

ACKNOWLEDGMENT

A Journey is easier when you travel together. Interdependence is certainly more valuable than independence. The work on this thesis has been an inspiring, often exciting, sometimes challenging, but always interesting experience. It has been made possible by many other people, who have supported me. It is pleasant aspect that I have now the opportunity to express my gratitude for all of them.

I would like to express my sincere thanks to **'GOD'**, for the mercy and for allowing me to take a step ahead in my academic career. No words could adequately express my feelings and I shall ever remain thankful and indebted to the person who remained associated with me during the journey of my Ph.D. I could have never done this without the belief in you, The Almighty.

I would like to offer my sincere gratitude and deepest appreciation to my respectable and honourable guide **Dr. Pankaj R. Sharma** for his constant guidance and encouragement. There are no proper words to convey my deep gratitude and respect for my research advisor, he has inspired me to become an independent researcher and has helped me to realize the power of critical reasoning. I will always be grateful to him for the love, care, and concern he showered on me throughout my Ph.D.

I am also very grateful to **The Head** of the Department of Applied Chemistry, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda for giving me an opportunity to work in the Department and making all the facilities available for my research work.

Financial support in form of fellowship by the **SHODH-Scheme of Developing High quality research**, Education Department, Gujarat, India is gratefully acknowledged.

I would like to thank **Dr.Gaurav Dave**; Basic Science College, Dantiwada Agricultural University and **Mr. Nirav Joshi**; Food Science college, Dantiwada Agricultural University.

I wish to especially thank to my seniors Mr. Brijesh Patel, Mr. Hemil Patel, Mrs. Bhavita Mistry, Ms. Smita katariya, Mr. Srujal Sonera, Mr. Gaurang bhatt, Mr. Bharat Maru, Mrs. Urvi Lad, Ms. Darshna Hirapara; Research Student of Department of Applied Chemistry, Faculty of Technology and Engineering, The M. S. University of Baroda, Vadodara, for her help in the computational study.

I am deeply grateful to my lab colleagues Sagar Bairwa, Vikash Ganvit, Megha Rathwa, Vishwavjit Chavda, Komal Trivedi, Pratik Lakhani, Saurav Patel, Priyanka Mistry, Dixita Prajapati, Nidhi Prajapti for their help, co-operation, fruitful discussions and support during my Ph.D. work.

I extend my thanks to **The Dean; Dr. Dhanesh Patel** (Department of Applied Mathematics, Faculty of Technology and Engineerning, The Maharaja Sayajirao University of Baroda) and **Dr. B. S. Chakrabarty** (Department of Applied Physics, Faculty of Technology and Engineerning, The Maharaja Sayajirao University of Baroda), and **Mrs. Vaishali Suthar** (Department of Applied Chemistry ,Faculty of Technology and Engineerning, The Maharaja Sayajirao University of Baroda); who inspired me a lot for carrying out my research and me the path in Chemistry.

I would also like to extend my thanks to my hostel friends, **Sanjay Bambhaniya**, **Pravin Patil, Karan Joshi, Naresh Deghda, Vrajesh Bhagat** for making my hostel life memorable and for their support during my stay in Vadodara.

All professors and research colleagues of applied chemistry department are heartily acknowledged for their positive and negative criticisms which channelized my way throughout the work. I am also thankful to non-teaching staff, Applied Chemistry Department for their kind support.

Without any doubt, I am extremely indebted to my parents **Dr. Kalpesh P. Thakar** and **Mrs. Sonalben Thakar**, who has always been by my side through all ups and downs of my life and have constantly encouraged and staunchly supported me during the diverse times. Dear "Mom" and "Dad", it is hard to express my thanks to you in words. Your understanding, faith, advice, intellectual spirit and indescribable support to me throughout my life are invaluable. I am very grateful for your care, love, affection, and trust in me and further thank you for your constant interest and positive stimulation. I thank them for inculcating the values of education which, I think, makes me a better person and a better researcher.

Most importantly, my heartfelt thanks to my wife **Mrs. Ankita Thakar** for feel special in every stage of my life and stood behind me to boost up to achieve my target.

I want to express thanks to my sister **Mrs. Mosam Arpitkumar Jani** and my brother in law **Mr. Arpit M. Jani** for always encouraging me during the entire period of my study.

Mention above but nonetheless, have contributed to my research studies in one way or the other.

Above all, I have no words to thank the Almighty god for giving me inspiration and sustainable strength and easing my difficulties and opening the doors of success to contribute to society.

Finally, I would like to dedicate this thesis to my Grand Parents and wife.

-Mr. Meetkumar Kalpeshbhai Thakar

Contents		
CHAPTER NAME	PAGE NO.	
ABSTRACT OF THESIS	1	
CHAPTER 1: INTRODUCTION	2-40	
1.1: General Introduction	3	
1.1.1: Definition of toxic heavy metals impurities	8	
1.1.2: Health risks associated with Toxic Heavy Metals in pharmaceutical and food	9	
1.1.3: Sources and occurrence of toxic metals in pharmaceuticals and food products	13	
1.1.4: Drugs with Toxic Heavy Metals	15	
1.1.5: Specific Objectives	22	
1.2: Adsorption	23	
1.2.1: Exploring Adsorption in Chemistry: Unraveling the Past and	23	
Envisioning the Future		
1.2.2: Historical Evolution: Tracing the Path of Discovery	23	
1.2.3: Past Studies: Unveiling Molecular Interactions	24	
1.2.4: Future Prospects: Pioneering New Frontiers	25	
1.2.5: Types of Adsorption in Chemistry: Unveiling Molecular Affinities	26	
1.2.6: Heavy Metal Adsorption: Unlocking Environmental Remediation	28	
1.3: Heavy metals toxicity	30	
1.4: Biomass Remediation	33	
1.4.1: Historical Perspective	33	
1.4.2: Biomass Remediation Today	34	
1.4.3: Challenges and Future Prospects	34	
1.5: References	36	

CHAPTER 2: MATERIALS, EXPERIMENTAL DESIGN AND CHARACTERIZATION METHODS	41-58
2.1: Toxic Heavy Metal Analysis in Cholic Acid by Q-ICP-MS	42
2.1.1: Sample preparation	42
2.1.2: Microwave Digestion	43
2.1.3: Standard stock solutions for calibration	43
2.1.4: Spiked sample solution	44
2.1.5: Criteria for validating the analytical method	45
2.2.6: Q-ICP-MS analysis	45
2.2.7: Characterization of Cholic Acid	45
2.2: Green Removal of Heavy Metals from Losartan by Rice Husk Ash Nanoparticles	46
2.2.2: Synthesis of silica nanoparticles (SNPs)	47
2.2.3: Analytical procedure	47
2.2.4: Characterization	48
2.3: Nano-Remediation: Rice Husk Nanoparticles for Heavy Metal Removal in	48
Potatoes	10
2.3.1: Extraction of silica nanoparticles 2.3.2: Analytical procedure	49 50
2.3.3: TGA	50
2.3.4: Spectroscopic analysis	51
2.3.5: Morphology and surface structure	51
2.3.6: Particle size analysis and surface charge	52
2.3.7: Surface area and pore structure analysis	52
2.3.8: Surface topography analysis	52
2.3.9: Crystallization structure result	53
2.4: Sustainable Coffee Remediation with Rice Husk Nanoparticles	53
2.4.1 Extraction of SNPs	54
2.4.2 Analytical procedure	55
2.5: References	56

CHAPTER 3: DETERMINATION OF TOXIC HEAVY METALS IN CHOLIC ACID USING QUADRUPOLE INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY	59-75
3.1: Introduction	60
3.2: Results and Discussion	62
3.2.1: Internal Standard for the detection of toxic heavy metals	62
3.2.2: Optimization of operation parameters of Q-ICP-MS	62
3.2.3: Method Validation	62
3.2.4: Estimated LOD	62
3.2.5: Estimated LOQ	63
3.2.6: Method Linearity	65
3.2.7: Method Accuracy	65
3.3: Conclusion	71
3.4: References	73
CHAPTER 4: BIO ADSORPTIVE REMOVAL OF HEAVY TOXIC METALS FROM LOSARTAN BY SILICA NANOPARTICLES DERIVED FROM RICE HUSK ASH: A GREENER APPROACH OVER CONVENTIONAL ONE	76-104
4.1: Introduction	77
4.2: Result and discussion	79
4.2.1: TGA	79
4.2.2: FT IR	79
4.2.3: SEM	81
4.2.4: EDX	82
4.2.5: PSD	83
4.2.6: BET	83
4.2.7: TEM	84
4.2.8: AFM	85
4.2.9: XRD	86
4.3: Heavy metal contamination	87
4.4: Effect of biomass concentration on metal removal	88
4.5: Effect of shake time in metal removal	92
4.6: Effect of pH on metal removal	95

4.7: Discussion	99
4.8: References	101
CHAPTER 5 : REVOLUTIONIZING AGRICULTURE WITH NANOTECHNOLOGY: RICE-BASED SILICA NANOPARTICLES FOR THE REMEDIATION AND QUANTIFICATION OF TOXIC HEAVY METALS IN POTATOES	105-126
5.1: Introduction	106
5.2: Result and discussion	107
5.2.1: Characterization of SNPs	107
5.2.1.1: FT-IR	107
5.2.1.2: SEM	109
5.2.1.3: EDX	110
5.2.1.4: PSD	110
5.2.1.5: BET	111
5.2.1.6: TEM	112
5.2.1.7: AFM	113
5.2.1.8: XRD	115
5.3: Toxic Heavy metal contamination	116
5.4: Effect of biomass concentration on metal removal	118
5.5: Discussion	120
5.6: References	122
CHAPTER 6 : INNOVATIVE BIOMASS ADSORPTION STRATEGY FOR REMEDIATING TOXIC AND HEAVY METAL IN COFFEE USING RICE HUSK SYNTHESIZED SILICA NANOPARTICLES	127-139
6.1: Introduction	128
6.2: Result and discussion	129
6.2.1: Characterization of SNPs	129
6.2.2: Heavy Metals Contamination	129
6.2.3: Effect of biomass concentration on metal removal	132
6.3: Discussion	134
6.4: References	135

CHAPTER 7: SUMMARY AND CONCLUSION	140-151
Chapter 1: General Introduction	141
Chapter 2: Materials, Experimental Design and Characterization methods	142
Chapter 3: Quadrupole inductively coupled plasma mass spectrometry for the	142
determination of heavy metals concentrations in Cholic Acid	
Chapter 4: Green removal of heavy metals from Losartan using RHA derived	144
SNPs	
Chapter 5: Nano-Agri: RH SNPs for heavy metal remediation in Potatoes from	146
North Gujarat	
Chapter 6: Revolutionary Adsorption: Rice Husk SNPs remediate heavy	148
metals in Coffee	
List of Publications	152
List of Paper Presented in Conferences/Seminar/Workshop	156
Awards/Achievements	161