. Biol. Chem., 2005, 280 (29), 27179–27194.
- [16] Ramsey, M. R.; Sharpless, Cell Biol., 2006, 8 (11), 1213–1215.
- [17] Sakkiah, S.; Lee, K. W. Acta Pharmacol. Sin., 2012, 33 (7), 964–978.
- [18] Drwal, M. N.; Banerjee, P.; Dunkel, M.; Wettig, M. R.; PreissnerNucleic Acids Res., 2014, 42 (W1), 3–8..
- [19] Hayakawa, I.; Shioya, R.; Agatsuma, T.; Furukawa, H.; Naruto, S.; Sugano, Y. Bioorganic Med. Chem. Lett., 2004, 14 (2), 455–458.
- [20] J.; Tang, X. M.; Liu, T. T.; Peng, F.; Zhou, Q.; Liu, L. W.; He, M.; Xue, W. Chem.Pap., 2021, 75 (3), 1021–1027.
- [21] R. Murray, J. Mendez, S. Brown, The Natural Coumarins: Occurrence, Chemistry, and Biochemistry, Wiley, New York, 1982.
- [22] B. B Raju; S. M Costa, Phys. Chem. 1999, 1, 5029–5034.
- [23] V. Kumar, A. Kumar, U. Diwan, K. K. Upadhyay, Dalton Trans. 42, 2013, 13078-13083
- [24] R. Dsouza, U. Pischel, W. Nau, Chem. Rev. 2011, 111, 7941–7980
- [25] S. Guha, S. Lohar, M. Bolte, D. Safin, D. Das 2012,45(3) 225-235
- [26] H. Chaudhari, A. Pahelkar, B. Takale, Tetrahedron Letters 58, 2017, 4107–4110
- [27] O. Kachkovski, O. Tolmachev, L. Kobryn, E. Bila, M. Ganushchak, Dyes and Pigments 63, 2004, 203–211
- [28] N. I Ganushchak, L.O Kobrin, E.E Bilaya, Russ J Org Chem 41, 2005, 1064–1070
- [29] O. Abd Allah and L. Nassr, 2015
- [30] S. Guha, S. Lohar, A Banerjee, A. Sahana, S. Mukhopadhyay, J. Matalobos, D. Das, Anal. Methods, 2012, 4, 3163
- [31] L. Wang, H. Li, D. Cao, Sensors and Actuators B 181, 2013, 749–755
- [32] K. Amin, A. Taha, R. George, N. Mohamed, F. Elsenduny, Arch Pharm Chem Life Sci. 2017;1– 18.

- [33] F. Küçükbay, H. Küçükbay, M. Tanc and C. Supuran, 2016, Journal of Enzyme Inhibition and Medicinal Chemistry, 31(6), 1198-1202
- [34] W. Mahmoud, Y. Nissan, M. Elsawah, R. Refaey, M. Ragab, K. Amin, European Journal of Medicinal Chemistry 182, 2019, 111651
- [35] M. Paul, Y. Singh, A. Dey, S. Saha, S. Anwar, A. Chattopadhyay (2016), Liquid Crystals, 43(3), 343-360

Ms. Jayashree V Patil

Research Scholar

an

Prof. Shubhangi S Soman

Research Supervisor

of. Shubhang' dessor	Coman ¹
sartment of C	(Y - 1
11 Univers 106: 1-390 00	-' Saroda
•	

er

Prof. A. V. Bedekar

Head

Department of Chemistry

HEAD Department of Chemissi, j Faculty of Science The Naharaja Sayajirao University of Barode Wedodara - 399002. Gujarat - INDIA

The M. S. University of Boroda

18